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Then Egs. (16) and (18) become, via (23),

v=1/(1+1), 24)
o=0+4+1—-1/(1+1). (25)
Slipping ceases when v = w, that is when

t=T=(1-Q)/(1+Q). (26)

No sketches are given for Egs. (24) and (25), for they
are similar to those for underspin plotted against ¢ in Fig.
4. This is the case since ¢ and 1 are both zero together and ¢
increases with 3 while the appearance of the logarithm in
Eq. (23) leads to algebraic (rather than exponential) de-
cay or growth of the appropriate terms without affecting
the upward or downward concavity of the curves. Inspec-
tion of d 2v/dt? and d *w/dt* confirms this.

The overspin counterparts of Eqs. (24) and (25) are

v=1/(1—1), (27)
w=0+1—-1/(1—=1). (28)

Sketches of these results are shown in Fig. 5. Each curve
has t = 1 as an asymptote.
For overspin it is found that

=(Q-1)/(Q2+1). (29)

The case where C is a cycloid has also been investigated
and curves were obtained with concavity similar to those in
Fig. 5, when v and aw were plotted against ¢. Of course, Fig.
4 is valid for the cycloid—up to the stage where more than
one point of contact occurs.

II1I. CONCLUSIONS

Rolling and slipping motions on a rough plane of the
kind considered in this article are also discussed or set as
problems in various textbooks on physics.”™ The treat-
ment presented in this article may lead to a better under-
standing of such motions through the graphical illustration
of results. In a similar way a clear understanding should be
gained from the graphs for similar motion on the inside of a
rough cylinder in the absence of gravity. In this case, for a
given body B with ¥ and () specified, the value of T’ depends
on the geometry of C. However, as illustrated by Eqs. (16)
and (18), vand w depend only on ¢, the angle turned by the
tangent t (or T) irrespective of the curve C considered. A
little thought reveals that this is not inconsistent with the
physics of the problem. Of course, the position ¥ at which
slipping ceases is also independent of C. These features do
not appear when gravity is included.

'R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on
Physics (Addison-Wesley, Reading, MA, 1964), p. 12-5.

2R. A. Becker, Introduction to Theoretical Mechanics (McGraw-Hill,
New York, 1954), pp. 209-211, pp. 218-219.

 3F. W. Constant, Theoretical Physics (Addison-Wesley, Reading, MA,

1962), p. 177.
4G. R. Fowles, dnalytical Mechanics (Holt, Rinehart and Winston, New
York, 1962), pp. 172-175.

The strange polarization of the classical atom
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A classical hydrogen atom will polarize in a direction perpendicular to a uniform electric field in
its orbital plane. While some features of this unexpected behavior can be reconciled with physical
reality, it illustrates representative difficulties of classical mechanics applied to atomic physics.
The exceedingly unintuitive results have instructional value for students.

L. INTRODUCTION

In the teaching of physics, we normally move from clas-
sical mechanics to electromagnetism with little connection.
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The notion of polarization in nonconductors is taken as a
matter of faith and, much later, quantum mechanics is in-
troduced to explain the stablhty of atoms and sharpness of
spectral lines. The following curious problem can serve as a
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Fig. 1. Intuitive polarization is in the direction of the electric field. If the
uniform E, is small compared to 1/7,, where r, is the initial orbit radius,
we expect Keplerian orbits for the electron. (a) shows a displacement of
the center of the circular orbit. (b) shows an elliptical orbit in the direc-
tion of the field.

point of departure from classical physics as well as demon-
strate the need for careful analysis of superficially simple
problems.

I1I. THE PROBLEM .

Consider a classical hydrogen atom with a fixed nucleus
and the electron in an initially circular orbit. Apply a weak
electric field in the orbital plane. Intuition suggests that the
atom will develop an electric dipole moment in the direc-
tion of the electric field. From classical mechanics we
might expect: (1) a displacement of the center of the circu-
lar orbit, as in Fig. 1(a), (2) an evolution into an elliptical
orbit extending in the direction of the electric field, as in Fig
1(b), or (3) some combination of these effects.

Wrong! The atom initially polarizes in a direction per-
pendicular to the electric field as illustrated in Fig. 2. Spe-
cifically, it polarizes in the direction L X E, where L is the
electron’s orbital angular momentum, i.e., whether it po-
larizes up or down depends on the electron’s direction of
revolution. The elliptical orbits become progressively more
eccentric because the electric field applies a torque that
reduces the electron’s angular momentum. The period-
averaged energy does not change, so the major axis remains
constant while the minor axis contracts.

III. WHY

Some feel for this strange behavior can be derived from
Kepler’s second law, which will be approximately correct
for a small perturbation. When the electron moves toward
the electric field, it accelerates and, at the diametric posi-
tion in its orbit, it decelerates. If the perturbation is small,
the radius vector sweeps out approximately equal area per
unit time, so the accelerated part of the orbit moves toward
the nucleus and the decelerated part moves away. As the
orbit develops more eccentricity, the electron spends more
time in the decelerating phase at the greater distance from
the nucleus.
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Fig. 2. Actual polarization is perpendicular to the electric field. If
E, €1/r,, orbits are elliptical with constant major axis and contracting
minor axis. The dipole moment limits to 3, in the LXE direction.
Numbers show the sequential time progression.

Assuming the nucleus is fixed, the equation of motion is
mi + re’/r* = eE,,

simplified to
¥=E,— (x*+y*) % (1)
j= =2+

in units where e = m = 1, with the electric field in the

orbital plane.

A quantitative explanation of the atom’s weird behavior
is offered by the ancient formalisms of celestial mechanics.
The method of variation of parameters' can be used to
describe the precession of an elliptical orbit in the presence

Fig. 3. Electron in an approximately elliptical orbit subjected to an E,
disturbing field. @ is the argument of the perihelion. (@ + ) is the true
anomaly.
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of a disturbing force. The equation of motion for the argument of the perihelion (perinuc?), as shown in Fig. 3, is

@

- E,L qlcos 6 cos(8 + w)sin(0 + w) — sin 8 cos’(8 + )] — 2 cos @sin(f + ) + sin 8 cos(6 + w)

q gcos(f +w) —1

where ¢ = /1 + 2EL?, E is the total energy, and L is the
orbital angular momentum. To find the effective preces-
sion rate we must take the time average of @ (6 + o)
around an orbital period. If E,<1/r, then 6 is nearly
constant, so

27T
o(w) = —I—J o (8,w)r* do
S Jo

=_1_r” L ‘o (6,0)d0
S Jo [gcos(8+w)—1]7

1 27
= I1(0,0)d0,
SJo (6.w)

where Sis the area of the ellipse = 7L /2y — 2E ¥ = wab,
where g and b are the major and minor semiaxes. This is a
tedious integration, but the strange features of the orbital
precession can be extracted without herculean feats of alge-
braic manipulation.

Assertion: The orbit has two stable orientations, @ = 0
for counterclockwise revolution and @ =  for clockwise
revolution.

Proof: The integrand forw = 0Ois

5 .
1(6,0) = E,L cos & sin 6 ’
g (1—gqgcos@)’
which is manifestly odd, i.e., 1(6,0) = —I(—6,0).So

27
@(0) = f 1(6,0)dd = 0.
0

Similarly, foro = 7

5 -
10) = — E,L cos O sin 6 ,
(14 g cos 6)°
sol(@m) = —I(—6,m) and @(7) = 0. Thus we con-

clude that either ® = 0 or @ = 7 may be stable, depend-
ing on the behavior of () in the immediate neighbor-
hood.

To determine this behavior, we examine the integrands
for small deviations from 0 and 7. Consider @ = &, where
8«1. We have from Eq. (2),

5

16,8) =L

q
% g2 sin @ — g6 cos @ + 5(1 + cos® ) 4 cos G sin &

(g6sin@ —gcos 6 +1)°
by setting sind = & and cos 8 = 1. By expanding the
denominator and dropping 6> and 5’ terms, we obtain
1(6,6) =1(6,0) + (E,L°/q)F(0,9)8,

where

1+ cos?@ —gcosd  3gsin® O cos 8

F(0,9) = .
(6:4) (1 — g cos 6)* (1 —gcos @)

 ButO<g<1,so

2
f F(6,9)d0 =3m/(1 —q*)*’*>0
0
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and

@(8) = —a(—8)>0.
Thus for counterclockwise motion, the orbit precesses back
tow = O if slightly nudged in either direction.

On the other hand, for @ = 7 + &8, where |6/ <1, we
obtain

but

27 21 27
J F(e, —q)d9=f F(9+1T,q)d6=J F(8,9)do,
0 0 0

SO
o(r+8)= —a(r—8)<0

and the @ = 7 orientation is unstable.

If the direction of revolution is reversed, @ becomes — @
because the argument of the perihelion is defined in the
direction of revolution. The right-hand side of Eq. (2) re-
mains the same because both the defined directions of the
tangential force and the true anomaly are reversed. Thus
the w = O orientation becomes unstable and thew = 7
orientation becomes stable for clockwise revolution. Quod
erat demonstrandum.

The evolution of the orbital angular momentum can be
obtained by time averaging the torque. Assuming that the
ellipse is in the @ = O stable orientation,

21
F= _Ep2E” “2Ef P cos 0d6
7L o
or
L=(3E,2EL? + 1)/4E. (3)

This suggests that the angular momentum will eventually

T T T 7T T — T T T 1
3
1.0 ';{:Eo-(x2+y2)-3x
'Y=-(x2+v2)_%y

8
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Fig. 4. Comparison of Eq. (4) for the collapse rate of the semiminor axis
with numerical integration of Eq. (1). Initial state is circular orbit of unit
radius. E, = 1/200.
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go to zero and for E, < 1/r, the dipole moment will limit to
37, in a direction perpendicular to E,. From Eq. (3), the
semiminor axis collapses at the rate

b=} EqJa(a® —b7). 4)

Figure 4 compares Eq. (4) with a numerical integration
of the equations of motion in Egs. (1).

The perpendicular polarization can almost be derived
from inspection of Egs. (1). The equations of motion rep-
resent a pair of coupled anharmonic oscillators, whose fre-
quencies are dependent on mass (m = 1), amplitude, and
time-averaged restoring force. The only way we can have
the frequencies v, = v, is for the electron to make sym-
metrical excursions in the + x and — x directions. As-
suming E, < 1/r,, the orbits are approximately ellipses and,
because of the symmetrical excursions in the x direction,
the major axis must be in the y direction.

IV. PARADOX RESOLVED

This exceedingly odd behavior must relate to familiar
physics. It is all too easy to sweep the paradox under the
quantum rug and haul out the shopworn lecture on Stark
splitting. But deeper analysis reveals a time-averaged be-
havior resembling dipolarization of the usual sort. How-
ever, the analysis involves still more curious and unintui-
tive behavior.

Equation (3) suggests that the angular momentum will
go to zero, not asymptotically, but actually pass through
zero. Equations (1) are invariant under time reversal. So
the orbits become narrower and narrower until the electron
comes to a stop and reverses its direction. It then retraces
its path, acquiring angular momentum all the way back to
its starting position. It then follows a mirror-symmetric
path in the opposite direction. This oddity is most dramati-
cally illustrated by integrating Egs. (1) on a personal com-

Energy in the center of mass
Eugene Levin

puter and displaying the electron location graphically. The
time-averaged dipolarization in the y direction in fact be-
comes zero and a small displacement of the orbits in the x
direction corresponds to the familiar dipolarization that
does not average away with time. However, time averaging
produces a large electric quadrupole oriented perpendicu-
lar to the electric field.

Extension of the problem to three dimensions is straight-
forward. When the electric field is out of the orbital plane, a
steady state of precession can be achieved, which demon-
strates some of the more familiar aspects of atomic polar-
ization. However, the tendency of the atom to distort in the
perpendicular direction is still quite apparent.

V. CONCLUSIONS

I have yet to find a physicist who could predict this cur-
ious behavior at first blush. Some aspects can be reconciled
with common sense: Time averaging removes the perpen-
dicular dipolarization and results in a parallel dipolariza-
tion like that with which we are familiar. But at the same
time, averaging produces an enormous perpendicular qua-
drupole moment, which appears to be unphysical. To my
knowledge, there is no experimental evidence to verify the
nonexistence of this quadrupole moment. Perhaps such an
experiment should be undertaken.
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In the collision of a particle (A) with a system of bonded particles (B—C), only the energy in the
center of mass reference frame is available for breaking the bond. This is because some of the
initial energy must be used in conserving the momentum of the system. This article describes a
simple air-track experiment illustrating this well-known fact. Two carts on a horizontal air track
are bonded together by small magnets; a sudden impulse is provided to one of the carts by a falling
weight. A feature of the experiment is the direct determination of magnetic bond energy by
numerical integration of F dx. For cases where the energy in the center of mass is sufficient to
break the magnetic bond, the ensuing motion of the system can be described in terms of an

effective mass.

L. INTRODUCTION

Collisional interactions in the gas phase are of impor-
tance in many branches of science, including, for example,

909 Am. J. Phys. 55 (10), October 1987

astrophysics (stellar atmosphere studies) and physical
chemistry research involving the excitation and dissocia-
tion of diatomic (and larger) molecules. A feature of all
such interactions is that only the kinetic energy in the cen-
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