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Tunneling ionization of atoms

Christer Z. Bisgaard and Lars Bojer Madsen® .
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We discuss the theory for the ionization of atoms by tunneling due to a strong external static electric
field or an intense low frequency laser field. 2004 American Association of Physics Teachers.
[DOI: 10.1119/1.1603274

[. INTRODUCTION Z

V=-—+Fz. (6h)
Strong field physics, that is, the interaction of strong fields

with matter, is one of the current topics in atomic, molecular,(We shall use atomic units=e=m=1 throughout unless

and optical physics and brings together the newest laser techtherwise indicated. The electron may tunnel through the

nology and most advanced theoretical approaches. Duringarrier and escape along the negatweaxis. The field

the last ten years, developments in laser technology haveirength and ionization potential in Fig. 1 are arbitrary but

been in the direction of shorter and shorter pulses of higherepresentative values. The parameténtroduced in the cap-

and higher intensities Pulses with a duration as short as ation of Fig. 1 is defined ag= \/Tp wherel , is the ioniza-

few femtoseconds (110 1°s) are now routinely pro- tion potential.

duced, and peak intensities around“aL0"> W/cn? are not The tunneling ionization rate in a static, electric field was

unusuaf Note that if we combine the atomic units of energy derived by Landau and Lifshitz for the ground state of the

(a®?mec?), time (ay/ac), and length &,), wherea is the hydrogen atoni, and later generalized to any asymptotic

fine structure constanty, is the mass of the electroajs the ~ Coulomb wave function by Smirnov and ChibisbThere
speed of light, anda, is the Bohr radius, we obtain the are some misprints in Ref. 7 which make the derivation dif-

. . . . S ficult to follow and results from Ref. 7 should be taken with
atomic unit of intensitylo=3.51x 10°° W/en?, which is .__caution. Perelomov, Popov, and Terenfeorrected the re-
. ) . . %ult from Ref. 7 and generalized it to electromagnetic fields
to an intensity oflo is 1 a.u. of field strengtftFo=5.14 ot |0\ frequency by taking the appropriate time average. It
X 10° V/em. The new light sources are typically based on ayas showh® that a generalized theory, which also covers
Ti:sapphire system operating at a wavelength of 800 nm comuitiphoton processes, simplifies to the time-average of the
responding to a photon energy ofL.5 eV. Due to their high  tunneling result when the Keldysh parametey= w/w,, is
intensities, other wavelengths can be produced by using nofinych less than unity. The tunneling frequenayis defined
linear optics. In this way femtosecond pulses covering thq)y wt=F/(2|p)l/2, andw is the optical frequencyg)t’l is the

spectrum from the infrared to the ultraviolet can be pro- unneling time, that is, the time the electron spends under the
duced. Such laser systems have recently been applied rrier (see Fig. 1

study the behavior of atoms and molecules under intense The requirement for the validity of the tunneling model for

. . . . 3

f'eflt'r?n'z?]t'on' il not di ith tion the ph an oscillating field is that the width of the barrier does not
oug ;/ve will not 'Scuﬁs 'h N1€1€, Wefmﬁn 'fn .; PN€- change during the time the electron spends traversing it, that

nomenon of rescattering, which is one of the key ideas g 1he electron adiabatically follows the changes in the ex-

strong4 field physics_ involving the tunneling ionization of ternal field. In terms of these quantitiegcan be expressed
atoms: To model this phenomenon, a three-step process i

considered: first the atom is ionized by the field, then the

freed electron propagates in the electric field of the laser, and ®

finally it may be driven back to the parent ion. Here it may Y= \/TPF' @

either scatter to produce high energy electrons, recombine _

with the emission of a high energy photon, or scatter inelas¥Ve see that the requirement that the Keldysh parameter be

tically, producing a doubly charged iSnin this three-step small is fulfilled when the intensity is high and the frequency

rescattering model the ionization event is typically describedS low, precisely the parameter range of present day intense

by a tunneling formula. The ionization rate as a function ofl@sers. ) o

the phase of the field and the momentum distribution of the N this note we present a self-contained derivation of the

liberated electrons serve as inputs for the propagation of th&inneling theory for ionization of atoms in laser fields. The

electrons in the field. Hence, a good description of the initia/derivation is a beautiful combination of physical insight and

ionization process is needed in order to obtain accurate modechnical manipulations, and it brings together many differ-

els for whatever process the propagating electron subs&nt aspects of theoretical physics, including separation of

quently undergoes. coordinates, asymptotic forms of wave functions, and semi-
The ionization step is fairly simple because it involves theclassical solutions.

process of tunneling. As we shall return to shortly, the tun-

neling picture is well-justified for intense low-frequency la-

ser fields. Figure 1 shows the combined potential felt by the”' DERIVING THE IONIZATION RATE

electron from an external electric field along thez direc- The starting point in the derivation of the tunneling theory

tion and from a nucleus of charge for an atom in an external field is the observation that there
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with & 7e[00] and ¢e[0,27]. It follows thatr=(&+ 7)/2.
We may express the Cartesian coordinates in terms of the

0.1 ¢ parabolic ones as
- x=\Encosp, y=\énsing, z=(¢-mi2. (@
E The azimuthal angleé is defined as in spherical coordinates.
S In parabolic coordinates the Laplace operator reads
P U SHE AN A | RN
“Ery 0§<§0§)+6’7](77077) e
and the potential of Eq1) is
z [a.u(.)] V=—£+EF(§— 7). (6)
§+n 2

Fig. 1. Full curve: the potential of Eq1) along thez axis withZ=1 and If we write the Sch'r'dinger equation, € %V2+V) Yy=Ey, in

e o S ! _ _
F=0.0169 a.u. This field strength corresponds to 8.66" Vicm (1a.u. of — hapanslic coordinates, and express the wave function as a
field strength is 5.14 10° V/cm). Dashed curve: the pure Coulomb poten- duct h f ti f h dinat

tial. The horizontal line corresponds t©=0.86, which is equivalent to a produc 0 uncuons 0 eac coordinate ¢

ionization potential of 10 eV. =f,(&)fy(n)e™/J27, with m the magnetic quantum
number, we obtain

o _ _ . 1 [d df)\ [EE m? Fé&
are regions in configuration space where the electronis suf=—_| —| ¢——| +| = — —— ——|f,(¢)
ficiently far away from the core that it effectively feels a f1(§)[d&\ ™ d§ 2 4¢ 4
Coulomb attraction from the nucleus screened by all the 1 [ d ( dfz) (
+

Ey m?> Fo?

other electrons. We will show that the ionization rate can be - 4—+ T) fao( 7])}
n

+ —_— — —_—
obtained for systems with one general property: the fo(m) d7| Tdy
asymptotic wave function must behave as the asymptotic __ @)
Coulomb wave function. '
The derivation involves the following steps. where we have multiplied through by (¢é+ #)/2 and di-
(@ Separate Schdinger's equation in parabolic coordi- vided byy.
nates in the presence of an external field. If  we introduce fy(&)=x1(&)/VE and fy(n)
(b) Find the asymptotic solution to the pure Coulomb = x2(7)/\/7, the differential operators simplify, and we are
problem. led to
(c) Combine these two results to obtain an expression for )
the ionization rate which only requires the knowledge -+ d°x4 UL yi= = 8a)
of the wave function on the outside of the barrier. 2 d&? U&xi=gzx
(d) Obtain a semiclassical expression for the wave function
outside the barrier and in the classically forbidden re- 1 d?x, E
gion under the barrier. T2 +Ua(nx2=7 X2 (8b)

(e) Write the rate in terms of the semiclassical wave func-
tion outside the barrier and find an expression that dewith the constraint
pends only on the normalization of the wave function.
This normalization is determined by requiring the — BitB2=Z. 9)
semiclassical wave function in a certain region inside . . . .
the barrier to match the asymptotic Coulomb waveThe effective one-dimensional potentials are

function. The rate is then described completely by pa- B, m-1 F¢
rameters characterizing the asymptotic Coulomb wave U(§)=——+ —o+ =, (10a
function. 2¢ 8¢ 8

(f) Perform the appropriate time average to obtain the rate

m’-1 F
Be o (10b)

in a low frequency laser field. Uy(7)=— T + 7 8

In a teaching context we suggest that the lecturer provide ] ]
an overview of the derivation and leave some parts of thé\S two generic examples, we have sketched these potentials
derivation as student exercises. As will become clear, any dn Fig. 2 form=0,2.
the points in Secs. Il A and 11 B may be formulated as prob- As seen from the potential of E@l), the ionization will
lems. occur in the—z direction, which in parabolic coordinates is

along the# coordinatesee Eq(3)].
The derivation of the result8) and (10) may be formu-
A. Separation in parabolic coordinates: Static field lated as a problem. For example, the opening question could
be (a) obtainV in parabolic coordinates. Equati@f) could
be provided by the teacher, and péb} could be to perform
éE=r+z, ny=r—z, ¢=arctany/x), 3 the separation of coordinates.

Parabolic coordinates are defined as

250 Am. J. Phys., Vol. 72, No. 2, February 2004 C. Z. Bisgaard and L. B. Madsen 250



Fig. 2. Full curves: the potential®)
UZ(”)! m=01 (b) Ul(g)! m:0| (C)
Uy(7), m=2; and(d) Uy(§), m=2.
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The separation constamt, has been
chosen according to Eq19). For all
the plots the parameters a@=1,

n [a.u.]

x=0.86, andF=0.0169, as in Fig. 1.
Dashed curves: the pure Coulomb po-
tentials. The horizontal line corre-
sponds to the effective binding energy
in the » and ¢ coordinates;— 1, /4.
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B. Asymptotic Coulomb wave function and separation
constants

Finding the asymptotic wave function in spherical coordi-
nates may be formulated as a brief problem.

Problem Show that the asymptotic forrtlarger) of the
Coulomb wave function with energg= — «?/2 is given by

Ye=R(1)Yn(0,¢)=Dr# ~le=~Y, (6,¢). (11
Solution Substitute the expression Bf(r) from Eq. (11)
into the radial equatich

Ld (LR 104D o
r2ar\"ar| T Tz RPAETVIRSO

ForV=—2Z/r it is then readily verified thaR(r) is the cor-
rect solution to leading order inrl/

In Eq. (11) D is a normalization constant that is only
known in analytical form for the pure Coulomb problem
(see, for example, Ref)6Ammosov, Delone, and Krain X

(12

10 20 30 40 50

€ [a.u.]

The expansion in the-z direction has the same magnitude,
but the sign should be changed according Y@,(6
~0,0)/Y\m(6~,¢)=(—1)""!". The sign of the spherical
harmonics turns out to be unimportant becaQgé,m) only
enters the final expression for the ionization raté Q.

In the region of interest is large and negativer & —z).
In parabolic coordinates this region is equivalentz7e &
We expand the left-hand side of the equality 6bs
=—(&—mn)l(é+7) to lowest order ind' and the right-hand
side to lowest order ig/ » and find that

sinfg=sing’ ~ 6’ ~2él n, (15)

whered (') is the angle with the positivéhegative z axis.
We may thus write the asymptotic wave function as

obtained a general, analytical expression in terms of effective )
quantum numbers by considering the semiclassical solutionghere we have introduced

to the radial wave equation.

lonization occurs near the axis of the field, that is, along

2~ (ZIK) +1 - ml im¢
~B m IZe— k&l2 7k — |m|/2 —1e— Kknl2 ’
e |m|| 3 7 oy
(16)
B=Q(l,m)D, (17)

the negativez axis. We leave it as an exercise to verify the ¢, the asymptotic constant. In generBl, should be calcu-
following approximation for spherical harmonics close to thelated numerically by matching the solution of the Schro

+z direction (6=0):

Im( 1¢)~Q( !m)2m|m|| \/E,
with
21+1 (I+|m|)!
=(_1)(m+[m| [ e L
QUM = (=) JSo s (14)

251 Am. J. Phys., Vol. 72, No. 2, February 2004

dinger equation to the forr(ill).

The separation constanig; and 8, [see Eq.9)] are de-
termined by requiring the asymptotic soluti¢h6) to solve
Eg. (8) in the limit of vanishing field strengtlr— 0. This
approach is valid foF/k3<1 (see Ref. 6, p. 292 The in-
equality F/«k®<1 will also be used in Sec. IIF where an
expression for the rate in an oscillating field is obtained.

From Eq.(16) we read off the-dependence:

C. Z. Bisgaard and L. B. Madsen 251



2 2 112
Xl(g) ml/2~— kél2 —| — 5 @_—m_l E
Tg—fl 2= xél2 (18) p 2 + 7 47]2 +4 /A (27)
We leave it as an exercise to substitute B@) into Eq.(8a  Which shows that Eq(26) is fulfilled in the ranges
to obtain 5 )
B2 K K
K 2<N<E. > (28)
,31=§(|m|+1), (19 K

It is seen from Eq(26) that the semiclassical solutions do
which fixes 8, through Eq.(9). not apply near the classical turning poings<(0). For our

purposes the interesting turning point is the one on the outer

side of the barrier, which from E@27) for »>1 is seen to be

C. Expression for the ionization rate
p o™~ KZ/F. (29)

In Sec. IIA we found that the wave function could be . . . . .
Therefore, when relating the semiclassical solutions in the

written as
_ classically allowed >7,) and forbidden regions %
x1(8) xa(7) em? < 7,), care should be taken aroungs 7,.
- \/E \/; \/Z-r (20 The asymptotic Coulomb wave function is an exponen-

tially decreasing function of;. Therefore, the semiclassical
The ionization rate is found by integrating the probability wave function in the classically forbidden region is of the
current density in the direction,j,, over a surface orthogo- form

nal to it
<)Cp( "lld)( N
. =—exg — <7)-
W:_szds_ (21) XM= JPld7 | (<m0
The probability current density far large and negativez(  Equation(30) must be related to the semiclassical solution
~—7l2) is in the classically allowed regiony> 7, representing a
_ . running-wave solution
=t 0¢*_¢*&_>Ni Ixal? pde | do
) dz oz)  2mén\2dy Pdy ) Cy F{f )
x2(n)=-—=expi| pdyp| (7>mno). (31
o | | | (22 Jp
Eocvlr(i)t?éznaggn near the axis the differential surface element To fix the relation between the exponents and the normaliza-

tion constant€€ andC;, we may match directly to the quan-
1 [y 1 tum mechanical solutions in the two regions or, as will be
dS=pdpdp= \/a‘wi \[Edf“ P de dg, (23 done here, use purely semiclassical methods. To this end, the
first step is to consider the semiclassical wave function in a

so the rate can be expressed as region 7< 5o with | 7— 70| small enough that we can make
i dy: i} dxo] (= |xa(9|? a Taylor expansion of the potential arouneF 7,:
W=3 X2 g, ~X2 g, fo § E (24)

du,
Ua(7)~Uz(mo) + (77— nO)W : (32

For x1(£) we use Eq(18), and express the rate in terms of 7

the » part of the wave function:
Note that this expansion is not necessarily in contradiction

L mt | dxa L, dxo ith the requi hag should be f h away f
We — X .92 o5 With the requirement thab should be far enough away from
2 WM X2y X2 gy @9 7o for the semiclassical solutions to apply. If we use the
Problem Why is it accurate to use E4L8) for x,(£) in  @PProximation in Eq.(32), the momentum becomep
i : i ~(2F o) YA n— o) whereF,=—dU,/d7, and we find
the evaluation of the integral in EqR4)? 0 7= 10)" 0 21047,
7 2 112 312
[pld7= 3 (2F0)" (70— 1" (33)
D. Semiclassical solutions 0

To obtain a closed, analytic expression for the rate, the To get around the classical turning point, we apply an

semiclassical solutions for the functiop,(7) are needed analytical continuation of the wave function into the com-

: : . . plex n plane. This continuation allows us to get from the
#gder and outside the barrier. Such solutions may be applleg{assically forbidden to the classically allowed region

through a semicircle in the complexplane, and it enables
1 du, us to connect the solutions through a region where both the
F W <1, (26) Taylor expansion and the semiclassical solutitfiosmally)
) o apply. We note that forp<z,, the momentum is purely
where the potentiall,(%) is given by Eq.(10D. The  imaginary, giving|p|=—ip. If we introduce
momentum corresponding to this potential follows from _
Eqg. (8b), n— 0= pe'?, (34

252 Am. J. Phys., Vol. 72, No. 2, February 2004 C. Z. Bisgaard and L. B. Madsen 252



and use Eq(33), we may express the semiclassical wave ( Fﬂ')llz !
function as ' - !
m Badpy B2 n K’
c = F Py = [ CF
_ 70 )y K U
x2(1) [2F pe(?T M1 (1— 2 +1
. 0
X exp( — %(2F0)1/2p3/2el(3/2)(<p+7T))_ (35 Fy Balk
Passing from the classically forbidden to the classically al- Mn(ﬁ) “3

lowed region then corresponds to letting the angla the ) 5

complex plane undergo the change=7—0, so the semi- In these evaluations we used thag~ «“/F [see Eq.(29)].

classical wave function fop> 7, becomes Finally, the semiclassical wave function corresponding to the
one-dimensional Schdinger equation in they coordinate is

C 2 ) i
Yol 7)= SFod ,T]14exl{ _ §(2F0)1/2p3/2e|(3/2) w) _ approximately
0

2 1/2 = Bolk
(36) Xl 77) ~ C( ;) (4_[:]2) e—Kn/ZeK3/3F_ (44)
If we write this result as ) )

If we substitute Eqs(18) and (44) into Eq. (20), the total

Ce '™ p( 2 iclassical function b
_ exd i Z(2F )12 3,2) , 3 semiclassical wave function becomes
XZ( 77) [2F0p]174 3( O) P ( 7) F Zi ~|mli2 - 112
. . =C —1/22—Z/K+|m|/2+l
and take it as the Taylor expansion of the general f(3t), p=Cx 22

we fix C4 in terms ofC, and obtain

C o XeK3/3F§\m\/2e—K§/27]Z/K—|m|/2—1e—,<7,/zelm¢_ (45)
Xz(n)=\/—BeX ifpdn—iz (7> o). (38 V2

If we compare this expression for the asymptotic Coulomb

E. Putting it all together wave function in parabolic coordinates given in Et6), we

find
We are now ready to put all the pieces together to obtain B 242\ Ax—lmliz—12
the final expression for the ionization rate. We use B§) C= Kllz—’ﬁnﬁ — e <3 (46)
and neglect variations ip in the prefactor and find 2™ mft ] F
and the ionization rate can hereby be expressed in terms of
%_ Ei ex ij dy—i ™ (39) the parameter8 [Eq. (17)], x, andm from the asymptotic
dp  p P pan=iz)- Coulomb wave function as
p
If we substitute Eq(39) into Eq. (25), the rate becomes ~ 1B 1 (2| 2Heimimt 4
mi " 2 P W
W= Km +1/CI% (40 Equation(47) is exactly the expression stated in Ref. 8.

. . . o This expression is very general. For a given nuclear charge
The semiclassical wave function under the barrier is given by, inization potential , = «%/2, field strengttF, and mag-
) p 1 )

Eq. (30) with the momentum given in Eq27). In the com-
plete range of integration we hawg>1, and at the left end
point (where we will match to the asymptotic Coulomb wave

function) we further use the approximation necessary for th .nalytlcal functionQ(l ’m.) from Eq.(14)_and the normaliza-
semiclassical wave function to be valid, that is, E28). To ~ uon constanD, determined by matching the quantum me-

obtain the wave function we therefore introduce some ap¢hanical wave function of the atom to the asymptotic Cou-
proximations. In the prefactor all terms dependingspwill  |omb form (11)-3 _ _ .
be neglected according to E@8), whereas in the integrand ~ Usually F/2«* is much smaller than unity, and hence it
in the exponent the term proportional tg 2 will be ne-  follows from Eq. (47) that atoms prepared in a state with
glected, and the Coulomb term will only be included throughM= 0 will ionize much more slowly than atoms with=0.

a first-order Taylor expansion:

netic quantum numbem, the only unknown in Eq(47) is
the constanB. This constant in turn is determined by the

K\2 B, Fq]H F. lonization in a slowly varying field
Ip(7)l~ E) p 4 We now consider the situation when the external field is
o oscillating,
~ K- ™ ﬁﬂz (41) F(t)=F coq wt)2 (48)
2 ra (k?—Fn)ley '

. . . We assume the adiabatic approximation to be valid, that is,
The integral in the exponent therefore contains two t€MSyq time the electron uses to tunnel through the barrier is
The first term is much shorter than an optical period corresponding to the
7 K Fayp'\ Y2 K kpy regime with y<1 [see Eq.(2)]. Because the atom adiabati-
f E( - 7) (42 cally follows the changes in the external field, we can obtain
the instantaneous ionization rate by insert{ifgt)| in the
The second term igsee Ref. 11, Eq(2.211)] solution obtained with a static field. Because typical frequen-

70
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cies will correspond to wavelengths in the infrared region,reliability of our approximations. This question has been ad-
the observed ionization rate will be an average of the instandressed both theoretically and experimentally, implying that

taneous ionization rate over one period of the field. within the approximations outlined in this papey<1 and
We obtain the observed ionization rate from F/x3<1), the model gives a good description of the ioniza-
/2 tion of atoms in strong fields. In fact these limits are too

Wobs=— ﬁ/ZW(t)d(wt), (49 strict; the model is considered to be valid fgx0.5 and for

fields weak enough that we can maintain the picture of a
whereW(t) is the instantaneous rate. Here the exponentiabarrier through which the electron tunnels. An example of
dependence on the field strength clearly shows that the domihe experimental tests of the tunneling theory can be found in
nant contribution to the rate will be whéoost)| is near its  Ref. 12. Note, however, that to compare the obtained rate
maximum, that iswt~0. Because the exponential is much with experimental data, we must integrate the rate equations
more rapidly changing than any power, the time dependencesing the appropriate pulse profile both temporally and spa-
of the preexponential factor will be neglected. fegr~0, we  tially. For a brief summary of the theoretical comparison
make a Taylor expansion of 1/ces] and the time- between the static field ionization rates obtained from the

dependent rate is approximated by ADK model with those obtained by directly solving the
3 Schralinger equation, see Ref. 2.
W(t)“WstateXD( - K_(wt)z , (50) We have presented a coherent derivation of a much used
3F tunneling formula for strong field ionization of atoms. The

where W, is the rate in a static field as in E¢47). The  derivation consists of six parts, Secs. Il A-II F. Each of these

observed rate is obtained as parts may be formulated as an exercise. We hope that the
1 - 3 present note will be a useful supplement for teaching atomic,
" K lecul ical physics.
W~ ;Wstatf_ B exp( _ S_F(wt)2> d(wt) molecular, and optical physics
3F 1/2
:(;ﬁ) Wistats (51)

where the integration limits were extended to infinity assum-ACKNOWLEDGMENT
ing that k3/F>1.
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