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Measuring orbitals and bonding in atoms, molecules, and solids
Maarten Vosa) and Ian McCarthy
Electronic Structure of Materials Centre, Flinders University of South Australia, GPO Box 2100, Adelaide,
S.A., 5001, Australia

~Received 20 May 1996; accepted 9 December 1996!

The cloud of negative charge that determines the relative positions of the nuclei in a molecule or
solid can be understood in terms of the motion of the electrons that form the cloud. Usually one
pictures the charge cloud as a distribution in coordinate space. One can equally well picture it as a
distribution of velocities, i.e., in momentum space. The probability that an electron has a certain
energy–momentum combination is called the energy–momentum density. It is directly measured by
electron-momentum spectroscopy. The results of this technique provide the most direct
experimental documentation of simple ideas of orbitals and bonding, thus opening a fresh and
comprehensive perspective on electronic structure. We show how measurement of the motion of
electrons in solids can help us understand the bonding of atoms in molecules and solids. We give
examples of a free-electron metal and an ionic insulator. ©1997 American Association of Physics Teachers.

I. INTRODUCTION

A major aim of physics is to obtain direct measurements
of properties closely related to the electronic wave functions
of atoms, molecules and solids. This goal has been somewhat
elusive. Most techniques measure properties that are related
in a rather indirect way to the wave function; for example,
absorption and emission spectroscopies measure the differ-
ences between energy levels. The resistivity of a metal is
another indirect property.
The technique that measures quantities most closely re-

lated to the wave function is electron-momentum spectros-
copy ~EMS!.1 Here the kinetic energies and momenta of an
incident electron and two outgoing electrons, detected in
time coincidence, are observed and recorded for a large num-
ber of events. For each event the sum of the kinetic energies
and momenta of the two outgoing electrons is different from
the kinetic energy and momentum of the incident electron.
The energy difference is the binding energy of the target
electron. For high enough energies of the external electrons,
the momentum difference is equal to the momentum of the
target electron just before the collision. The experiment
therefore estimates, from the number of target electrons in
each small energy–momentum range, the probability of find-
ing an electron in that range. This is the energy–momentum
density of target electrons. The experimental criterion for
high enough energy is that the measured energy–momentum
density should not change if the energy of the incident elec-
tron is increased.
The relationship of the energy–momentum density to the

ground state wave function of an electronic system is easily
understood in terms of the independent-particle model, in
which the motion of each electron is determined by a one-
electron function, called an orbital. The orbital is the solution
of a Schro¨dinger equation for the motion of an electron in an
electrostatic potential determined by the nuclei and the self-
consistent motion of all the electrons. Each orbital is often
calculated as a function of the position of the electron, but it
is mathematically equivalent to the orbital represented as a
function of the electron momentum. Each function is the
Dirac–Fourier transform of the other. Each orbital represents
an electron with a particular eigenvalue of energy. Its abso-
lute square gives the probability of finding the electron in a
particular small range of momentum. Hence, a calculation of

all the orbitals gives the density of the orbitals per unit en-
ergy interval and thus the energy–momentum density which
we compare with experiment.
Although both coordinate and momentum representations

contain identical information, we are more accustomed to
visualizing things in coordinate space. We therefore first de-
scribe atomic orbitals in momentum space, form an idea of
how the orbitals form a chemical bond, and show how the
hydrogen-molecule bond can be observed by EMS.
To illustrate the transition from a molecule to a crystalline

solid we show a one-dimensional model in which, for a large
number of atoms, each orbital is associated with a unique
value of momentum. The relationship of the momentum to
the energy eigenvalue of the orbital is the dispersion relation
for the resulting band of one-electron states, which becomes
essentially continuous in the limit of a large crystal. We use
the insights developed here to understand the EMS results
for two completely different solids, metallic aluminum and
aluminum oxide, which is an ionic insulator. In this way we
develop a unified understanding of atomic, molecular and
solid-state physics, based on EMS.
Two other techniques determine momentum information

about electrons in materials. Compton scattering2,3 deter-
mines energy-summed and partially momentum-integrated
probabilities. Angle-resolved photoelectron spectroscopy4

determines the band dispersion relations in terms of energy
and crystal momentum for electrons in a single crystal with a
flat surface. Crystal momentum is essentially a set of quan-
tum numbers characterizing the orbital at a particular energy.
It is a property of the crystal lattice. EMS determines the
density of the electrons as a function of their energy and real
momentum, irrespective of crystal structure. It applies to
gaseous, amorphous or polycrystalline materials as well as to
single crystals.
For a more technical description of EMS as applied to

atoms and molecules we refer to McCarthy and Weigold.1

For applications to solids see Vos and McCarthy5 and Den-
nison and Ritter.6 Here, it is necessary to have target thick-
nesses no greater than about 100 Å, because the external
electrons must be transmitted through the target. Recently it
has become possible to study larger organic molecules with
this technique as well. This application has been described
by Zhenget al.7
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II. WHAT IS MEASURED BY EMS?

The experiment uses a beam of electrons of known kinetic
energyE0 and known direction. Its momentumk0 is there-
fore known. The beam is incident on a target consisting of
atoms, molecules, or a solid film. The incident electron
knocks a second electron out of the target. Both the electron
from the incident beam and the knocked-out target electron
are detected after the collision. Their kinetic energies and
momenta,Ef andk f for the faster one andEs andks for the
slower one, are observed.
One can deduce the binding energye and momentumq of

the target electron from the conservation laws, assuming that
the energies and momenta of the external electrons depend
only on the motion of the two colliding electrons immedi-
ately before and after the collision. This assumption is dis-
cussed below:

e5E02Es2Ef ~1!

and

q5ks1k f2k0 . ~2!

In the independent-particle model, the probability that one
measures a certain binding-energy–momentum combination
is proportional to the absolute square of the momentum-
space orbital of the target electronufe~q!u2. The momentum-
space orbital is related to the coordinate-space orbitalce~r !
by the Dirac–Fourier transformation,

fe~q![^qufe&5~2p!23/2E d3r exp~2 iq–r !ce~r !.

~3!

Thus both contain the same information. However what is
measured is the absolute square of the momentum-space or-
bital, so the phase information is lost. One cannot obtain
uce~r !u

2 from ufe~q!u2 or vice versa.
In the case of atoms or molecules the energye of the

orbital can often be resolved, so that we measure the momen-
tum densityufe~q!u2. For a large system such as a solid there
are many orbitals within the resolvable energy interval. What
we then measure is the energy–momentum density, i.e., the
average for the energy interval of all the momentum densi-
ties.
Equation~2! assumes that momentum changes to the ex-

ternal electrons are due only to the elementary electron–
electron collision and not to effects of their interaction with
the remainder of the target system. Such effects are charac-
terized by the generic term ‘‘distortion,’’ since they distort
our knowledge ofq. Distortion effects are small if each ex-
ternal electron has a high enough energy. There is an experi-
mental criterion for the energy. If the target energy–
momentum density deduced from an experiment does not
change when the external energies are substantially in-
creased, then they are high enough. The beauty of the tech-
nique is that the energy and momentum of the target electron
are determined by subtraction, so that arbitrarily high exter-
nal energies, consistent with experimental feasibility, can be
used. Therefore the high-energy criterion can be satisfied in-
dependently of the target energy–momentum range to be ob-
served. The experiment is set up to scan a range of energy
and momentum, the rate of coincidence counts in particular
small energy–momentum intervals giving an energy–
momentum density profile.

From the experimental point of view, the main challenge
is the detection of the slow and fast electrons in coincidence
so as to determine which pairs of electrons originate from the
same collision. Coincidence experiments have been notori-
ously difficult because of slow count rates. The first EMS
experiment was on solid carbon. Each detector was tuned to
a single energy and momentum, with an energy resolution of
90 eV, and the count rate was of the order of one count per
minute.8 Nowadays, we can get count rates three orders of
magnitude larger by the use of detectors that measure simul-
taneously a range of energies and a range of momenta. En-
ergy resolution is approximately 1 eV, which is good enough
to distinguish electronic states in most cases. Vibrational
and/or rotational bands built on the electronic states are not
resolved and do not affect the energy–momentum profiles.1

Momentum resolution is approximately 0.1 a.u.
Throughout the article we use Hartree atomic units~a.u.!,

for which e5m5\51, wherem is the electron mass. The
atomic unit of length is the Bohr radius of the hydrogen
atom,a050.529 Å. The atomic unit of momentum is\/a0,
which is 1.89 Å21. In atomic units, momenta and reciprocal
lengths~for example, wave numbers! have the same numeri-
cal values. For energy we use the laboratory unit, electron
volt ~eV!; 1 a.u. of energy corresponds to 27.2 eV.
A difficulty of the technique in the case of solid targets is

that, if one wants to measure the complete energy–
momentum density profile down to zero momentum, one can
do it only if one uses transmission experiments through thin
films. For Eqs.~1! and ~2! to apply, it is necessary that no
additional collisions occur along any of the three trajectories
of the external electrons. Due to the small mean free path of
electrons in the appropriate energy range 1–20 keV, it is
necessary for the films to be very thin~roughly 100 Å!. Only
for such thicknesses will the desired electronic structure in-
formation not be obscured by distortion. A schematic draw-
ing of the spectrometer for solid samples at Flinders Univer-
sity is given in Fig. 1. For more details see Storeret al.9

To give a more-detailed description of what is measured,
we need the probability amplitude for a reaction with a
many-body target ground state 0 and a final electronic ion
stateI that is isolated by the binding-energy measurement.
The probability, and hence the experimental count rate, is
proportional to the absolute square of the amplitude, which is
expressed as the matrix element of an operatorT that gov-
erns the transition between the initial and final states of the
colliding system,

FI0~k0 ,k f ,ks!5^k fksI uTu0k0&. ~4!

The kinematic conditions of the experiment are chosen1 so
that the amplitude is essentially proportional to the quantity

^qI u0&5^k fksI u0k0&

[~2p!23/2E d3r 1•••E d3r N

3exp~2 iq–r1!C I* ~r2 ,...,rN!C0~r1 ,...,rN!,

~5!

which we call the structure amplitude. The notationC de-
notes a many-body wave function for the system indicated
by the subscript. The electron coordinates arer1,...,rN . The
kinematic conditions are essentially the high-energy condi-
tions described above and the approximation involved has
the same experimental verification.
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In the independent-particle model the ion stateI results
from taking an electron from an orbital of the target, whose
energy ise. The structure amplitude is then

^qI u0&5^qufe&5fe~q!, ~6!

and the count rate is proportional toufe~q!u2.
A refinement is to consider the target ground state 0 in a

full many-body representation and the ion stateI as a linear
combination of states formed by removing an electron from
one orbital of an arbitrary target eigenstate. The coefficients
in the linear combination for each ion eigenstate are found
by diagonalizing both the target and ion Hamiltonians in a
representation constructed from target orbitals. Only the one-
hole states formed by removing an electron from an orbital
of appropriate symmetry in the target ground state will have
a finite projection on the ground state, since the target eigen-
states are orthogonal. Each projection is a momentum-space
orbital fe~q!. To a good approximation, if the orbital set is
well chosen, only one will contribute to the one-hole linear
combination of orbitals. Thus many-body ion states are as-
sociated by the reaction with particular orbitals1 and Eq.~6!
still applies.

III. ATOMIC ORBITALS IN MOMENTUM SPACE

To get more of a feeling for the representation of the or-
bitals in momentum space, we show in Fig. 2 examples of
the densities for orbitals of the hydrogen atom. As there is
only one electron, it is possible to solve the Schro¨dinger
equation exactly. We plot densities in coordinate space as
well as momentum space. We do this for electrons in the
ground state~1s orbital!, and the lowest two excited states
~2s and 2p orbitals!. Let us stress that there are a lot of
similarities between the orbitals in momentum and coordi-
nate space. The symmetry properties of each orbital are iden-
tical in both representations; even the shapes are similar. One
of the major differences is that those orbitals whose density
is confined to a region close to the origin in coordinate space
~e.g., the 1s orbital! extend far away from the origin in mo-
mentum space~and vice versa!, as expected on the basis of
the uncertainty principle.
More generally it turns out that the low-momentum part of

fe~q! is related to the distant part ofce~r !. This is intuitively
clear if one realizes that near the nucleus the electron has
little potential energy and a lot of kinetic energy, whereas far
away the situation is reversed. Similarly, chemical bonding

in molecules is due to the interference of atomic orbitals far
from the nuclei and will show up as significant deviations
from the atomic orbitals at small values ofq.
All the diagrams of Fig. 2 are the results of calculations.

The only one of these that has been verified experimentally
is the hydrogen 1s momentum density. This was done by
Lohmann and Weigold10,11 using EMS of hydrogen atoms
made by dissociating molecular hydrogen by the application
of a strong radio-frequency field. In Fig. 3 we compare the
experimental momentum density with the absolute square of
the analytic solution of the Schro¨dinger equation in momen-
tum space. The agreement is excellent.
The 2s, 2p and higher orbitals are not occupied for hy-

drogen in the ground state and hence we cannot measure
them in EMS. However, one can measure analogous orbitals
for heavier elements where they are occupied. Due to the
larger nuclear charge these orbitals contract in coordinate
space ~and hence become more extended in momentum
space! relative to the ones calculated for the hydrogen atom.
There are corrections due to the influence of the other occu-
pied orbitals. The many-electron problem of course requires
numerical approximations. The self-consistent-field~SCF!
approximation calculates an orbital in an electric field due to
the nucleus~or nuclei for molecules and solids! and the self-
consistent motion of the other electrons, taking account of
the Pauli exclusion principle. There remains a general resem-
blance between the higher hydrogen orbitals and these
atomic orbitals.
For the argon atom we show in Fig. 4 the momentum

densities of the 3s and 3p levels, which are its outermost
occupied levels, observed with the spectrometer used at
Flinders for studying solids. Again thes density is spheri-
cally symmetric and has a maximum~both in coordinate and
momentum space! at the origin. The density for a fully oc-
cupiedp level ~the sum of the absolute squares ofpx , py ,
andpz densities! is again spherically symmetric. However, it
still has a node at the origin. The small density measured at
zero momentum is a consequence of the finite momentum
resolution of the experiment, which is built into the corre-
sponding calculation.

IV. THE CHEMICAL BOND IN MOMENTUM
SPACE

The next step is to get some understanding of the chemical
bond and how it affects the orbitals in momentum space. In

Fig. 1. In ~a! we show the collision geometry of the experiment. Two analyzers detect the emerging particles over a range of angles. If two electrons are
detected at the same time, they would originate from the same event. From the measured momenta and energies we can infer the binding energy and
momentum of the target electron before the collision. In~b! we show the target geometry, and the approximate energies of the incident and detected electrons.
Due to the short mean free path of the 1.2-keV electron, most information is obtained from the shaded part of the 100-Å-thick film.
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this context it is interesting to note an early discussion by
Coulson,12 who emphasized the potential of momentum in-
formation for studying chemical bonding. At that time par-
tially momentum-integrated and energy-summed information
on molecular momentum densities could be obtained from
Compton scattering.2,3

The prototype for the discussion of the chemical bond is
the hydrogen molecule. The distance between the nuclei in a
hydrogen molecule is 1.4 a.u.~0.74 Å!. This is considerably
smaller than the spatial extension of two atomic hydrogen 1s
orbitals~see Fig. 2!, each of which has an rms charge radius
of 1.73 a.u. The orbitals of two undisturbed hydrogen atoms
at the molecular distance would therefore overlap.
The chemical bond is described by molecular orbitals that

are SCF solutions of the molecular Schro¨dinger equation.
The most stable solution is one that minimizes the total en-
ergy of the system. There are different types of molecular
orbitals, each with a different symmetry property. In a sim-
plified description we understand them in terms of linear
combinations of atomic orbitals. For two identical atoms,
indistinguishability of the electrons limits the possible com-
binations of atomic orbitals to two, one symmetric and one

antisymmetric. The antisymmetric combination has a nodal
plane equidistant from the nuclei. Nonidentical atoms result
in analogous molecular orbitals, but the nodal surface in the
analogue of the antisymmetric orbital is deformed and dis-
placed. The electron density is the squared magnitude of the
molecular orbital.
The key to understanding the energies of different types of

molecular orbitals in the atomic-orbital picture, and therefore
their bonding properties, is the density of negative charge
resulting from the interference of the overlapping atomic or-
bitals. This is called the interference density.13 The interfer-
ence ofs orbitals is constructive in the symmetric case, de-
structive in the antisymmetric case.
We first compare the symmetric combination of two 1s

orbitals with two bare 1s orbitals at the molecular distance.
Constructive interference results in charge density being re-
distributed from the region near the nuclei to the overlap
region between the nuclei. The density changes are of two
kinds.
First, the volume occupied by the electrons becomes larger

and the density smoother. This results in a significant lower-
ing of the kinetic energy, since lower absolute momenta re-

Fig. 2. Three-dimensional plots of the probability densityuc(x,y,0)u2 in coordinate space and the probability densityuf(px ,py,0)u2 in momentum space are
shown for the 1s, 2s, and 2py orbitals of the hydrogen atom. Note that in momentum and coordinate space the orbitals have the same symmetry. Also note
that the more extended the orbital is in coordinate space, the more confined in momentum space. The node for the 2s orbital results in a density minimum
which is visible as a circle centered at the origin in both the coordinate- and momentum-space pictures.
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sult from larger volumes and smaller orbital gradients. We
call this the overlap effect. Potential-energy changes in the
overlap region are comparatively small.
The redistribution results in reduced density near each

nucleus, causing the second effect which is called promotion.
The reduced charge cloud is attracted to the nucleus more
strongly so that the effective atomic orbital shrinks in space.
We can model each effective atomic orbital by exp~2zr !.

For the hydrogen-molecule bond the decay constantz in-
creases from 1 in the bare-atom case to 1.193 in the molecu-
lar case. The kinetic energy is considerably increased and the
potential energy considerably decreased. These changes al-
most balance for the hydrogen molecule.
In comparison with two bare atoms at the molecular dis-

tance there is a net increase in kinetic energy due to the
competing effects of promotion and the overlap region. This
is outweighed by the decrease in potential energy due to
promotion. The decisive effect is the decrease in kinetic en-
ergy in the overlap region, since the effects of promotion on
the kinetic and potential energies almost cancel. The sym-
metric combination is a bonding orbital.
The energy arguments work exactly in reverse for the an-

tisymmetric combination. Charge is taken from the overlap
region and placed near the nuclei. The increased density gra-
dient causes an increase in kinetic energy, which is decisive
in the bonding consideration. The promotion effect is an ex-
pansion of the effective atomic orbitals, with the correspond-
ing decay constant being smaller than for bare atoms. The
antisymmetric combination is an antibonding orbital.
Bonding forp orbitals is different from that fors orbitals.

A p orbital has lobes of opposite sign on opposite sides of
the nucleus. Hence increased interference density in the
overlap region, resulting in a bonding molecular orbital, is
obtained by adding adjacentp orbitals with opposite signs.
The antisymmetric combination is the bonding orbital. We
show later that this difference results in different behavior of
s- andp-derived electronic states in ionic solids~see Fig. 5!.
There is another approach to the hydrogen molecule. As

we have seen before, the highest momentum density is near
the origin and corresponds to the part of the orbital in coor-
dinate space that is far away from the nucleus. At large dis-
tances one electron experiences the attractive potential of
two protons, rather close together and screened by the other
electron. Near the origin the momentum-space orbital there-
fore resembles that of a 1s electron in a helium atom.
To what extent is the momentum profile influenced by the

bonding? In Fig. 6 we show the absolute squares of calcu-
lated bonding and antibonding orbitals of the hydrogen mol-

Fig. 3. The experimental measurement ofuf~q!u2 for the hydrogen atom.
The experiment was done using three different energies of the incoming
electrons, as indicated in the figure. All three experiments gave identical
momentum densities. The exact solution of the Schro¨dinger equation~solid
curve! fits the EMS data perfectly.

Fig. 4. The measured energy–momentum density of the valence levels of
argon gas. On the left we show it as a greyscale plot. There is significant
density for two different binding energies corresponding to the 3p and 3s
orbitals. Their completely different nature is evident from the fact that the
3s electrons have maximum density at zero momentum, whereas the 3p
electrons have minimum density at zero momentum~the density would be
zero for perfect momentum resolution!. In the right half we show a com-
parison of the measured momentum densities with ones obtained from SCF
calculations~broken curves! and after convolution with the experimental
momentum resolution~full curves!.

Fig. 5. The chemical bond derived from~a! s orbitals and~b! p orbitals. In
the case ofs orbitals the bonding molecular orbital is formed if the orbital
on one atom is obtained from the orbital on the other atom by a simple
translation. For thep orbitals the bonding orbital is formed if the orbital on
one atom is obtained from the orbital on the other by a translationand
multiplication by21.
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ecule in momentum space, as well as the 1s momentum
densities of hydrogen and helium atoms. Figure 6 is a con-
tour plot of the electron density in thepx–py plane, with the
direction of thepx axis being that of the internuclear axis.
The three-dimensional density is symmetric under rotation
about thepx axis. In coordinate space there are centers with
high electron density at each of the two nuclei. In momentum
space the bonding orbital has a single center atq50. As is
clear from Fig. 6 the momentum density of the bonding or-
bital is indeed between the densities for the atomic hydrogen
1s and helium 1s orbitals. The antibonding orbital is of
course centered at the origin of momentum but it has two
concentrations of high density away from zero. It clearly has
the larger magnitude of momentum on average, i.e., it is the
orbital with more kinetic energy.
The contribution of EMS to the understanding of the

hydrogen-molecule bond is shown in Fig. 7, where experi-
mental momentum densities are compared for atomic
hydrogen,10 molecular hydrogen14 and helium.15 Since target
molecules are randomly oriented the molecular momentum
density is spherically averaged. The experimental points are
supplemented by calculated momentum-density curves, us-
ing SCF orbitals in the two-electron cases. The data are ar-
bitrarily normalized to equal density at zero momentum for
convenience in comparison. The expected increase in aver-
age momentum, and hence kinetic energy, in comparison
with bare atoms, is observed for the hydrogen molecule. The
high-momentum part of the hydrogen-molecule data is com-
patible with an increased effective decay constant, as ex-
pected from the promotion effect. We also observe the ex-
pected effect at low momenta. The trend of the hydrogen-
molecule data is away from the hydrogen atom and towards
helium.

V. MODEL FOR A SOLID

To understand the transition from a molecule to a solid we
construct a hypothetical one-dimensional solid from a num-
ber of hydrogen atoms by placing them with spacing equal to
that of the hydrogen molecule along a straight line. We do
not know how to accomplish this in the laboratory, but still
we can generate theoretical molecular orbitals. We use the
SCF program for moleculesGAMESS16 with a basis ofs and
p functions appropriate to the hydrogen molecule, centered
at the nuclei.
Since the spatial extension of the atomic-hydrogen orbitals

is not small compared to the distance between the nuclei, the
electrons will always experience the attractive potential from
more than one nucleus. Indeed, it turns out that, if one plots
the coordinate-space orbitals along the axis of the molecule
for a string of 32 hydrogen atoms, they resemble the solu-
tions of the problem of a particle in a one-dimensional box of
length equal to that of the molecule@Fig. 8~a!#. They have a
small modulation due to the difference between the actual
potential of the 32 atoms and the smooth average potential.
Only the 16 orbitals with lowest energy are occupied and
plotted. We characterize them by a principal quantum num-
ber i . Along the hydrogen chain the potential of the box is
lowered due to a rather uniform interaction between the elec-
trons and the nuclei. The attractive potential of the nuclei is
canceled in part by the repulsive interaction between the
electrons. Let us call this average potential inside the boxe0.
Each solution has a characteristic wavelengthli . It is no
surprise that the momentum-space orbital, which is the
Dirac–Fourier transform@Eq. ~3!# of the coordinate-space
orbital, is peaked at a valueqi corresponding to the wave-
lengthli . We remind the reader that, in atomic units, wave
numbers and momenta have identical numerical values. For

Fig. 6. Chemical bonding in momentum space. In the top panel we show the
momentum density distribution of the bonding orbital for a hydrogen mol-
ecule oriented along thex axis. As the electrons become more delocalized
along thex axis the distribution becomes narrower along thepx axis. At
large distances the electrons probe the attractive potential of two protons
screened by one electron. The resulting momentum distribution for the
bonding orbital is then between those of the 1s orbital of the hydrogen atom
and the 1s orbital of helium. The antibonding orbital peaks at larger mo-
mentum values and thus has more kinetic energy.

Fig. 7. Experimental momentum-density profiles for the hydrogen atom, the
hydrogen molecule and the helium atom. The curves are calculated from the
exact solution of the Schro¨dinger equation for the hydrogen atom and SCF
approximations for the two-electron cases. The data are arbitrarily normal-
ized to the same zero-momentum value.
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example the least-bound orbital~i516! has a wavelength of
about 6 a.u. and hence its momentum distribution is expected
to peak near 2p/6.1 a.u.
In Fig. 8~b! we show the momentum density for each of

the 16 occupied orbitals. Each curvei is shifted vertically by
its calculated binding energy. The peaks at momentaqi seem
to line up along a parabola. This is not a surprise. The bind-
ing energyei of each orbitali is the difference between the
potential energy of the electron due to the interaction with
the remainder of the systeme0 and its kinetic energy. The
kinetic energy of a free particle isq2/2. Thus the binding
energy of orbital i in this approximation is given by
e i5e02qi

2/2m* . The parameterm* describing the shape of
the parabola is the~dimensionless! effective mass. In Fig.
8~b! it is slightly ~about 10%! less than the free-electron
value 1.
For a string ofn hydrogen atoms there would ben/2 oc-

cupied states, since each is occupied by two electrons of
opposite spin projection. In the limitn→`, corresponding to
a one-dimensional solid, the spacing between the energy lev-
els would become infinitesimally small and we would have a
continuous dispersion relatione5e02q2/2m* . The continu-
ous energy levels form an electronic band. The continuum
quantity replacing the principal quantum numbersi of the
discrete orbitals is a wave vector that is often called the
crystal momentum, and which we denote byk to distinguish
it from the real momentumq of the electron, measured by
EMS.

VI. A FREE-ELECTRON METAL

In practice, we expect free-electron-like behavior, as illus-
trated by the model of Sec. V, for solids in which the exten-
sion of the outermost atomic orbitals is large compared to the
interatomic spacing. This is the case for the elements at the

left side of the periodic table. Here, news andp levels are
being filled with increasing atomic number. The electrons in
these levels experience nuclear potentials that are screened to
a large extent by the inner-shell electrons, and their atomic
orbitals are almost as extended as the correspondings andp
orbitals for the hydrogen atom.
In Fig. 9 we show the measured energy–momentum den-

sity for an aluminum film.17 The qualitative resemblance

Fig. 8. ~a! Shows the 16 occupied coordinate-space orbitals of a model linear H32 molecule. The orbitals resemble the solutions of the problem of a particle
in a box. The orbitali has a characteristic wavelengthli of approximately 2L/ i whereL is the length of the molecule. In~b! we show the corresponding
orbital momentum densities. Each has a maximum close to 2p/li . Each plot is offset vertically by an amount proportional to its binding energy. The relation
between binding energy and momentum is close to the free-electron parabola.

Fig. 9. The experimental results of EMS measurements for an aluminum
film ~top left!. The parabolic shape for the binding-energy–momentum re-
lation is indicative of a free-electron metal. At bottom left we show the
results of detailed calculations of this energy–momentum density. The
agreement is excellent. In the right panel we show the momentum densities
for binding-energy slices indicated in eV for each plot. The resemblance to
the results for the model H32 system is striking.
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with the calculated shape for the chain of hydrogen atoms is
striking. The outer valence electrons in aluminum are essen-
tially free. They behave as in the model of a particle in a box,
with the dimensions of the box being equal to the dimensions
of the solid sample. In Fig. 9 we also show the results of
quantum-mechanical calculations using state-of-the-art com-
puter codes.17 There is good agreement, both for the energy–
momentum~dispersion! relation and the corresponding elec-
tron density. The main difference is that there is more
contrast in the theoretical plots. This is because in the experi-
ment some of the external electrons have suffered additional
elastic collisions, causing slight broadening of the momen-
tum peak for each energy, and thus decreasing the contrast.

VII. AN IONIC SOLID

That a free-electron type of behavior is not typical for all
solids becomes clear if we expose the aluminum film to air.
The film will oxidize near the surface. Due to the small mean
free path of the slow external electron in the EMS reaction
we obtain information only from the surface of the thin film
nearest the detectors. Therefore the image obtained from this
film shows only the oxidized layer. This image is shown in
Fig. 10.18 It has no resemblance to the aluminum metal at all;
rather, it resembles the atomic-argon picture.
What is the explanation for this? Aluminum oxide has the

composition Al2O3. In the simple ionic picture we have Al
31

and O22. Both of them have the first two shells completely
filled, so that their electronic structure resembles that of the
noble gas neon. The binding energies of the 2s and 2p elec-
trons in Al31 will be greater than those for O22, since the
oxygen nucleus has a smaller charge. Therefore the outer-
most orbitals of Al2O3 are the 2p and 2s orbitals associated
with the oxygen atoms. All occupied orbitals are much
smaller than the~now unoccupied! Al 3s and Al 3p orbitals.
So the free-electron picture, valid for metallic aluminum,
does not apply to Al2O3. The image for the oxide is more
like the pure ionic picture, in which the solid is kept together

by the electrostatic attraction of two relatively inert, oppo-
sitely charged ions and the electrons are mainly associated
with an orbital of one ion only.
That the free-ion picture is too simple is clear from a

somewhat-more-careful inspection of Fig. 10. Both the
deeper ‘‘s’’ density and the ‘‘p’’ density are not associated
with a constant energy level as in the case of a noble gas, but
there is dependence of the binding energy on the momentum
~i.e., dispersion!. The maximum binding energy of the inner
2s level is at zero momentum. However, thep level has its
maximum binding energy at a finite momentum. This can be
interpreted in a straightforward manner using a chain of hy-
drogen atoms similar to that introduced in Sec. V.
In ionic solids the overlap between orbitals centered at

different nuclei is small. In the linear-chain model, the hy-
drogen atoms are now separated by a much larger distance
than in a hydrogen molecule. We consider both a chain of
hydrogen atoms with occupied 1s orbitals ~mimicking thes
level in Al2O3! and one where the 2p orbitals are occupied
~mimicking thep level of Al2O3!.
In Fig. 11~a! we show a chain of 11 hydrogen 1s orbitals.

The spacinga of the atoms is chosen to be 2.5 Å in this case,
so there is only small overlap between neighboring atomic
orbitals. For theses electrons we can construct the lowest
bonding orbital if we add all atomic orbitals with the same
phase. This is shown by the thin line of Fig. 11~b!. It is
energetically most favorable since the interference between
the nuclei is constructive. If we construct an antisymmetric
orbital by changing the sign of the atomic orbital at alternate
atoms, we get the antibonding orbital. It is energetically less
favorable as it has destructive interference between the nu-
clei. Again the momentum-space orbital will peak at mo-
menta corresponding to the characteristic wavelength of the
coordinate-space orbital. At zero momentum the Dirac–
Fourier transformation averages the orbital over all space.
The bonding orbital has a large constant component and
hence its momentum distribution will peak at zero momen-
tum. The antibonding orbital averages to zero at zero mo-
mentum. Its wavelength is 2a and thus its Dirac–Fourier
transform will peak atq52p/2a.
For the case of hydrogen atoms with the 2p orbital occu-

pied we choose the distancea between neighboring atoms
larger~10 Å! in order to have small overlap of the orbitals of
adjacent atoms@Fig. 11~c!#. Again we construct symmetric
and antisymmetric sums of these orbitals@Fig. 11~d!# but
there are some differences from thes-derived orbitals. The
symmetric sum~thin line! and antisymmetric sum~thick
line! of the p orbitals both average to zero, i.e., they have
zero density for zero momentum. Now the antisymmetric
sum oscillates with the longer wavelength (2a) and its mo-
mentum density peaks near 2p/2a. It is the orbital with en-
hanced charge density between the atoms, i.e., the bonding
orbital ~see also Fig. 5!. The symmetric sum has a shorter
wavelength (a) and hence its momentum density will peak
around 2p/a. It has a node between the nuclei, so it is the
antibonding orbital. Different combinations occur at different
momenta from these two extremes and their binding energies
are between the extreme values. Hence there is an energy
minimum at momentum 2p/2a.
What does this mean for Al2O3? The crystal structure of

Al2O3 is very complicated. It even exists in three different
forms,a-, g-, or h-alumina. In thea-alumina form the mini-
mum distance between oxygen atoms is about 4.7 a.u.~2.5
Å!. For the s level we find maximum binding energy as

Fig. 10. The experimental results of EMS measurements on an Al2O3 film
and the results of a corresponding calculation. The right panel shows the
experimental momentum density, integrated over energy. Note that the re-
sults are completely different from those of aluminum metal. If anything
they more closely resemble the argon gas data of Fig. 4.
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expected at zero momentum and we reach the top of the band
at about 0.75 a.u., in fair agreement with the prediction of
our model ~2p/2a50.67 a.u.! For the p-derived band our
model predicts maximum binding energy for this momentum
value, as is indeed the case in the experiment. The minimum
binding energy for thep-derived band is found experimen-
tally near 1.3 a.u., again in good agreement with the predic-
tion of our model~2p/a51.34 a.u.!.

VIII. CONCLUSION

We have shown how EMS observes electronic structure
very directly and in sufficient detail to confirm experimen-
tally our understanding of the chemical bond. By extending
the theoretical description of molecular bonding we have de-
veloped a simple understanding of the electronic band struc-
ture of solids. Explanations similar to some of ours are com-
mon in textbooks on solid-state physics and are illustrated by
simple calculations. For the first time it is possible to illus-
trate them by experiments that directly measure energy–
momentum densities.
We have described the transition from atom to molecule to

solid by an interplay of experiment and theory. The momen-
tum discrimination, in addition to the common spectroscopic
energy discrimination, makes EMS the most powerful tool
for this purpose.
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