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length, and time on each side of Eq. (B2), it is found that
a=4,B= —} and y = — 2; thus we can write

£, = F(m) (EI /ul*)""%. (B3)

Equation (B3) is valid for any boundary conditions of the
beam, the different conditions influencing the function
F(m). One of the possible set of boundary conditions is
that appropriate to the cantilever. It is seen that Eq. (B3) is
consistent with the result obtained by the more detailed
treatment in Appendix A.

'Frederick Wilson and Arthur E. Lord, Jr., “Young’s modulus via sim-
ple, inexpensive static and dynamic measurements,” Am. J. Phys. 41,
653-656 (1973).
2Somdev Tyagi and Arthur E. Lord, Jr., “Simple and inexpensive appara-
tus for Young’s modulus measurement,” Am. J. Phys. 48, 205-206
(1980).
3]. Flores-Maldonado, S. Galindo, and H. Jiménez-Dominguez, “Note
on an apparatus for Young’s modulus measurement,” Am. J. Phys. 55,

664—665 (1987) [an erratum was subsequently issued: Am. J. Phys. 56,
856 (1988)].
“Keith Turvey, “Investigation of the frequencies of in-plane modes of a
thin circular singly clamped ring with application to Young’s modulus
determination,” Eur. J. Phys. 10, 111-117 (1989).
5G. H. Ryder, Strength of Materials (Cleaver-Hume, London, 1961), pp.
155-156.
“See, for example, H. S. Allen and H. Moore, 4 Text Book of Practical
Physics (MacMillan, London, 1960), pp. 91-93, or J. H. Avery and A.
W. K. Ingram, Laboratory Physics (Heinemann, London, 1961), pp.
70-72.
"Hans Wagner, “Large amplitude free vibrations of a beam,” J. Appl.
Mech. 32, 887-892 (1965).
8S. Timoshenko, Strength of Materials (Van Nostrand Reinhold, New
York, 1956), Pt. I1, pp. 366-370.
°George Arfken, Mathematical Methods for Physicists (Academic, Or-
lando, 1985), pp. 321-322.
' American Institute of Physics Handbook, edited by Dwight E. Gray
(McGraw-Hill, New York, 1963), pp. 2-68-2-69.

""Francis S. Tse, Ivan E. Morse, and Rolland T. Hindle, Mechanical Vi-
brations (Allyn and Bacon, Boston, 1978), pp. 262-263.

12S. Timoshenko, Vibration Problems in Engineering (Van Nostrand,
Princeton, 1956), pp. 334-335.

Eigensolution of the Coulomb Hamiltonian via supersymmetry

A. Valance® and T.J. Morgan

Department of Physics, Wesleyan University, Middletown, Connecticut 06457

H. Bergeron

LURE (CNRS, CEA, MEN), Bat. 209D, U. P. S., 91405 Orsay Cedex, France

(Received 29 November 1988; accepted for publicétion 7 July 1989)

The eigenvalues and eigenfunctions of the nonrelativistic hydrogen atom are obtained using
supersymmetric quantum mechanics arguments and basic properties of the Schrodinger

equation.

L. INTRODUCTION

The particular case of the hydrogen atom is treated in
most quantum mechanics textbooks by solving the Schro-
dinger equation. The purpose of this article is to present a
different approach to obtain the properties of the nonrela-
tivistic hydrogen atom spectrum, using some supersym-
metry quantum mechanics (SSQM) arguments and two
simple mathematical properties of the radial Schrédinger
equation. The method is appealing, since it avoids the alge-
braic details of the usual mathematical polynomial solu-
tion, while demonstrating in an elegant manner the main
results of the hydrogen atom.

An exhaustive and pedagogical presentation of super-
symmetry in quantum mechanics has been given by Hay-
maker and Rau.' Also, a pedagogical and focusing study of
the exactly solvable potentials using SSQM has recently
been given by Dutt et al.> Many other studies on SSQM in
different fields of physics have been published and are cited
in Refs. 1 and 2.

The goal of this article is specific: to obtain the character-
istics of the hydrogen atom via an alternative view that
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utilizes ideas involved in SSQM. The presentation of this
article is also intended to emphasize the pedagogical
aspects of the procedure. The article is organized as fol-
lows. In the first part of this paper, we demonstrate some
important results of SSQM via a method that involves ele-
mentary quantum mechanics only. In the second part, we
recall some useful results about the radial Schrédinger
equation for the hydrogen atom. In the third part, we de-
rive, using SSQM arguments, that there is a supersymme-
tric pattern for the hydrogen spectrum when it is viewed as
several spectra, each one corresponding to the different val-
ues of the angular momentum quantum number /. Finally,
we give a method to determine all the eigenfunctions via
SSQM, starting from the ground state in each / subspace,
which is easily obtained using simple mathematical argu-
ments.

II. SUPERSYMMETRY IN QUANTUM
MECHANICS

First, we establish the well-known relations for super-
symmetric Hamiltonians® in terms of four propositions.
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Consider an operator 4 and its Hermitian adjoint 4 *.
We build the following H operator
H=44", (1)

which is Hermitian.
Let | W) be a normalized eigenket of H associated with
the eigenvalue E, then

H|W) =44 |¥) =E|¥). (2)
Also, we observe that the eigenspectrum is positive,
(V|44 +|¥) = |4 |W)||* =E. 3

Equation (2) leads, on multiplication from the left by
A, to

ATAAT|V)) =EA W), (4)

Therefore, any eigenvalue E associated with the eigenket

|W) of the operator H = A4 * is also an eigenvalue of the
operator Hg = A " A, except when

A *|¥) =0 (proposition 1). (5)
Now we assume that the spectrum of H is not degener-

ate, and denote the normalized eigenkets of Hg by [Ws).
Starting from

Hs‘\ljs> :E|‘Ps)’ (6)
and

(‘l’5|‘l’5> =1, (M
we obtain

[Ws) =ad " |¥), (8)

where a is a constant, the value of which is deduced from
(2) and (7): ¢®E = 1. Therefore, we find the following
relations linking the eigenfunctions of |¥g) and |¥),

|\PS> — E—1/2A +'\lj>’

W) =E 24 |¥s)

Now we will specify the operator 4. Let v(x) bea Hermi-
tian operator of a one-dimensional system, and p the mo-

mentum operator in atomic units — id /dxinthe |x) repre-
sentation. If

(proposition 2). 9

A= (ip+v)/\2, (10)
then

At =(—ip+ 02 (11)
and

AAY = (p*+ > +v)/2, (12)

ATA=(p*+ 1> =1)/2, (13)
where we have used the commutator result

[v(x),p] = (14)

with the prime denoting derivative with respect to x. Equa-
tions (11) and (12) can be rewritten to display the well-
known supersymmetric Hamiltonians H and Hy as,’

2
H:AA*———;—%jL%vz-i-—é—v', (15)

X

2
HS=A+A=—id— Lo Ly (16)

v

2 dx* 2 2
Also, it will be useful to establish the following relation
obtained by subtracting (13) from (12)

[4,4F] =V (17)
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Now we want to relate any one-dimensional Hamilton-
ian H, to H. This Hamiltonian, associated with the poten-
tial V,(x), is written in a. u. as

=p*/2 + V,(x). (18)

As H s positive, we must renormalizeto H, — E, | (E| ;
being the ground-state eigenvalue of H, ). Then using (12)
and (18), H, can be factorized as

H =44" +E,,,
when v(x) is the solution of the differential equation

(19)

v =2V, — E,,). (20)

The right side of (20) can be deduced from the Schro-
dinger equation for the ground state:

2(r, *El,l) :\I/;’,l/\lll,l’ (21)
with ¥, | (x) being the ground-state eigenfunction of H,.
Therefore, we easily verify that

v="V /¥, =n¥,,) (22)

corresponds to a particular solution of (20). Then 4 may
be written as

\I"
A= (— +—L /\/— (proposition 3).

Now we con51der another Hamiltonian H, characterized
by the potential V,(x),

=p* 2+ V,. (24)

H, will be a supersymmetric partner of A, if it can be
expressed as

H,=AA+E,,. (25)

In this case, we find, using Eqgs. (18), (24), (19), (25),
and (17),

H-H=V-V,=[44"]=V. (26)

Also, using the expression for v given in Eq. (22), we
have

V,=V,—(In¥,,)". (27)

Therefore, we obtain the following property corresponding
to the particular solution v of the differential Eq. (20),

(23)

1 d L 31
AT =——(——+———)\I’ =0. 28)
(¥, & FRRET |W,0) (

Finally, we may state that the Hamiltonians H, and H,,
whose potentials are ¥ and V,, respectively, are supersym-
metric partners when

V,—V,=—(n¥Y, )"

where |V, | ) is the ground eigenstate of ,, and H, and H,
have the same spectrum except the ground state of H, is
missing in H, (proposition 4).

This procedure may be iterated to generate a Hamilton-
ian hierarchy with the property that the N th member of the
hierarchy has the same eigenvalue spectrum as the first
member H,, except for missing the (N — 1) eigenvalues of
H,.* In particular, the N th excited state of H, is degenerate
with the ground state of Hy_ ;, and the corresponding
wavefunctions are simply related.
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III. SOME ELEMENTARY RESULTS ABOUT THE
COULOMB POTENTIAL

Let us recall some useful results about the Coulomb po-
tential and then we shall point out the analogy with SSQM
Hamiltonians in Sec. IV.

The radial equation is usually written in a. u. as

1 d? 1d I+ 1)
—————— ~ )&
( 2.dP  roadr 2P ¥ ni (1)

=E, R, (r). (29)

We can simplify the differential operator to be studied by
defining

R, (r) = (1/Nu,,(r). (30)

Multiplying both sides of (29) by r, we obtain for u,, , (r)
the following differential equation:

1 42 - 1+1 1
( T E —7) it (1) = Bt (7).

(31)

This equation is analogous to the one-dimensional prob-
lem of a particle moving in an effective potential V, ()
such that

V,= —(I/n) + I+ 1)/27]. (32)

Nevertheless, we must not lose sight of the fact that the
variable r can take on only nonnegative real values. In fact,
the whole potential is given by Eq. (32) for >0 and

V, = o for r<0. (33)

We recall that for a one-dimensional potential, if any
bound states exist, they are not degenerate.5 To demon-
strate the above result, one needs only the definition of a
bound state, i.e., the wavefunction must go to zero as
|r| - «o. We note that we can demonstrate the same result
for the central potential V(r) defined by both Egs. (32)
and (33). Then it will be quite justified to apply proposi-
tion 2 to the one-dimensional radial Schrédinger equation,
since the spectrum is not degenerate.

Therefore, denoting A, as the one-dimensional Hamil-
tonian operator

14  Id+1) 1
=——— -, 34)
’ 24P 27 r (
and the corresponding eigenequation as
hi|il) =E;|il), (35)

where i = {1,2...} labels the eigenstates for each l-given
Hamiltonian, and / = {0,1,2...}. The behavior of the eigen-
functions of A, are

u, (r) ~0r” L (36)

u, (r) ~ exp(—+2E;,r). (37)
Now it is easy to obtain the ground-state wavefunctions
for each 4,, since they must be nodeless,

u,,(r) =N, ;7 exp(y/ —2E,r). (38)

Before using SSQM arguments to generate the hydrogen
atom spectrum, we need one more result deduced from the
elementary study of eigenequation (35) when /= 0. De-
ducing u,, (r) from Eq. (38) and then solving Eq. (31),
we obtain
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(39

We emphasize here that only Egs. (38) and (39), which
are obtained via a simple analysis of the mathematical
properties of the Schrodinger equation, will be used in Sec.
IV to solve the Coulombic potential via SSQM relations.

EI,O = - %(a- u.).

IV.SSQM AND THE COULOMB POTENTIAL

Our study will be different than the usual treatment of
the Coulomb-potential energy degeneracy. In this section
we utilize the SSQM propositions presented in Sec. IT and
the Coulomb potential results of Egs. (38) and (39) pre-
sented in Sec. IIL

First, we wish to prove that the different 4, operators
produce a supersymmetric pattern. Second, we wish to
generate the exact values of the energy spectrum, i.e.,
E,, = E, = — 1/2n’ Finally, we give a method to gener-
ate the wavefunctions of all states using only SSQM argu-
ments and the ground-state wavefunctions given by Eq.
(38).

A. Supersymmetric partners

We are going to show that two adjacent “Hamiltonians”
h, and k,, | are supersymmetric partners. Starting with a
given h;, the supersymmetric partner /¢ is obtained via
Egs. (26) and (27):

d2
hS—hleS_ V,= —Fh’l[uu(r)], (40)
where v; = — 1/r 4+ I(I + 1) /27 is the effective potential
and u, , is given by (38). Then,
-1 Id+1)  I1+1
V. —=
s r + 2r + r
1 1
= ——4+—[U+1){U+2)], 41
" 2"2[( + 1) ( )] (41)

showing that V is equal to ¥, ,. Therefore, the A super-
symmetric partner of &, is A, .

Since the ground state of 4, is missing in #,, ; (proposi-
tion 4), by repeating the above procedure for / varying
from 0 to o, we obtain the energy spectra displayed in Fig.
1. The formula linking adjacent energy levels of supersym-

metric partners is .
(42)

En,l =En_1,1+1 =En~2,[+2 =" =E1,1+n—1

withn ={1,2...}, 1= {0,1,2...}.

Therefore, we have found via SSQM the accidental ener-
gy degeneracy of the Coulomb potential hydrogen atom
spectrum. )

B. Spectra values

We will now find all the energy level values of the spectra
using SSQM arguments and the ground-state energy level,
ie, —1(a w).

Indexing both Eqs. (19) and (25) as follows

H =AA{ +E,,,

Hy=A4{4,+ El,ls

and noting that H, can also be written as
H,=A4,4 2+ + EI,Z’

where 4, and E| , are defined according to the usual rela-
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Fig. 1. Energy levels for the hydrogen atom using both the usual notation
(nl) and E,,, notation. The correspondence between the different given
Hamiltonians &, appears clearly via the relation (42), E,, = E

n— 11+t
= ...=El.l+n—l'

tions used in this article, we may write two different general
expressions for H,_ ,

oo =A A+ E (43)
and

hyy1=A4A74,+E,, (44)
Moreover, using Egs. (12) and (13), we obtain
0,40 =P+ 4o, (45)
24, =p* + v} —v;. (46)
Using the last four equations, we obtain
U?_U;+2E1,1=U%+1 +vi1 +2E,,,. (47)
Now we can calculate v; via Egs. (22) and (38)

v, =(j+ 1)/F—(=2E )" (48)

Putting Eq. (48) in Eq. (47) withj = /and/ + 1, we get
(after some algebra)

[+ 1D (=2E N>~ (U+2)(=2E,,, )"*]/r=0.
(49)

Since this equation must be true for all positive r values,
we obtain the relation linking E, ; and E, , , , i.e., the for-
mula between the ground-state energy of adjacent spec-
trum

EE . =[U+2)/U+ D] (50)

Using this relation, formula (42), and the value of E|
[Eq. (39)], we obtain the well-known energy-level for-
mula of the hydrogen atom

E, =E,= —1/2n (51)

C. Recursion relation for eigenkets

We now show that it is possible to get the eigenfunctions
of the hydrogen atom starting with SSQM relations and
using only the ground-state wavefunction of each 4, Ham-
iltonian given by Eq. (38). We want to find a general for-
mula giving any unknown |n,/ Yket. By applying Eq. (9) for
the situation where E| , is the energy renormalizing con-
stant, we obtain

|nl) = (E,, —E,,)""2d,\n — 1,1+ 1). (52a)
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By iterating Eq. (52a) until we reach a ground-state ket,
we obtain

in—11+1) = (B, _ 1141 _E1,1+1)_1/2

XA, |n—2,1+42), (52b)
|2’l+n _2) = (E2,1+n—2 —E1,1+n—2)_1/2
XAy, 2| LI+ n—1), (52¢)

By combining all (n — 1) equations above, we obtain
|nd) = [(En,l —E)DE,_ ;1 — E )

X(Eppyno2—Eiiyn )]

XA d; AL+ n—1). (53)
Now, noting the relation between the energies: E,,
=FE, , whenn +[=n'+[’, and taking the 4, _, energy
spectrum as reference, we obtain
l’l,” = [(En+1,0 _E1+I,O)(En+l,0 _E2+1,0)"'
X(E, 1o _Enfl+l.0)]_l/2
XA, AL+ n—1), (54)

This expression is a general formula that generates the
eigenkets of the hydrogen atom knowing only the ground
state of each 4, and the 4, operators. The utilization of this
formula is illustrated in Fig. 2. Using Egs. (10) and (48),
we obtain the expression of the differential operator 4,,

ul

r ul’l
:(i+l+1 —(—2E1,1)I/2)- (55)
dr r

L M MM

'nﬂ—“.o, —— l-\l —\l’— \\ ln'tt."
Inak fa2> Inz1,e5>
E—— J‘_....\ '--'.L - e - e - e
ine3let>

{=0 (=1 (=2 (=3 T (=6

Fig. 2. How to use Eq. (54). The known wavefunctions are the ground
state for each / spectrum. Example 1: To obtain |n = 7, / = 0), follow the
arrows; 2: To obtain |n =4, [ =2), follow the arrows; 3: To obtain
|n=3,1=1), follow the arrows. We note that the iteration number we
needisn — 1.
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It is now instructive to illustrate this method by calculat-
ing explicitly the first excited-state wavefunction u, 4 () of
the / = 0 energy spectrum starting from the ground-state
wavefunction u, , (7) of the / = 1 energy spectrum. Putting
n=2and /= 0in Eq. (52a), we obtain

12,0) = [E,o — E, 5] 724, |1,1), 7
where the number of iterations is n — 1 = 1. All the terms
of the right member of the above equation are known [ E, ,
= ~LE,=—§ (r|L1) =N, Pexp(—1r/2); N,,
= 1/2J6and 4, = (d /dr + 1/r — 1)/y2]. By doing sim-
ple algebra, we obtain

(r|2,0) = r(2 — ryexp( — r/2)/2y2,

which is the usual result for the 2s normalized wavefunc-
tion.

V. CONCLUSION

We have studied the Coulomb potential via a method
grounded on both supersymmetry in quantum mechanics
and elementary properties of the Schrédinger equation.
Some useful properties of the supersymmetric Hamilton-

ian are demonstrated and summarized in four proposi-

tions. Two basic results of the Schrodinger equation are
obtained via a mathematical analysis of the radial eigen-
equation, without solving it. _

The hydrogen atom spectrum presents a supersymme-
tric pattern when it is viewed as several spectra each one
corresponding to the different angular momentum values.
The accidental degeneracy of the spectrum is then ex-

plained using SSQM arguments. [Of course, we cannot
claim that this accidental degeneracy is due to a supersym-
metric property, as we know that there exists an invariant
(the Runge-Lenz vector) that is responsible for this degen-
eracy.] Also, the eigenvalues and eigenfunctions of the hy-
drogen atom spectrum are obtained via this approach.

In short, the method presented here using SSQM argu-
ments and elementary Schrodinger equation properties
yields the most important results of the nonrelativistic hy-
drogen atom. It can be used as an instructive exercise in an
undergraduate quantum mechanics course.
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An algebraic approach is used to obtain the time evolution of physical systems based on the
Poisson bracket formulation of classical mechanics. This method is applied in many examples,

including three-dimensional problems.

L. INTRODUCTION

The most obvious approach to a mechanical problem,
given a force law, is to solve Newton’s differential equation
of motion. However, after Newton’s work many other ap-
proaches have been developed with increasing mathemat-
ical sophistication, for instance, the Lagrangian formula-
tion, which stands out for its aesthetic elegance, the
Hamiltonian formulation, which provides a natural gener-
alization for many other branches of physics, etc. These
two formulations do not even use the concept of a vectorial
force as occurs in Newtonian mechanics. Nevertheless, in

491 Am. J. Phys. 58 (5), May 1990

all these formalisms we must solve differential equations of
motion. The use of differential equations is not restricted to
classical mechanics, but is common to all of classical phys-
ics. For example, classical electromagnetic fields are de-
scribed by the Maxwell differential equations, ' all the wave
mechanical phenomena are governed by differential equa-
tions, etc.? Even in quantum mechanics, where many dif-
ferent approaches have been developed since its birth in the
beginning of this century, the Schrodinger formulation
based on a differential equation is one of the most common-
ly used.?

However, it is sometimes more convenient to develop a

© 1990 American Association of Physics Teachers 491



