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I. INTRODUCTION

Strong field physics, that is, the interaction of strong fields
with matter, is one of the current topics in atomic, molecular,
and optical physics and brings together the newest laser tech-
nology and most advanced theoretical approaches. During
the last ten years, developments in laser technology have
been in the direction of shorter and shorter pulses of higher
and higher intensities.1 Pulses with a duration as short as a
few femtoseconds (1 fs510215 s) are now routinely pro-
duced, and peak intensities around 1014– 1015 W/cm2 are not
unusual.2 Note that if we combine the atomic units of energy
(a2mec

2), time (a0 /ac), and length (a0), wherea is the
fine structure constant,me is the mass of the electron,c is the
speed of light, anda0 is the Bohr radius, we obtain the
atomic unit of intensityI 053.5131016 W/cm2, which is
within reach of experiment. The field strength corresponding
to an intensity ofI 0 is 1 a.u. of field strengthF055.14
3109 V/cm. The new light sources are typically based on a
Ti:sapphire system operating at a wavelength of 800 nm cor-
responding to a photon energy of;1.5 eV. Due to their high
intensities, other wavelengths can be produced by using non-
linear optics. In this way femtosecond pulses covering the
spectrum from the infrared to the ultraviolet can be pro-
duced. Such laser systems have recently been applied to
study the behavior of atoms and molecules under intense
field ionization.3

Although we will not discuss it here, we mention the phe-
nomenon of rescattering, which is one of the key ideas in
strong field physics involving the tunneling ionization of
atoms.4 To model this phenomenon, a three-step process is
considered: first the atom is ionized by the field, then the
freed electron propagates in the electric field of the laser, and
finally it may be driven back to the parent ion. Here it may
either scatter to produce high energy electrons, recombine
with the emission of a high energy photon, or scatter inelas-
tically, producing a doubly charged ion.5 In this three-step
rescattering model the ionization event is typically described
by a tunneling formula. The ionization rate as a function of
the phase of the field and the momentum distribution of the
liberated electrons serve as inputs for the propagation of the
electrons in the field. Hence, a good description of the initial
ionization process is needed in order to obtain accurate mod-
els for whatever process the propagating electron subse-
quently undergoes.

The ionization step is fairly simple because it involves the
process of tunneling. As we shall return to shortly, the tun-
neling picture is well-justified for intense low-frequency la-
ser fields. Figure 1 shows the combined potential felt by the
electron from an external electric fieldF along thez direc-
tion and from a nucleus of chargeZ:

V52
Z

r
1Fz. ~1!

~We shall use atomic units\5e5m51 throughout unless
otherwise indicated.! The electron may tunnel through the
barrier and escape along the negativez axis. The field
strength and ionization potential in Fig. 1 are arbitrary but
representative values. The parameterk introduced in the cap-
tion of Fig. 1 is defined ask5A2I p, whereI p is the ioniza-
tion potential.

The tunneling ionization rate in a static, electric field was
derived by Landau and Lifshitz for the ground state of the
hydrogen atom,6 and later generalized to any asymptotic
Coulomb wave function by Smirnov and Chibisov.7 There
are some misprints in Ref. 7 which make the derivation dif-
ficult to follow and results from Ref. 7 should be taken with
caution. Perelomov, Popov, and Terent’ev8 corrected the re-
sult from Ref. 7 and generalized it to electromagnetic fields
of low frequency by taking the appropriate time average. It
was shown8,9 that a generalized theory, which also covers
multiphoton processes, simplifies to the time-average of the
tunneling result7 when the Keldysh parameter,g5v/v t , is
much less than unity. The tunneling frequencyv t is defined
by v t5F/(2I p)1/2, andv is the optical frequency;v t

21 is the
tunneling time, that is, the time the electron spends under the
barrier ~see Fig. 1!.

The requirement for the validity of the tunneling model for
an oscillating field is that the width of the barrier does not
change during the time the electron spends traversing it, that
is, the electron adiabatically follows the changes in the ex-
ternal field. In terms of these quantities,g can be expressed
as

g5A2I p

v

F
. ~2!

We see that the requirement that the Keldysh parameter be
small is fulfilled when the intensity is high and the frequency
is low, precisely the parameter range of present day intense
lasers.

In this note we present a self-contained derivation of the
tunneling theory for ionization of atoms in laser fields. The
derivation is a beautiful combination of physical insight and
technical manipulations, and it brings together many differ-
ent aspects of theoretical physics, including separation of
coordinates, asymptotic forms of wave functions, and semi-
classical solutions.

II. DERIVING THE IONIZATION RATE

The starting point in the derivation of the tunneling theory
for an atom in an external field is the observation that there
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are regions in configuration space where the electron is suf-
ficiently far away from the core that it effectively feels a
Coulomb attraction from the nucleus screened by all the
other electrons. We will show that the ionization rate can be
obtained for systems with one general property: the
asymptotic wave function must behave as the asymptotic
Coulomb wave function.

The derivation involves the following steps.

~a! Separate Schro¨dinger’s equation in parabolic coordi-
nates in the presence of an external field.

~b! Find the asymptotic solution to the pure Coulomb
problem.

~c! Combine these two results to obtain an expression for
the ionization rate which only requires the knowledge
of the wave function on the outside of the barrier.

~d! Obtain a semiclassical expression for the wave function
outside the barrier and in the classically forbidden re-
gion under the barrier.

~e! Write the rate in terms of the semiclassical wave func-
tion outside the barrier and find an expression that de-
pends only on the normalization of the wave function.
This normalization is determined by requiring the
semiclassical wave function in a certain region inside
the barrier to match the asymptotic Coulomb wave
function. The rate is then described completely by pa-
rameters characterizing the asymptotic Coulomb wave
function.

~f! Perform the appropriate time average to obtain the rate
in a low frequency laser field.

In a teaching context we suggest that the lecturer provide
an overview of the derivation and leave some parts of the
derivation as student exercises. As will become clear, any of
the points in Secs. II A and II B may be formulated as prob-
lems.

A. Separation in parabolic coordinates: Static field

Parabolic coordinates are defined as6

j5r 1z, h5r 2z, f5arctan~y/x!, ~3!

with j,hP@0,̀ @ and fP@0,2p#. It follows that r 5~j1h!/2.
We may express the Cartesian coordinates in terms of the
parabolic ones as

x5Ajh cosf, y5Ajh sinf, z5~j2h!/2. ~4!

The azimuthal anglef is defined as in spherical coordinates.
In parabolic coordinates the Laplace operator reads

¹25
4

j1h F ]

]j S j
]

]j D1
]

]h S h
]

]h D G1
1

jh

]2

]f2 , ~5!

and the potential of Eq.~1! is

V52
2Z

j1h
1

1

2
F~j2h!. ~6!

If we write the Schro¨dinger equation, (2 1
2¹

21V)c5Ec, in
parabolic coordinates, and express the wave function as a
product of functions of each coordinate c
5 f 1(j) f 2(h)eimf/A2p, with m the magnetic quantum
number, we obtain

1

f 1~j! F d

dj S j
d f1

dj D1S Ej

2
2

m2

4j
2

Fj2

4 D f 1~j!G
1

1

f 2~h! F d

dh S h
d f2

dh D1S Eh

2
2

m2

4h
1

Fh2

4 D f 2~h!G
52Z, ~7!

where we have multiplied through by2(j1h)/2 and di-
vided byc.

If we introduce f 1(j)5x1(j)/Aj and f 2(h)
5x2(h)/Ah, the differential operators simplify, and we are
led to

2
1

2

d2x1

dj2 1U1~j!x15
E

4
x1 , ~8a!

2
1

2

d2x2

dh2 1U2~h!x25
E

4
x2 , ~8b!

with the constraint

b11b25Z. ~9!

The effective one-dimensional potentials are

U1~j!52
b1

2j
1

m221

8j2 1
Fj

8
, ~10a!

U2~h!52
b2

2h
1

m221

8h2 2
Fh

8
. ~10b!

As two generic examples, we have sketched these potentials
in Fig. 2 for m50,2.

As seen from the potential of Eq.~1!, the ionization will
occur in the2z direction, which in parabolic coordinates is
along theh coordinate@see Eq.~3!#.

The derivation of the results~8! and ~10! may be formu-
lated as a problem. For example, the opening question could
be ~a! obtainV in parabolic coordinates. Equation~5! could
be provided by the teacher, and part~b! could be to perform
the separation of coordinates.

Fig. 1. Full curve: the potential of Eq.~1! along thez axis with Z51 and
F50.0169 a.u. This field strength corresponds to 8.693107 V/cm ~1 a.u. of
field strength is 5.143109 V/cm). Dashed curve: the pure Coulomb poten-
tial. The horizontal line corresponds tok50.86, which is equivalent to a
ionization potential of 10 eV.
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B. Asymptotic Coulomb wave function and separation
constants

Finding the asymptotic wave function in spherical coordi-
nates may be formulated as a brief problem.

Problem: Show that the asymptotic form~large r ) of the
Coulomb wave function with energyE52k2/2 is given by

cC5R~r !Ylm~u,f!5Dr ~Z/k! 21e2krYlm~u,f!. ~11!

Solution: Substitute the expression ofR(r ) from Eq. ~11!
into the radial equation6

1

r 2

d

dr S r 2
dR

dr D2
l ~ l 11!

r 2 R12~E2V!R50. ~12!

For V52Z/r it is then readily verified thatR(r ) is the cor-
rect solution to leading order in 1/r .

In Eq. ~11! D is a normalization constant that is only
known in analytical form for the pure Coulomb problem
~see, for example, Ref. 6!. Ammosov, Delone, and Krainov10

obtained a general, analytical expression in terms of effective
quantum numbers by considering the semiclassical solutions
to the radial wave equation.

Ionization occurs near the axis of the field, that is, along
the negativez axis. We leave it as an exercise to verify the
following approximation for spherical harmonics close to the
1z direction ~u'0!:

Ylm~u,f!'Q~ l ,m!
sinumu u

2umuumu!
eimf

A2p
, ~13!

with

Q~ l ,m![~21!(m1umu)/2A2l 11

2

~ l 1umu!!
~ l 2umu!!

. ~14!

The expansion in the2z direction has the same magnitude,
but the sign should be changed according toYlm(u
'0,f)/Ylm(u'p,f)5(21)l 2umu. The sign of the spherical
harmonics turns out to be unimportant becauseQ( l ,m) only
enters the final expression for the ionization rate asuQu2.

In the region of interestz is large and negative (r'2z).
In parabolic coordinates this region is equivalent toh@j.
We expand the left-hand side of the equality cosu8
52~j2h!/~j1h! to lowest order inu8 and the right-hand
side to lowest order inj/h and find that

sinu5sinu8'u8'2Aj/h, ~15!

whereu ~u8! is the angle with the positive~negative! z axis.
We may thus write the asymptotic wave function as

cC'B
22 ~Z/k! 11

umu!
j umu/2e2kj/2hZ/k 2 umu/2 21e2kh/2

eimf

A2p
,

~16!

where we have introduced

B[Q~ l ,m!D, ~17!

for the asymptotic constant. In general,D should be calcu-
lated numerically by matching the solution of the Schro¨-
dinger equation to the form~11!.

The separation constants,b1 andb2 @see Eq.~9!# are de-
termined by requiring the asymptotic solution~16! to solve
Eq. ~8! in the limit of vanishing field strengthF→0. This
approach is valid forF/k3!1 ~see Ref. 6, p. 292!. The in-
equality F/k3!1 will also be used in Sec. II F where an
expression for the rate in an oscillating field is obtained.

From Eq.~16! we read off thej-dependence:

Fig. 2. Full curves: the potentials~a!
U2(h), m50; ~b! U1(j), m50; ~c!
U2(h), m52; and ~d! U1(j), m52.
The separation constantb2 has been
chosen according to Eq.~19!. For all
the plots the parameters areZ51,
k50.86, andF50.0169, as in Fig. 1.
Dashed curves: the pure Coulomb po-
tentials. The horizontal line corre-
sponds to the effective binding energy
in the h andj coordinates,2I p /4.
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x1~j!

Aj
5j umu/2e2kj/2. ~18!

We leave it as an exercise to substitute Eq.~18! into Eq.~8a!
to obtain

b15
k

2
~ umu11!, ~19!

which fixesb2 through Eq.~9!.

C. Expression for the ionization rate

In Sec. II A we found that the wave function could be
written as

c5
x1~j!

Aj

x2~h!

Ah

eimf

A2p
. ~20!

The ionization rate is found by integrating the probability
current density in thez direction, j z , over a surface orthogo-
nal to it

W52E j z dS. ~21!

The probability current density forz large and negative (z
'2h/2) is

j z[
i

2 S c
]c*

]z
2c*

]c

]z D' i
ux1u2

2pjh S x2*
dx2

dh
2x2

dx2*

dh D .

~22!

For ionization near thez axis the differential surface element
is written as

dS5r df dr5Ajhdf
1

2
Ah

j
dj'

1

2
h df dj, ~23!

so the rate can be expressed as

W5
i

2 Fx2

dx2*

dh
2x2*

dx2

dh G E
0

`

dj
ux1~j!u2

j
. ~24!

For x1(j) we use Eq.~18!, and express the rate in terms of
the h part of the wave function:

W5
i

2

umu!
k umu11 Fx2

dx2*

dh
2x2*

dx2

dh G . ~25!

Problem: Why is it accurate to use Eq.~18! for x1(j) in
the evaluation of the integral in Eq.~24!?

D. Semiclassical solutions

To obtain a closed, analytic expression for the rate, the
semiclassical solutions for the functionx2(h) are needed
under and outside the barrier. Such solutions may be applied
if 6

U 1

p3

dU2

dh U!1, ~26!

where the potentialU2(h) is given by Eq. ~10b!. The
momentum corresponding to this potential follows from
Eq. ~8b!,

p5F2S k

2D 2

1
b2

h
2

m221

4h2 1
1

4
FhG1/2

, ~27!

which shows that Eq.~26! is fulfilled in the ranges

b2

k2 !h!
k2

F
, h@

k2

F
. ~28!

It is seen from Eq.~26! that the semiclassical solutions do
not apply near the classical turning points (p50). For our
purposes the interesting turning point is the one on the outer
side of the barrier, which from Eq.~27! for h@1 is seen to be

h0'k2/F. ~29!

Therefore, when relating the semiclassical solutions in the
classically allowed (h.h0) and forbidden regions (h
,h0), care should be taken aroundh'h0 .

The asymptotic Coulomb wave function is an exponen-
tially decreasing function ofh. Therefore, the semiclassical
wave function in the classically forbidden region is of the
form

x2~h!5
C

Aupu
expS 2E

h0

h
upudh D ~h!h0!. ~30!

Equation~30! must be related to the semiclassical solution
in the classically allowed region,h.h0 representing a
running-wave solution

x2~h!5
C1

Ap
expS i E pdh D ~h.h0!. ~31!

To fix the relation between the exponents and the normaliza-
tion constantsC andC1 , we may match directly to the quan-
tum mechanical solutions in the two regions or, as will be
done here, use purely semiclassical methods. To this end, the
first step is to consider the semiclassical wave function in a
regionh,h0 with uh2h0u small enough that we can make
a Taylor expansion of the potential aroundh5h0 :

U2~h!'U2~h0!1~h2h0!
dU2

dh U
h0

. ~32!

Note that this expansion is not necessarily in contradiction
with the requirement thath should be far enough away from
h0 for the semiclassical solutions to apply. If we use the
approximation in Eq. ~32!, the momentum becomesp
'(2F0)1/2(h2h0)1/2, whereF052dU2 /dh, and we find

E
h0

h
upudh5

2

3
~2F0!1/2~h02h!3/2. ~33!

To get around the classical turning point, we apply an
analytical continuation of the wave function into the com-
plex h plane. This continuation allows us to get from the
classically forbidden to the classically allowed region
through a semicircle in the complexh plane, and it enables
us to connect the solutions through a region where both the
Taylor expansion and the semiclassical solutions~formally!
apply. We note that forh,h0 , the momentum is purely
imaginary, givingupu52 ip. If we introduce

h2h05reiw, ~34!
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and use Eq.~33!, we may express the semiclassical wave
function as

x2~h!5
C

@2F0rei (w1p)#1/4

3exp~2 2
3 ~2F0!1/2r3/2ei ~3/2!(w1p)!. ~35!

Passing from the classically forbidden to the classically al-
lowed region then corresponds to letting the anglew in the
complex plane undergo the changew5p→0, so the semi-
classical wave function forh.h0 becomes

x2~h!5
C

@2F0reip#1/4expS 2
2

3
~2F0!1/2r3/2ei ~3/2! pD .

~36!

If we write this result as

x2~h!5
Ce2 ip/4

@2F0r#1/4expS i
2

3
~2F0!1/2r3/2D , ~37!

and take it as the Taylor expansion of the general form~31!,
we fix C1 in terms ofC, and obtain

x2~h!5
C

Ap
expS i E p dh2 i

p

4 D ~h.h0!. ~38!

E. Putting it all together

We are now ready to put all the pieces together to obtain
the final expression for the ionization rate. We use Eq.~38!
and neglect variations inp in the prefactor and find

dx2

dh
5

C

Ap
ip expS i E p dh2 i

p

4 D . ~39!

If we substitute Eq.~39! into Eq. ~25!, the rate becomes

W5
umu!

k umu11 uCu2. ~40!

The semiclassical wave function under the barrier is given by
Eq. ~30! with the momentum given in Eq.~27!. In the com-
plete range of integration we haveh@1, and at the left end
point ~where we will match to the asymptotic Coulomb wave
function! we further use the approximation necessary for the
semiclassical wave function to be valid, that is, Eq.~28!. To
obtain the wave function we therefore introduce some ap-
proximations. In the prefactor all terms depending onh will
be neglected according to Eq.~28!, whereas in the integrand
in the exponent the term proportional toh22 will be ne-
glected, and the Coulomb term will only be included through
a first-order Taylor expansion:

up~h!u'F S k

2D 2

2
b2

h
2

Fh

4 G1/2

'
k

2 F12
Fh

k2 G1/2

2
b2

~k22Fh!1/2h
. ~41!

The integral in the exponent therefore contains two terms.
The first term is

E
h0

h k

2 S 12
Fh8

k2 D 1/2

dh8'2
k3

3F
1

kh

2
. ~42!

The second term is@see Ref. 11, Eq.~2.211!#

E
h0

h b2 dh8

~k22Fh8!1/2h8
5

b2

k
lnS S 12

Fh8

k2 D 1/2

21

S 12
Fh8

k2 D 1/2

11
D U

h0

h

' lnS Fh

4k2D b2 /k

. ~43!

In these evaluations we used thath0'k2/F @see Eq.~29!#.
Finally, the semiclassical wave function corresponding to the
one-dimensional Schro¨dinger equation in theh coordinate is
approximately

x2~h!'CS 2

k D 1/2S Fh

4k2D b2 /k

e2kh/2ek3/3F. ~44!

If we substitute Eqs.~18! and ~44! into Eq. ~20!, the total
semiclassical wave function becomes

c5Ck2 1/222 Z/k 1 umu/2 11S F

2k2D Z/k 2umu/2 2 1/2

3ek3/3Fj umu/2e2kj/2hZ/k 2 umu/2 21e2kh/2
eimf

A2p
. ~45!

If we compare this expression for the asymptotic Coulomb
wave function in parabolic coordinates given in Eq.~16!, we
find

C5k1/2
B

2umu/2umu! S 2k2

F D Z/k 2umu/2 2 1/2

e2k3/3F, ~46!

and the ionization rate can hereby be expressed in terms of
the parametersB @Eq. ~17!#, k, andm from the asymptotic
Coulomb wave function as

W5
uBu2

2umuumu!
1

k2Z/k 21 S 2k3

F D 2Z/k 2umu21

e22k3/3F. ~47!

Equation~47! is exactly the expression stated in Ref. 8.
This expression is very general. For a given nuclear charge
Z, ionization potentialI p5k2/2, field strengthF, and mag-
netic quantum numberm, the only unknown in Eq.~47! is
the constantB. This constant in turn is determined by the
analytical functionQ( l ,m) from Eq.~14! and the normaliza-
tion constantD, determined by matching the quantum me-
chanical wave function of the atom to the asymptotic Cou-
lomb form ~11!.

Usually F/2k3 is much smaller than unity, and hence it
follows from Eq. ~47! that atoms prepared in a state with
mÞ0 will ionize much more slowly than atoms withm50.

F. Ionization in a slowly varying field

We now consider the situation when the external field is
oscillating,

F~ t !5F cos~vt !ẑ. ~48!

We assume the adiabatic approximation to be valid, that is,
the time the electron uses to tunnel through the barrier is
much shorter than an optical period corresponding to the
regime withg!1 @see Eq.~2!#. Because the atom adiabati-
cally follows the changes in the external field, we can obtain
the instantaneous ionization rate by insertinguF(t)u in the
solution obtained with a static field. Because typical frequen-
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cies will correspond to wavelengths in the infrared region,
the observed ionization rate will be an average of the instan-
taneous ionization rate over one period of the field.

We obtain the observed ionization rate from

Wobs5
1

p E
2p/2

p/2

W~ t !d~vt !, ~49!

whereW(t) is the instantaneous rate. Here the exponential
dependence on the field strength clearly shows that the domi-
nant contribution to the rate will be whenucos(vt)u is near its
maximum, that is,vt;0. Because the exponential is much
more rapidly changing than any power, the time dependence
of the preexponential factor will be neglected. Forvt;0, we
make a Taylor expansion of 1/cos(vt) and the time-
dependent rate is approximated by

W~ t !'WstatexpS 2
k3

3F
~vt !2D , ~50!

whereWstat is the rate in a static field as in Eq.~47!. The
observed rate is obtained as

Wobs'
1

p
WstatE

2p/2

p/2

expS 2
k3

3F
~vt !2Dd~vt !

5S 3F

pk3D 1/2

Wstat, ~51!

where the integration limits were extended to infinity assum-
ing thatk3/F@1.

For a slightly elliptical field

F5F@cos~vt !x̂6« sin~vt !ŷ#, ~52!

with «!1, the result is

Wobs'S 3F

p~12«2!k3D 1/2

Wstat, ~53!

assuming thatk3/F@12«2.
When the light is circularly polarized, the magnitude of

the electric field is constant. In this case the ionization rate
will be equal to the static rate, and thereby be much larger
than the rate for linearly polarized light.

Equations~47! and~51! are the main results of the present
paper. As an application of these expressions, we suggest the
calculation of the ionization rates for different intensities for
Ar and Xe. In Ref. 10 the relevant values for the coefficient
D can be found by making the identificationD
5Cn! l !kZ/k11/2, whereCn! l ! is the normalization constant
of the Coulomb wave function used in Ref. 10 withn!

5Z/k and l ! the effective principal and angular momentum
quantum numbers. Ammosov, Delone, and Krainov~ADK !10

list experimental results that can be used for comparison with
the theory.

III. SUMMARY

Now that we have obtained these relatively simple expres-
sions for the ionization rate, it is worthwhile to consider the

reliability of our approximations. This question has been ad-
dressed both theoretically and experimentally, implying that
within the approximations outlined in this paper~g!1 and
F/k3!1), the model gives a good description of the ioniza-
tion of atoms in strong fields. In fact these limits are too
strict; the model is considered to be valid forg,0.5 and for
fields weak enough that we can maintain the picture of a
barrier through which the electron tunnels. An example of
the experimental tests of the tunneling theory can be found in
Ref. 12. Note, however, that to compare the obtained rate
with experimental data, we must integrate the rate equations
using the appropriate pulse profile both temporally and spa-
tially. For a brief summary of the theoretical comparison
between the static field ionization rates obtained from the
ADK model with those obtained by directly solving the
Schrödinger equation, see Ref. 2.

We have presented a coherent derivation of a much used
tunneling formula for strong field ionization of atoms. The
derivation consists of six parts, Secs. II A–II F. Each of these
parts may be formulated as an exercise. We hope that the
present note will be a useful supplement for teaching atomic,
molecular, and optical physics.
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