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'R . Feynman gave an intersting account of a semiconscious self-monitor-
ing of the dreamer in Surely You’re Joking, Mr. Feynman (Norton, New
York, 1985).

""The main obstacle to any experimental investigation of this subject is the

difﬁculty of preparing such complex systems in reproducible states (re-
producible as far as the relevant properties are concerned). For a very
preliminary exploration of ideas, see C. H. Woo, Found. Phys. 11, 933
(1981).
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We give some illustrations and interpretations of supersymmetry in quantum mechanics in simple
models. We show that the value of 2 for the g factor of the electron expresses the presence of
supersymmetry in the Hamiltonian for an electron in a uniform magnetic field. The problem is
considered both in the Schrédinger and Dirac formulations. We also show that the radial
Coulomb problem with orbital angular momentum /, nuclear charge Z, and principal quantum
number #, is supersymmetrically linked to the similar problem with charge Z(1 — 1/n) and
quantum number r — 1. Thereby the dependence of Coulomb energies only on the combination
Z /n is seen as a manifestation of the supersymmetry in the radial Coulomb problem. Other
examples of supersymmetry we consider are the Morse potential, the three-dimensional isotropic
oscillator, the states of the helium atom and those of the hydrogen atom in an extremely strong

magnetic field.

1. INTRODUCTION

To the beginning student of quantum mechanics, the
concept of degeneracy of energy levels may seem elemen-
tary, not very deep, and definitely a source of confusion
when doing perturbation theory. Of course the fascination
focused on this subject is due to the connections between
degeneracy, symmetry, and conservation laws. The classic
example is rotational invariance leading to conservation of
angular momentum (/A) which in turn implies the 2/ + 1
degeneracy of energy levels.

There are other degeneracies which can be related to
symmetries and conservation laws which are more subtle
than the “obvious” ones. The 2p — 25 degeneracy in hydro-
gen (similarly for nl/, /=0,1,...n — 1) is sometimes mis-
named “‘accidental.” The corresponding conservation law
and symmetry was found long ago by Pauli."? He showed
that the degeneracy was due to an 0(4) symmetry (invar-
iance under rotations in a four-dimensional space) that
could be traced to a special property of thie Coulomb prob-
lem: the eccentricity and direction of the major axis of a
Kepler elliptical orbit form constants of the motion. An-
other interesting example is the three-dimensional har-
monic oscillator which also has degeneracies correspond-
ing to a higher symmetry. In this case it is the symmetry
group SU(3) (complex unitary “rotations” of the three
coordinates) which accounts for the degeneracy.”

Recent studies of supersymmetric quantum mechanics’
have turned up some more interesting degeneracies. For
any Hamiltonian with one degree of freedom, a companion
Hamiltonian can be constructed such that the resulting
system as a whole is supersymmetric. That is not to say that
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the combined system always exists in nature. In a sense this
is a solution looking for a problem. One virtue of this con-
struction is that these simple results help to demystify su-
persymmetry and demonstrate the workings of a symmetry
transformation which is more general than a Lie group or
point group. There is currently considerable ferment in
particle physics in supersymmetry* but, given the complex-
ities of that subject, it seems useful pedagogically to look at
supersymmetry in a variety of simple quantum mechanical
Hamiltonians.

Supersymmetry transformations in field theory mix
half-integral and integral angular momentum states and
hence the corresponding multiplets in general contain both
fermions and bosons. This remarkable property suggests
that this symmetry may provide a unifying principle in ele-
mentary particle physics. Since its discovery® in 1974,
many further remarkable properties of model field theories
have been uncovered. A notable one is that supersymme-
tric theories seem to be less divergent that is, they are not
as plagued by the infinities which arise in most field theor-
ies. Roughly speaking, the putting together of bosonic and
fermionic elements leads to a cancellation of the infinities
which would otherwise appear separately. Also, most field
theories require sensitive adjustment of parameters and
here again supersymmetric theories seem to require less of
this “fine tuning.” Finally, gravity seems to be more natu-
rally incorporated with other interactions within a super-
symmetric context in a theory called supergravity. For
these reasons, there is great hope and excitement, although
at this writing, in spite of the over 2800 papers on this
subject,® there is no clear indication of how the beautiful
mathematics of supersymmetry is actually related to a the-
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ory of the known elementary particles! More recently;
without getting involved in the complexities of field theor-
ies, applications of supersymmetry have been proposed in
nuclear physics,” and atomic physics.®

This paper does not deal with the intricacies of field the-
ories, Rather our aim is to bring out aspects of supersym-
metry by viewing the concept through simple quantum me-
chanical examples. Since the quantum mechanics of a
particle moving in a potential is like a field theory in zero
dimensions, we illustrate the supersymmetric constriic-
tion® through simple potential problems, point out connec-
tions to known results and in some cases, to new ones. For
instance we feel it is not as widely known as it should be
that supersymmetry resolves a puzzle in quantum mechan-
ics. There is a pattern of degeneracy of Landau levels for a
spin } particle in a uniform magnetic field for the special
case g = 2, where g is the gyromagnetic ratio. (Neglecting
quantum electrodynamic radiative corrections g = 2, of
course, for the electron. ) The above mentioned 0(4) invar-
iance of the Coulomb problem and SU(3) invariance of the
three-dimensional oscillator are covered in textbooks,>
whereas this g = 2 degeneracy is not similarly enshrined to
our knowledge. There are a number of reviews of super-
symmetry at this level>* and one noted the relation of g = 2
to supersymmetry.® We carry things further and show that
the Dirac equation also leads to supersymmetry in the same
sense but only after the negative energy states are filled and
the vacuum is redefined. This result is an illustration of
supersymmetry when reduced to one degree of freedom
and does not reflect a supersymmetry of the field theory.
Supersymmetric quantum electrodynamics contains other
particles which are not seen. Ordinary quantum electrody-
namics are not supersymmetric.

The arrangement of this paper is as follows. In Sec. I we
consider the basic steps in constructing a supersymmetric
Hamiltonian for any one-dimensional quantum mechani-
cal problem whose ground state energy and wave function
are known. The example of a one-dimensional harmonic
oscillator in Sec. IT1 is connected to the states of an electron
in a magnetic field, first through analysis of the Schro-
dinger equation and then the Dirac equation. The value
& = 2 plays a key role in this connection. In Sec. IV we
consider the radial Coulomb, the one-dimensional Morse,
and the radial part of the isotropic oscillator problems (of
interest to atomic, molecular, and nuclear physics) from
the point of view of supersymmetry, pointing out alterna-
tive and new interpretations to results which have recently
appeared in the literature. Fmally, Sec. V considers a cou-
ple of more nontrivial problems in atomic physics where
again the Hamiltonian exhibits supersymmetry.

II, SUPERSYMMETRIC QUANTUM MECHANICS

A one-dimensional quantum mechanical Hamiltonian
H 0
a=(y )
0 H,
is said to be supersymmetrlc if the corresponding poten-
tials V', (x) is related according to

Ve ) =(U)/8FU"/4, (1)

where primes denote derivatives with respect to x of a func-
tion U(x). In such a situation, the bosonic (H.) and fer-
mionic (H_) components have a spectrum of eigenvalues
that coincide except that the former has one extra state,
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namely a lowest state with eigenvalue zero and normaliza-
ble wave function exp[ — U(x)].
Let us state this result in another way. Given a potential
¥V one can find the ground state energy and eigenfunction
147

[~ 55+ 70| ) = Etho )

Since the ground state eigenfunction has no nodes we can

write U= — 2 log #,(x) and U'is real. Equation (2) then
gives

. 2 L4
voE=2__Y

8 4
Therefore ¥, is ¥ up to a redefinition of the zero of energy
and ¥V _ can be calculated from U,

L =V—E,, V_.=V—E,+(U"/2). (3b)

Note also another feature of supersymmetry, that the low-
est state of V/,_ lies at zero energy.

The demonstration that H is supersymmetric hinges on
the existence of the generators of supersymmetry Q, Q
which together with H satisfy the commutation and anti-
commutation relations:

(3a)

{0.0}, ={00}, =0, (4b)
{—Q_’Q}+ =2H. (4c)

Equation (4a) states the invariance of the Hamiltonian un-
der this symmetry. Equation (4b) expresses the fact that Q
and Q are “fermionlike” and their anticommutator proper-
ties are relévant. Note that Eq. (4b) simply states that the
square of the generators is zero. (We write these as anti-
commutators in deference to the four-space supersym-
metry algebra where the Q’s have indices.*) Finally Eq.
(4c) closes the algebra through an anticommutator of Q
with Q. Since this algebra involves commutators and anti-
commutators, it does not form a Lie Algebra but rather a
Graded Lie Algebra. From the algebra one can build up
infinitesimal transformations (1 + 6Q + é Q + Ht). The
unusual property here is that @ and € are anticommuting
riumbers and hence it is difficult to visualize this transfor-
mation. One thing we can conclude is that a transformation
in the @ direction followed by one in the Q direction can
generate time translations through Eq. (4¢).

The generators have been constructed® that operate on
the x variable and on the 2 X2 matrix space of H

O=[p—i(U'/2)]o*, O=lp+i(U'/2)]o~,(5)
where o* are the 2 X 2 matrices

_ (o0 +_(o 1)
"_(1 o)’”_oo‘ (6)

Because of the relations {0 ,0*}, =1 and

[o%,07]1 =0, itis easily verified that Eqs. (4) are satis-
fied and that
”2 "
=00+00) = (r+2L> )1+%—0, .M

in agreement with Eq. (1)

The two constituents, H, =} 0Q and H_ = ;QQ, of
the supersymmetric Hamﬂtonlan H have, respectively, the
potentials ¥, and ¥ _. That the spectra of these two poten-
tials are simply related can be seen as follows. If ¢, is an
eigenfunction of H__ with eigenvalue E,, that is,

100, =E, ¢, , (8)
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then @y, is an eigenfunction of H_ = | Q0 with the same
eigenvalue because

100(Q¢,) = 0(3 00y,) = E, (Q¥,) . 9

Thus the eigenvalues of H_ and H_ coincide, except for
one, namely the lowest eigenstate ¢, of H, where it follows
from Eq. (5) and ¢, = exp( —} U) that Qy, =0. The
lowest eigenvalue at zero is, therefore, present only in the
H , spectrum but all other eigenvalues are duplicated in
H, and H_. Such a spectrum constitutes a supersymme-
tric spectrum in quantum mechanics and we can refer to
the two potentials, ¥, and V_, as supersymmetric part-
ners. In the context of supersymmetry in field theories, the
bosons correspond to A and their counterpart fermions
toH_.

IIL. ASSOCIATION OF SUPERSYMMETRY WITH
g = 2 FOR THE ELECTRON

Itis universally accepted that the simplest quantum me-
chanical problem is that of the one-dimensional harmonic
oscillator (perhaps, equally so in classical mechanics!). It
also affords the simplest illustration of supersymmetry and
has been extensively discussed,’ although the specific asso-
ciation we wish to develop in this section with the problem
of g = 2 electrons in a magnetic field has not been appreci-
ated as much.

~ The Hamiltonian }(p* + x°) has eigenvalues » + } and
U = x2. (We have chosen units with the mass m, oscillator
frequency w, and i set equal to unity. ) Therefore, from Eq.
(7) the supersymmetric Hamiltonian is

H=1p*+x*) +}o, . (10)
The two potentials are
V, =42 F) (1

and the supersymmetric spectrum is shown in Fig. 1. We
will now identify the physical system described by this
spectrum.

A, Schrodinger-Pauli equation

Consider an electron in a uniform magnetic field
B = (0,0,B). Let the gauge be so chosen that the vector
potential is A = (0,Bx,0). The nonrelativistic Schro-
dinger-Hamiltonian in which the supplementary assump-
tion is made that the spin magnetic moment couples to B

3hw —_—
(1,4, =)
o,t,+)

2, ¢,4
i, +,-)

2hw

hw

011+
0 0,4, +)

Fig. 1. Spectrum of the supersymmetric Schrédinger—Hamiltonian for an
electron in a magnetic field. Levels have been labelled by (n, 0,, m), where
n is the Landau quantum number of orbital motion, g, the spin projection,
and 7 the parity of the state.
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with a g factor g, is given by'®

1 2
H=——(py +5££) +— (@2 4 p2) +g(—€ﬁ—)s, B,
2m c 2m 2mce

(12)

where 5, =} 0,, and m is the mass of the electron. The
spectrum of this Hamiltonian is well known!® and, in fact,
has been of considerable interest in the last decade in atom-
ic physics and astrophysics, both for cyclotron and synch-
rotron emission in strong magnetic fields and, with an addi-
tional Coulomb attraction included, for the structure of
atoms in such fields."!

For our purposes here, what is of interest is that the y
and z motions in Eq. (12) correspond to free motion and
the only nontrivial part of H is the one-dimensional motion
in x. Here it reduces to a one-dimensional oscillator cen-
tered at x= — (cp,/eB) with cyclotron frequency
@ = eB /mc, along with the additional constant term in
s, B. In units of the cyclotron energy fiw, the energy levels
are given by'°

E/fio=n+1+g/4. (13)

For the special case g = 2, these levels display the charac-
teristic degeneracy of the supersymmetric pattern shown in
Fig. 1.

B. Dirac equation

It is well known that the Dirac electron in an electro-
magnetic field can be treated in terms of a two component
formalism from which the four-component spinor solu-
tions can then be constructed.'”* The two component equa-
tion for an electron in a uniform magnetic field is identical
to the Schrodinger equation with g set equal to 2 and E
replacedby [E? — (mc?)?1/(2mc?)." Inspite of this latter
difference, supersymmetry can still be associated with
g=2.

The result can also be established directly for the Dirac
equation,

- d
H¥V=ih—V¥, (14)
2 ot
with
H, =c(py +_e_32‘_) a, +cp.a, +cp,a, +pmc*. (15)
¢

This Hamiltonian has positive energy states of the form
shown in Fig. 2(a). But there are of course negative energy
states and hence the spectrum in Fig. 2(a) does not carry
the hallmark of supersymmetry shown in Fig. 1. However,
with the negative states filled and the holes reinterpreted as
antiparticles, the resulting Hamiltonian is supersymmetric
as we will now show.

Let ¥ =-exp[(i/#A)(p,x+p,y+p,2)]¢¥(x), and
further choose p, = p, = 0. There remains the one-dimen-
sional equation

Hyy = (eBxa, +cp,a, +Bmc*) ¢ =Ey. (16)
Introduce dimensionless harmonic oscillator ladder opera-
torsafand a

at +a =x(#ic/2eB)"'/?,
i(a' —a) =p, (eB#i/2c)"'/?, (17)
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(a) (b)

E
— e
Mc2 He ‘,ZIJ' Q Q
2 -
(2 +2) H \_//_\ N
Q Q
E=0 0 _ —_—
) e~ e*
Me— ¥ ¥ X X

Fig. 2. (a) Spectrum of the Dirac Hamiltonian for an electron/positron in
a magnetic field. (b) Spectrum of H, the supersymmetric Hamiltonian in
Eq. (24), showing states, energy eigenvalues and supersymmetry trans-
formations connecting the states. All other operations of Q and Q annihi-
late the states.

and rewrite Eq. (16) as

Hy, = (i/V2)a'(a, —ia)) — (i/V2)a(a, +ia,) +up;
(18)

all energies are measured in units of [ (mc?) (%eB /mc)1'/?

and u is the square root of the dimensionless ratio of the

rest mass energy to the cyclotron energy, u = mc(c/

#ieB)'/2. Using the representation

“=(2 g) B=((1) —01)’

the eigenstates of H, are

C.ln—1) / 0
_ 0 _ C,im)
¢n1 - O 4 ¢n1— ~lC_|n—l) >
iC_|n) K 0
C_ln—1) / 0
_ 0 _ C_|n)
Xnt - 0 ’ Xm - iC_,_I’l _ l) > (19)
—iC,|n) \ 0
]
[n—1){n—1]
-~ [n){n|
HD—ZG" [n—1){n —1|

We used the identities a =X, n'/?|n — 1){n|, and a'
=3, n'/?|n)(n — 1|. By subtracting off the ground state
energy one obtains a supersymmetric Hamiltonian:

H=H, —mc, (24)

which has the spectrum shown in Fig. 2(b). For n =0,
€, = = mc* so that H has a zero eigenvalue. The eigen-
states from Eq. (19) are #,, and y,, . For other values of n,
there are the four states given in Eq. (19). Thus Fig. 2(b)
duplicates the spectrum shown in Fig. 1, with the addi-
tional degeneracy now of states of the positron with the
opposite spin projection. Note also that the eigenvalue
€, — mc* for p*>2n reduces precisely to n(#w) with
o = eB /mc, asin Eq. (13), withg = 2.
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where
C,=[(e, £1)/2,]""?
and

€,=W*+2n)"*, n=0,12-. (20)
The oscillator states are normalized as (n|n’) =46, and
|0) is the lowest. That Eq. (19) are the eigenstates of H,
with eigenvalues in Eq. (20) can be verified through use of

aln) =n |n—1):

HD‘/Jn = enipn ’

Hpy,= —€,Xn - (21)

The n = 0 states are singlets, all others are doublets in spin
projection.

Using the eigenstates, Eq. (21), one can construct a
spectral representation for the Hamiltonian:

oo

H, = z En{¢nT¢IT +¢nl¢’11 _XnLXIl '_anxjn} .
n=0
(22)

One can check that this agrees with the definition, Eq.
(18), and satisfies the eigenvalue equations Eq. (21). The
negative energy spectrum coming from the third and
fourth terms extends to minus infinity which means there is
no ground state. Dirac’s resolution of the problem takes
one out of the single particle framework. Recognizing that
this Hamiltonian describes fermions, one supposes that the
negative states are filled to obtain the physical ground
state. Then the removal of an electron from a negative ener-
gy state takes positive energy. The single particle Dirac
equation then describes an electron (3 states) or lack of an
electron (y states), both of which correspond to positive
energy with respect to the physical ground state. This rein-
terpretation results in the change in the signs of the y terms
in Eq. (22)."* The new Hamiltonian H,, based on this new
vacuum state is

(23)
|7} <n|
|
The supersymmetry generators are readily found:
Q=‘/2—z (en __Iu)llz
0 |n—1){n| 0 0
% 0 0 0 0
0 0 0 oy
0 0 —|m){n—1] 0
Q=0". (25)

The algebra satisfied by these operators together with H is
identical to the algebra given by Eqgs. (4).
Insummary, states of an electron (or positron) in a mag-

R. W. Haymaker and A. R. P. Rau 931



netic field with opposite spin projections are identified as
supersymmetric partners. The degeneracy between these
states which makes supersymmetry a good symmetry in
the problem rests on g taking the value 2. Note that in this
quantum mechanical problem, the bimodal attributes of
spin projection (conjugates under time reversal) and par-
ity play the role that the boson/fermion aspect does in su-
persymmetry in field theories. The operators Q and Q
switch between these attributes.

C. A more general context for Eq. (10)

The Hamiltonian that we have discussed as describing
the states of an electron (with g = 2) in a magnetic field
has a more general interpretation as well. It describes the
states of any two level system that is coupled to an oscilla-
tor field. Once again, the case g = 2 corresponds to the
degenerate case, when the energy difference between the
two levels is identical to the oscillator level spacing (g#2
would correspond to a mismatch between these two ener-
gies). Thus, we can read Eq. (10) as the simplest Hamilto-
nian that combines a spin } fermion (the two-level system)
and a boson field (the oscillator). The so-called “Jaynes—
Cummings” model,'* which is extensively used in quantum
optics'® and in describing a “two-level atom” (such as
Rydberg states of atoms with (m| == n — 1, these sym-
bols having their usual meaning in atomic physics) cou-
pled to the radiation field,"” adds to H in Eq. (10) the
coupling between the two fields and can be described in our
notation as

He=H+k(Q+0), (26)

where H is as in Eq. (10), & a coupling constant, and Q and
Qasin Eq. (5), i.¢,

Q=(p—ix)o*t=ac™,
27

a and a' being the annihilation and creation operators of
the oscillator field. The coupling term in Eq. (26), there-
fore, raises or lowers the two-level system with an atten-
dant absorption or emission of the oscillator quantum. The
interest in H,. is that it is an exactly soluble model. Given
our discussion of the supersymmetry of H, the eigenvalues
can, in fact, be written down trivially. A pair of degenerate
levels of the supersymmetric H are coupled by the (Q + Q)
operator; the eigenstates of the full H,. are, therefore,
equal admixtures of the two states, with coefficients
+ 272, and with eigenvalues

Ef=n+it+k(n+ 1) (28)

The degeneracy is lifted as a result of the coupling term in &
breaking the supersymmetry.

0= (p—ix)o~=d'o",

IV. SUPERSYMMETRY IN THE THREE-
DIMENSIONAL COULOMB AND OSCILLATOR
HAMILTONIANS

For potentials with spherical symmetry in three dimen-
sions, the Schriodinger equation reduces essentially to a sin-
gle variable equation in the radial coordinate 7, the depen-
dence of the wave function on the angular variables being in
the standard form of a spherical harmonic Y,,, (6,¢4). The
one-dimensional construction of supersymmetry can,
therefore, be applied to the radial equation. This leads to
some interesting results which also give a new slant to the
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0(4) and SU(3) symmetries mentioned earlier for the
— 1/r and 7 potentials, respectively.’
A. The hydrogen atom

A supersymmetric construction has been given® for the
radial Schrodinger equation of the hydrogen atom,

E, ——+
2 dy? y 2°

Xn(0) =0, (29)

with E, = — 1/2n% y = (mZe*/#)r. With U(y) de-
fined as

Upy)=2/(I+1)—=2(I+ Dny, (30)

Eq. (29) at fixed / defines the series of Bohr levels with
n> (I + 1) in the potential

V, =10+ 1)"2— (I/y) + 10+ 1)/2?, (30a)

and with energies [ (/ + 1) 72 — n2]/2, the lowest eigen-
value defining the zero of the energy scale. Corresponding-
ly, from Eq. (1) and Eq. (30), we have the partner

Vo=30+ D72 = (I/y) + U+ 1D +2)/2?, (30b)

which is easily recognized as also defining a series of Bohr
levels but starting with n=17/+2. We are speaking
throughout of the same partial wave /, the angular part
Y., (64) being common to both ¥, and playing norolein
the discussion. But for the radial equation, the supersym-
metric partner to Eq. (29) coincides formally with the ra-
dial equation for the next higher / value, i.e., with /—/ + 1.
As an example, consider / = 0. ¥ describes the ns states of
the hydrogen atom with n> 1. The eigenvalues of ¥ _ on the
other hand, coincide formally with those of the np states,
n>2. Since there is the well-known hydrogenic degeneracy
between ns and np (n>2) states, we have a supersymmetric
spectrum as described in Sec. II.

The authors® who advanced the construction of V' in
the previous paragraph have interpreted the results as de-
scribing a supersymmetric connection between atoms in a
column of the Periodic Table. Thus the / = 0 case consid-
ered above is seen as describing the s states of H through
V. and of Li (1s°ns n>2) through V_. This interpretation
is, however, problematical’® and we see the connection
somewhat differently. The key point of departure is that
the radial equation (29) is not a true one-dimensional
problem, being only on the half-line (0, ). To apply the
considerations of Sec. II, we should therefore transform
first to a problem on the full-line ( — w0, ), which is ac-
complished by a well-known'® change of variables from y
tox = In y. As we will see below, this converts the radial 1/
r problem into that of a Morse potential and the supersym-
metric construction gives two Morse potentials V', (x).
Although algebraically one passes trivially from the Morse
to the Coulomb problem, the interpretation of the super-
symmetric spectrum is quite different. The double degener-
acy of the excited states is not between states of the same n
and different / (for example, s and p) but rather between
states of the same / but different n and, simultaneously,
different Z. Therefore, instead of providing connections
between states of different atoms (with different numbers
of electrons), we see the connection rather as between isoe-
lectronic ions (one electron always). This connection is a
straightforward expression of the simultaneous scaling of
one electron atomic energies with Z and n.
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Changing the variable y in Eq. (29) to x = In y and si-
multaneously transforming the wave function y(y) to
¥(x) =exp( — x/2)y gives

- __1__ __d2 - 2% __ __!_ (1 i)z] =0
[ 3 E, e e+ + P(x) .
(31)

With E, = — 1/2n? this describes a one-dimensional
Morse potential (e¥/2n?) — ¢ whose eigenvalues are
— 1(I + )2 Translating the zero of the energy scale to the
lowest eigenvalue, with / = n — 1, we define the potential

Vi(x)=(/2n%) —e +} (} —n)*. (32)
The spectrum of V_ (x) for any fixed n has eigenvalues
i(n+1D(n—1—1),thatis,a finite (/<n — 1) number of
eigenvalues starting at zero (for / =n — 1). To carry out
the supersymmetric construction with ¥ given as above,
we have from Eq. (3) that the corresponding function
U(x) is

U(x)=2(e"/n) + (1 —2n)x. (33)

Alternatively, the basic definition U(x) = — 2 log #,(x),
where ¥, (x) is the ground state wave function of Eq. (31),
leads to the same result.

With U(x) in hand, Eq. (3) is used again to obtain the
supersymmetric partner

V_(x) =e*/2n* — (1 = 1/n)e +1 4 —n)?, (34)

which has the same set of eigenvalues {(n + /) (n — [ — 1)
except for the missing zero eigenvalue (Fig. 3). Note that
V_(x) is also a Morse potential that goes to the same
asymptotic limits at x = + o« as does ¥, (x) but departs
in between. See Fig. 4. Remarkably, the two different po-
tentials have the same eigenvalues except for the lowest in
V., . From a different point of view, it has been noted before
that there exist Morse potentials with different strengths
which have such coincidences in their eigenvalue spec-
trum.?® Also, during the course of our writing, we have
come across another paper giving similar supersymmetric
constructions for the 1/ and Morse potentials.?!

Having carried out the construction with the true one-
dimensional variable x, we can now transform back to y
and the wave function y ( ) to get as a partner to Eq. (29),

1d* 1 1)\ 1 1(1+1)]
e 1 ()L i+l =0.
[ 2 dyz—'-2n2 ( n) y + 2)? ()
(35)
(a) (b)
2s  _Is _4s 3s_
_4p _3p_
2p 4d  3d
af
Het H Bettt Litt

Fig. 3. Supersymmetric spectrum of states n,/ and (n — 1),/. States in
atomic notation and eigenvalues (n + I) (n — I — 1) shown for (a) n = 2,
(byn=4.
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(Y2-ni? _

Fig. 4. Supersymmetric pair of Morse potentials ¥, (x): schematic. Both
potentials support a finite number of bound states 4,B,... that coincide in
energy. In addition ¥ has a zero eigenvalue.

Unlike the relationship between Eq. (30a) and Eq. (30b),
the link between Eq. (29) and Eq. (35) is that they both
describe Coulomb states of the same / but different values
of the principal quantum number. To see this, we observe
that the only difference between the two equations lies in
the coefficient of the 1/y term and that y is proportional to
Z. Therefore, upon dividing Eq. (35) through by (1 — 1/
n)?and redefining (1 — 1/n) y asanew variable y, the two
equations are identical except that Eq. (29) applies to the
value n, and Eq. (35) to the value n — 1. By absorbing the
(1 — 1/n) factor that multiplies y into the nuclear charge
Z, this correspondence can be stated in terms of dimension-
al energies: Eq. (29) describes states with / and »# and nu-
clear charge Z and having energy — (Z?%/n?) (me*/#),
whereas Eq. (35) describes states with / and » — 1 and
charge Z(1 — 1/n) but with the same eigenenergy. Figure
5 illustrates a few simple cases for specific choices of Z and
n.
Thus supersymmetry links states of isoelectronic ions
under the simultaneous change n—n — 1, Z—Z(1 — 1/
n). This reflects, of course, the fact that the atomic energy
expression involves Z and » only in the combination Z /n
and therefore remains invariant under this simultaneous
interchange. Further, as regards the radial wave function
in Eq. (29), it is well known that y and 7 enter only in the
combination y/n. This is clear from the very structure of
this equation, that the only combinations involved are Z /n
and y/n. Thus, the supersymmetry link amounts to a “di-
latation” transformation D, ,, _ ,,, such a transformation
being one that scales coordinates:

D, flx) =f(ax) . (36)

The relevance of the operator D, _ ,, for group symme-

(a) (b)

(n+d)(n-2-1) {n +1){n-2-1)

2 _Zi_ _1§_ 12 S 3s
10 _4p_ _3p

0 2p 6 44 3d
0 4f

Fig. 5. Redrawing of Fig. 3 to show simultaneous scaling n—n — 1,
Z—Z(1 — 1/n) that relates supersymmetric partners (a) n =4, Z =4,
b)yn=2=2.
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tries of the hydrogenic radial functions has been noted be-
fore?? but the above considerations through supersym-
metry cast a new light on the problem.

B. The isotropic oscillator

The difference between working with the variables x and
y for three-dimensional radial problems is also exemplified
by applying these considerations to the isotropic oscillator:

1d%2 1, IU+1
—_——— +____E") w =0, 37
( 2 57 W Xn (D) (37
with y = (mw/#)"*rand E, =n+3/2,n=11+2,....

The procedure followed in Egs. (30), (30a), (30b) would
now give

Uy)=y*~2(l+Dlny, (38a)
and correspondingly
Vo) =1+ U0+ D)/ — U+, (38b)

Vo») =4+ [+ DU +2)/2°1 = (I+1) . (38¢)

This would again establish as partners states with / and
/+ 1 but, unlike in the Coulomb problem, the oscillator
does not have such degeneracies (Fig. 6); rather, the de-
generacies are staggered by two units in /; or, for the same /,
the energy eigenvalues are staggered by two units. This
connection emerges more naturally, albeit as a more trivial
statement, when one works with a variable x on the full
line.

Defining x slightly differently from our previous usage
through x =21Iny, and setting y = exp(x/4)¥(x), Eq.
(37) is transformed into

2 2
(39)
Once again, we have a Morse potential with
Vilx) =t ~1(n+e" + (n+1)?, (40)

and eigenvalue (n — I)(n + [ + 1)/8. For fixed / and n»/,
the lowest eigenvalue is again at zero. Together with
U(x) =€ — (n+1)x, this defines a supersymmetric

4 3s 2d

- 2p_ M
> 2s 1d

; Ip_

0 s

Fig. 6. Spectrum of the isotropic oscillator. States indicated by nuclear
notation §(n — 1) + 1,1.
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partner

V_(x) =" —4(n—De" + §n+ 1. (41)
We have here another pair of Morse potentials somewhat
similar to the pair Eq. (32) and Eq. (34) and the sketch in
Fig. 4. The coefficients and, in particular, their dependence
on n are different but V', again have the same asymptotic
limits, differ in between, and have all their eigenvalues ex-
cept one coincide with each other.

Transforming Eq. (41) back to the variable y gives the
supersymmetric partner to the isotropic oscillator in Eq.
(37) as

2
(_iﬁ___*_i 2+I(1+1)
2dyt 2 22

with E, again equal to n + 3. This time the / value and the
oscillator parameter are unchanged (in the Coulomb prob-
lem, the Coulomb strength Z was scaled to a new value),
and the difference between Eq. (42) and Eq. (37) is a tri-
vial shift by 2 units (2% in real energy units) of the two
potentials. The corresponding shift in eigenvalues for states
of the same / is precisely that exhibited by the spectrum of
the isotropic oscillator (Fig. 6). Note that this conclusion
is very similar to the results established in Sec. III for the
one-dimensional oscillator.

+2_EJX=0, (42)

V. OTHER SUPERSYMMETRIC HAMILTONIANS
IN ATOMIC PHYSICS

In the previous section we examined the supersymmetric
spectra associated with the basic potentials of atomic and
molecular physics, namely, the Coulomb and Morse poten-
tials, respectively. Other more complicated atomic spectra
also seem to exhibit supersymmetry in their spectra and we
consider two examples here.

A. Singlet/triplet supersymmetry

In Sec. III we examined the one electron problem in a
magnetic field as exhibiting supersymmetry, the two part-
ners in the supersymmetric ladder of spectral states differ-
ing in the alternative projections o, of the electron spin.
Interestingly, an analogous situation but with respect to
the alternative spin values, S = 0 (singlet) and S = 1 (tri-
plet), of two electrons appears in the spectrum of a two-
electron atomlike helium. Consider singly excited states of
total orbital angular momentum L =0, that is, the se-
quence of configurations 1s2s, 1s3s, ... lsns, .... Each of
these configurations has S =0 or 1. Together with the
ground state 15° this set forms the L = 0 family of states of
the helium atom below the ionization threshold.

The requirements of the Pauli principle, that the total
wave function be antisymmetric, has two consequences.
The ground state has only S = 0 and the excited states have
spatial wave functions that are, respectively, symmetric
and antisymmetric for § = 0 and 1. This leads to the well-
known result that the energy of these states takes the
form??

E=(T+V,)+ (Vi) £ (VP for =9, (43)

where T, V,,, V<, and V" are, respectively, the kinetic
energy, electron—nuclear potential energy, and the “direct”
and “exchange” parts of the electron—electron interaction.
The first two, which are the one-electron terms, and V‘;’e,
which is the repulsion between two-electron density distri-
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Fig. 7. L = O states of the He atom below the first ionization threshold.

butions, are common to S = 0and 1, + signsin the spatial
wave function due to the requirements of symmetry/anti-
symmetry always squaring to -+ 1. It is only in the ex-
change contribution, which is purely quantum mechanical
and depends explicitly on the wave functions (not just den-
sities), that the + signs matter.”> The net result is the
canonical spectrum (Fig. 7), with each of the 1sns S states
lying slightly lower that the lsns 'S states. Neglect of the
exchange term, the so-called Hartree approximation in
atomic physics, makes the two-electron spectrum in Fig. 7
into a supersymmetric pattern, with a nondegenerate
ground state, 1s° 'S, and pairs of degenerate, 1sns 1S and
Lsns 3S, excited states. Exchange can then be viewed as
breaking this supersymmetry in the two-electron interac-
tion.

B. Hydrogen atom in an infinitely strong magnetic field

The discovery of pulsars, which are believed to be neu-
tron stars with very strong (~10'?> G) magnetic fields, led
to considerable study of atomic structure in such a situa-
tion.® The strong field, say in the z direction, can be seen as
restraining motion in the transverse x and y directions to
distances of the order of the cyclotron radius
pc = (chi/eB)'?, so that the Coulomb field in the hydro-
gen atom becomes. effectively one dimensional (in z) in
character: — 1/r— — (p% + 22) ~V/2, In the limit of infi-
nite field strength when p.—0, we have then a “one-di-
mensional Coulomb potential,” — 1/|z|. In condensed
matter physics, excitons, which are hydrogenlike systems,
show similar magnetic field effects even with laboratory
field strengths.

Thespectrum of the — 1/|z] potential is known, and was
first reported in this journal.** It is shown in Fig. 8 and
consists of one odd parity and one even parity (under
z = — z) state at each of the Bohr energies — 13.6 eV/n?,
n = 1,2,... . In addition, the ground state, which is of even
parity, has a logarithmically infinite binding energy. [ The
origin of this is easily made plausible by noting that where-
as fo dr(1/r) is finite, f,dz(1/|z|) is logarithmically sin-
gular.] It is clear from Fig. 8 that here again we have a
supersymmetric pattern. For the problem of a hydrogen
atom in a very strong (but not infinite) magnetic field, the
odd and even parity excited states coincide in first order but
are slightly nondegenerate in higher-order terms in p -, and
the “deep” ground state is not at minus infinity but lies at

— 13.6 eV In*(ay/pc )?, where a is the Bohr radius.?* Ex-
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-3.4eV

-13.6¢eV

Edeep
even parity odd parity

Fig. 8. Spectrum of the “one-dimensional Coulomb” potential,
— (|2} + p.) "' for p,—0 (not toscale). Break on the energy scale repre-
sents that E,.., lies much lower and Ej,.,— — o as p.—0.

act supersymmetry obtains in the one-dimensional limit, p,
= 0, but is slightly broken when p, is small and finite.

A recent paper® noted the supersymmetry in the — 1/
|z| problem, and the coincidence of the excited state ener-
giesin Fig. 8 with the usual Bohr energy values of the three-
dimensional hydrogen atom, as an aspect of the so-called
“shifted 1/N expansions” wherein the dimension X of the
system is artifically varied to speed up convergence of the
perturbation expansions. In this problem a connection is
made between the -— 1/r potential with N =3 and the

— 1/|z| potential with N = 1. Our discussion above makes
contact with a concrete physical situation, namely a strong
magnetic field, which has this effect of reducing the effec-
tive dimension by 2. Elsewhere,?” one of us discussed this
problem as an example of the compactification of dimen-
sions, a subject again of considerable current interest in
field theories.

In the context of the current discussion, note that any
symmetric one dimensional potential well which supports
only one bound state [such as, for instance, a delta function
well, —ad(x)] can also be viewed as having a supersym-
metric spectrum. All the continuum states are doubly de-
generate, of odd and even parity, and together with the
nodeless even-parity ground state constitute a supersym-
metric family just as in the other examples we have dis-
cussed (except that the excited states are now all in the
continuum).

To end this section, we note that in the two examples
discussed in this section, we could not readily proceed to
construct explicitly ¥, and the Q,Q operators. This is be-
cause the exact ground state wave function ¥, and there-
fore, U, are inaccessible unlike in the exactly solvable ex-
amples considered in Secs. IIT and IV. Nevertheless, from
the nature of the spectrum and, in particular, the hallmark
of a supersymmetric pattern that there is one nondegener-
ate ground state and the excited states are duplicated, it is
easy to recognize a quantum mechanical Hamiltonian as
possessing supersymmetry.
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On traveling round without feeling it and uncurving curves
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We discuss an elementary example of how, in a strong gravitational field, the basic kinematical
concepts of acceleration and circular motion seem to have paradoxical properties. This allows an
insight into the physical significance of space-time curvature without the use of difficult

mathematical formalism.

Our intuition about the motion of macroscopic bodies is
based on Newtonian physics. This is why some properties
of fast motions and strong gravitational fields appear para-
doxical to us. The so-called twin paradox is well known.
Here we present and discuss another striking paradox of
this type. We follow the tradition of many textbooks and
articles on relativity (e.g., Ref. 1) that use free-falling ele-
vators or accelerating spacecraft as an illustrative device.

A spacecraft can stay at a fixed distance from a spherical
celestial body by using its engines to balance the gravita-
tional attraction. There is, however, another possibility: by
moving around the body along a circular orbit a centrifugal
force is introduced, and less help is therefore needed from
the engine to overcome the pull of gravity. The orbital ve-
locity can even be such that the gravitational and centrifu-
gal forces are equal. On such a free orbit the engine must
obviously be switched off.

For orbital velocities smaller than the free one the en-
gines must point down in order to reduce the attraction of
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gravity; in the opposite case, the engines will point up in
order to reduce the effect of the centrifugal force. In both
cases the thrust of the engine is correlated with the orbital
velocity: the bigger the difference between the orbital speed
and the free velocity, the stronger the engine power has to
be to prevent the spacecraft from leaving the orbit. All that
is rather obvious and everybody would certainly agree that
Fig. 1 makes sense and describes a general situation.

Figure 2 shows spacecraft with exactly the same engines
working with exactly the same thrust, but moving with
different orbital speeds at a fixed distance from the central
body. Is this possible? Could it be that orbiting spacecraft
which use the same engine thrust circle with different orbi-
tal speeds? In other words: is it possible that acceleration
on a given circular orbit does not depend on angular veloc-
ity. However paradoxical it might sound, the answer is
“yes.”

The situation described in Fig. 2 is possible on a circular
orbit at which the velocity of free motion equals the velocity
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