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Expansions in terms of L ? integrable functions, such as Slater or Gaussian orbitals, or Hermite
functions, are usually employed to describe bound states of atomic and molecular systems. A less
familiar property of these expansions is that they can accurately reproduce continuum wave
functions in selected regions of configuration space, yielding a procedure that is widely used in the
calculation of probabilities of predissociation and ionization, as well as of unimolecular and
bimolecular reactions. In the present work it is argued that the essentials of this procedure can be
introduced with a modicum of theory through an extremely simple example, which lends itself to

further numerical experimentation.

I. INTRODUCTION

Any introductory course on Quantum Mechanics in-
cludes a part on approximation methods, since the number
of problems that can be treated analytically is very limited.
Among these methods, linear variational theory occupies a
deserved leading place for approximating bound-state en-
ergies and wave functions of atomic and molecular sys-

tems. What is less well known is that expansions in terms .

of, say, Slater or Gaussian orbitals, or Hermite functions,
can also be used to represent accurately unbound states in
selected regions of configuration space. This approxima-
tion method is usually called continuum discretization be-
cause it discretizes the true continuum spectrum of the
Hamiltonian. As will be mentioned in Sec. II, it is widely
used in the calculation of probabilities of predissociation,
ionization, unimolecular, and bimolecular reactions. In
Sec. II1, an example in terms of standard one-dimensional
square wells is presented that contains all pertinent fea-
tures of discretization and that may be used to introduce
the method using the elementary theory of any standard
quantum mechanics course. Once these features have been
grasped, the example can be made more sophisticated so as
to approach, as much as desired, the characteristics of
more “real life” problems.

I1I. CONTINUUM DISCRETIZATION

A recurrent theme in the literature is the representation
of continuum wave functions by linear combinations of L 2
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integrable functions. A typical example arises in the calcu-
lation of matrix elements of the type

IV 1ye) (1)

where y describes a bound state, ¥ is an interaction term,
and ¥ is a §-function normalized eigensolution of a Ham-
iltonian operator:

Hyp = Evg; <¢E|¢’E')=5(E_E')~ (2)

For instance, in the Feshbach theory,' this operator is a
projected Hamiltonian, and y and ¢ are closed and open
channel components; in the study of photoionization phe-
nomena, Vis the dipole moment operator, y and ¥, are the
initial (discrete) and final (continuum) states of the sys-
tem, etc. Expression (1) is to be calculated for a given open
channel or continuum energy E = E <.

To construct the bound-state wave function y, one may
employ a Ritz variational treatment in an appropriate L 2
integrable basis (LIB). Obviously, evaluation of (1) is sim-
plified when an LIB expansion is also employed for the
continuum wave function ¢. This procedure is employed
in many calculations, and in different fields, but is not dis-
cussed in textbooks, possibly due to the fact that the meth-
od is related to advanced topics such as Stieltjes imaging
techniques,®™ or to the stabilization of resonances.® And
the point is of pedagogical importance: One usually as-
sumes that LIB expansions obtained with the Ritz vari-
ational procedure yield a good representation for the lower
energy states, an increasingly worse one for higher excited
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ones, and a meaningless one for states whose energy liesina
continuum—since, unlike LIB functions, continuum wave
functions oscillate indefinitely in at least one direction of
configuration space, and represent dissociating states.
Hence, there is no a priori reason to expect a relation

between the exact continuum wave functions and the cor-
responding “approximate,” or discretized, ones obtained
in the variational procedure.

However, Hazi and Taylor’ found that these “approxi-
mate” wave functions turn out to agree remarkably well
with the exact ones, although only within a domain D of
configuration space and up to an overall normalization fac-
tor. Even more noteworthy, the agreement is reached with
quite small bases. Clearly, provided that the domain D con-
tains the region where the bound-state function y of (1)
takes nonnegligible values, and that one can find the renor-
malization factor, we can calculate (1) to any accuracy,
irrespective of the fact that exact and discretized contin-
uum wave functions can be totally different outside D. The
size of this domain results from the choice of basis, and
depends on the kind of application, being of atomic or mo-
lecular dimensions in the calculation of lifetimes, and
much larger when phase shifts or cross sections are to be
evaluated from the asymptotic form of the wave functions.
A detailed explanation of why an LIB is capable of repro-
ducing continuum wave functions may be found in Refs. 8
and 9. We now introduce, with the help of an example, the
main features of discretization and the reason why the
method works.

II1. EXAMPLE

We consider the continuum formed by the eigensolu-
tions of the Schrodinger equation for an electron moving
along one dimension and bouncing on an infinite potential
wall. Employing atomic units (e=m, =#%i=1), the
Hamiltonian, and S-function normalized solutions to this
problem are

1 d?

H: —_—— Vx 5 3
> dx2+ (x) (3)
o, Xx<0,
V“{o, x>0,’ 4
0, x<0,
Ve = [(2/17'k)”2 sin kx; k= (QE)"?, x>O0. (3)

We then define an LIB by enclosing the system in a box
by means of an infinite wall situated at a distance x = a: the
(unit-normalized) eigenfunctions

0, x <0,
#, =1(2/a)?*sink,x, 0<x<a, (6)
0, x>a,

with
k, =nm/a= (2E,)V% E, =n*r?/24a* N

describe bound states of the electron, unlike those of Eq.
(5). We then apply a standard linear variational procedure
to the Hamiltonian (3)—(4) in an LIB of N chosen func-
tions (6). Now, since the Hamiltonian matrix is diagonal
in this representation, the “approximate” solutions ob-
tained are precisely the wave functions (6) and the energies
(7): We have discretized the continuum spectrum by plac-
ing a wall at a distance a. We now see that, for k = k,,, and
inside the domain D = [0,a], exact (5) and discretized (6)
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wave functions are identical except for a normalization fac-
tor. This feature is easily explained: They are proportional

because they fulfill the same differential equation and ini-
tial condition; they are not identical because the discretized
one is normalized to unity while the continuum one fulfills
Eq. (2). Also, the feature is unrelated to the form chosen
for the potential ¥(x) in Eq. (4): It is clear that for any
other choice of ¥, if we define the LIB set by placing a wall
at x = a, strict proportionality between continuum and
discretized wave functions will hold for x < a.

The previous reasoning also shows why discretization
works for more common LIB sets, such as those built from
Slater, Gaussian, or Hermite functions. Indeed, a possible
further development of the problem is to (numerically)
diagonalize the Hamiltonian in bases of one-dimensional
analogs of these functions such as {x exp( — a8 "x/a)},
{x"exp( —x/a)}, {x exp( — a,B "x*/a)}, {x"
Xexp( — x*/a)}, (x>0); a,, B are real constants to be
chosen by trial and error; n = 1,2,3,...; and a is a “size”
factor. Since these functions decrease exponentially, a vari-
ational expansion in terms of them is, in a loose sense,
equivalent to enclosing the system in a box: Instead of a
sharp wall at x = a, we then have a diffuse boundary re-
gion. For x less than the boundary region, proportionality
between continuum and discretized wave functions ob-
tains; for x inside this region the exponential decrease of the
discretized wave function spoils the proportionality; and
for x larger than the boundary position continuum and
discretized functions are unrelated. Illustrations of this be-
havior may be found in Refs. 7 and 9.

Once it is seen that the method works, there remains the
problem of obtaining a discretized continuum wave func-
tion of any given energy [e.g., E= E“asin Eq. (1)]. For
this purpose, one can introduce a nonlinear parameter in
the basis, and then use inverse interpolation to select the
appropriate basis. In our example, it suffices to choose the
value of g in Egs. (6) and (7):

a=nm(E/2)'? (8)

and such that [0,a] contains the domain where we wish the
approximation to hold. The same procedure (varying the
value of @) may be employed for the other bases mentioned.
We notice that this inverse interpolation can be performed
for more than one index #, yielding approximations ¢, _,
é,, etc., where ¢, differs from ¢,_, by reproducing one
extra half-wavelength’ of ¢, and so on. In practice, this
yields an excellent means of testing the goodness of discre-
tization techniques: When using different approximations
¢, [e.g., in Eq. (1)] one should obtain the same results to
the accuracy required.

The last question is, can one find the renormalization
factor that relates exact and discretized wave functions?®
The honest answer is that, in the general case, one probably
cannot, especially when the continuum presents a sharp
resonant structure, the LIB set is small, and (as usual) the
exact wave function is unknown. Nevertheless, one can see
how to determine the renormalization factor for a reso-
nance-free continuum such as that of Egs. (3) and (4),
starting with the case where D = [0,a] is so large that dis-
cretization yields a quasicontinuum. The projector for the
discretization basis is

=3 _ An
P=3 |$,)(4,] =3 AE, AEﬂ|¢5n><¢,,|. (9)

n=1 E,
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We see that, if we define:
¢, =p'"*(E,) ., (10)
where p is the density of states'® of the quasicontinuum:

dn (dEn ) R &
En = ——= = . 11
pLED) dE, dn ni? b
We then have the formal limit:
P=38E13)@ ~ [ dEIs W) (12)
EH el

N o

and from Egs. (5) and (6) ¢, exactly coincides with ¢/,
within D and vanishes outside this domain, so that the re-
normalization factor is given by p'/%. We stress the fact that
p is devoid of physical significance and is a property of the
basis set. As D (i.e., @) is progressively enlarged, p— o,
and the amplitude of each unit-normalized discretized
wave function ¢, tends to 0, such as to keep the values of

the renormalized one ¢, identical to those of ¢, , within
D.

One may then remark that in many applications D is
small, of atomic or molecular dimensions, so that the eigen-
values (7) are widely spread and discretization does not
yield a quasicontinuum. Several procedures can then be
employed®"? to approximately solve the problem. My per-
sonal bias is that the simplest one is to employ p'/ as a
renormalization factor, where p(E,) is evaluated by Eq.
(11), by considering E(n) as an interpolation function of
E, vs n. In the present example, this procedure permits us
to produce exactly the continuum wave functions ¥,
within D, however small this domain may be; in other
cases, the agreement is only approximate. As may be ex-
pected, construction and differentiation of an interpolating
function E(n) is a procedure that must be handled with

care; in practice, this means that some requirements are
placed on basis sets such that the discretized spectrum ob-
tained {E,} is sufficiently smooth®—a property that can
always be ascertained a posteriori.
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The accuracy of the adiabatic approximation in quantum mechanics is examined by applying it to
the forced harmonic oscillator for which the time-dependent Schrédinger equation can be solved
exactly. Nonadiabatic transitions caused by the external force that varies in time is focused on. A
peculiar situation is illustrated such that, no matter how rapid and large the variation of the
external force may be, all nonadiabatic transitions vanish exactly as 7 — co.

I. INTRODUCTION

Consider a quantum mechanical system whose Hamilto-
nian H contains a time-dependent parameter f(r). This
parameter could, for example, represent an external elec-
tric field that varies in time. If the time variation of f(¢) is
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slow, i.e., if the variation of f(z) does not cause a substan-
tial variation of H in a time interval of the order of the
natural period of the system with constant £, then the adia-
batic approximation is expected to hold.

In his interesting book,' Peierls examines the adiabatic
approximation for the forced harmonic oscillator. After
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