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The quantum mechanics of two-electron systems is reviewed, starting with the ground state of the
helium atom and heliumlike ions with central charge Z. The case of Z�2 is rather straightforward.
In contrast, for negative hydrogen ion with Z=1, the stability of H− cannot be achieved using a
product of individual electron wavefunctions and requires explicit account of the anticorrelation
among the two electrons. The wavefunction proposed by Chandrasekhar is revisited, where the
permutation symmetry is first broken and then restored by a counterterm. More difficult problems
can be studied using the same strategy such as the stability of hydrogenlike ions for any value of the
proton-to-electron mass ratio M /m, the energy of the lowest spin-triplet state of helium and
heliumlike ions, and the stability of the doubly excited hydrogen ion with unnatural parity. The
positronium molecule, which was predicted years ago and discovered recently, can also be shown to
be stable against spontaneous dissociation. Emphasis is placed on symmetry breaking, which can
either spoil or improve the stability. © 2010 American Association of Physics Teachers.

�DOI: 10.1119/1.3236392�

I. INTRODUCTION

The discussion of two-electron atoms or ions is of much
importance when teaching quantum mechanics and provides
an opportunity to discuss the transition from simple binary
systems to more complicated structures, with applications of
perturbation theory and variational methods.

Understanding two-electron atoms was crucial to show
that quantum mechanics was not just an ansatz, which works
fortuitously for the hydrogen atom. Although the Bohr–
Sommerfeld quantization method accounts for one-electron
atoms, it faced serious difficulties for the description of he-
lium. Then Heisenberg1 and others2 showed that the helium
atom can be well described in the framework of the new
quantum mechanics.

Binding two electrons to a helium nucleus or to a heavier
nucleus with charge Z�2 is obvious because the first at-
tached electron leaves a positively charged kernel that easily
traps the second electron. The problem is to accurately cal-
culate the energy spectrum and the associated wavefunctions
and not to demonstrate the existence of bound states. It is
thus unfortunate that the discussion in many textbooks, even
the best ones, is restricted to helium and does not consider
the more challenging case of Z=1, that is, the negative hy-
drogen ion. Noticeable exceptions are Refs. 3–6.

The negative hydrogen ion, H−, enters a variety of physi-
cal, chemical, biological, and geological processes.7,8 In as-
trophysics, it plays a role at the Sun’s surface, and its absorp-
tion and emission properties have been studied by
Chandrasekhar.9 Intense beams of H− are foreseen for future
nuclear-fusion devices.10 It is the simplest prototype of a
fragile structure at the edge between binding and nonbinding
and cannot be described by simple approximations such as
Hartree wavefunctions, even though the latter accounts for
the properties of well-bound systems. Other examples are

atomic clusters made of noble-gas atoms and Borromean nu-
clei with two weakly bound peripheral neutrons. �A Bor-
romean system is bound, although its subsystems are un-
stable. For instance, 5He= �� ,n� and �n ,n� is not bound, but
6He= �� ,n ,n� is stable against any dissociation and relies
only on � decay to disintegrate.�

Intimately related to H− is the positronium molecule Ps2 of
content �e+ ,e+ ,e− ,e−�, predicted in 1945 by Wheeler11 and
discovered only recently.12 Demonstrating its stability
against dissociation into two positronium atoms can be done
by a generalization of the Chandrasekhar wavefunction, al-
though the calculation becomes slightly more intricate. This
molecule has many symmetries. It can be seen that breaking
particle identity and breaking charge conjugation have dra-
matically different effects on its stability. In the former case,
it quickly disappears, and in the latter case, it is reinforced.
In particular, the stability of the hydrogen molecule can be,
somewhat paradoxically, demonstrated as a consequence of
the stability of the positronium molecule. This approach to
the hydrogen molecule from the positronium molecule is at
variance with the more physical starting point of two infi-
nitely massive protons but illustrates the importance of sym-
metry breaking.

This paper reviews what can be taught about the quantum
mechanics of two-electron atoms and molecules at the intro-
ductory and more advanced level. We begin in Sec. II with
the ground state of two-electron atoms and ions, which is a
spin-singlet configuration. The easiest case of a central
charge Z�2 is briefly reviewed. We then discuss the more
difficult hydrogen ion with Z=1. We focus on the beautiful
solution proposed by Chandrasekhar,13 which is a product of
single-electron wavefunctions with different range param-
eters, supplemented by a counterterm in which the two elec-
trons are interchanged, so that the overall permutation sym-
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metry is restored. Two other examples of heliumlike systems
are presented in Sec. III, the lowest spin-triplet state, whose
orbital wavefunction is antisymmetric, and the unnatural par-
ity state of the hydrogen ion, which is very loosely bound
below its threshold. In Sec. IV the positronium molecule is
discussed, as well as some of its less symmetric variants.
After a brief summary in Sec. V, some details about the
calculation of the matrix elements are given in the Appendix.

II. THE GROUND STATE OF TWO-ELECTRON
ATOMS AND IONS

We first consider the nonrelativistic Hamiltonian describ-
ing two electrons of mass m and charge e around a fixed
charged Ze,

H =
p1

2

2m
+

p2
2

2m
−

Ze2

r1
−

Ze2

r2
+

e2

r12
, �1�

with r12= �r2−r1�. Coulomb systems have simple scaling
properties: Energies are proportional to e4m /�2

�27.211 eV and distances to �2 / �me2�. We shall give all
results in natural units, which correspond to treating Eq. �1�
as if m /�2=e2=1. The orbital wavefunction should be anti-
symmetric for a spin triplet and symmetric for the ground-
state spin singlet, which we shall consider first.

A. The helium atom and the heavier ions

The case of Z�2 is treated in most textbooks, and we give
only a brief review for the sake of completeness. If the last
term of Eq. �1� is omitted, the Hamiltonian is exactly solv-
able. The unperturbed energy of the ground state is E0=
−Z2, and the wavefunction is ��Z�= �Z3 /��exp�−Z�r1+r2��.
To first order in the repulsion r12

−1, the energy is approximated
and upper bounded by E0+E1=−Z2+ ��Z�r12

−1��Z� �E0+E1 is
the variational energy corresponding to the trial wavefunc-
tion �Z�.

The matrix element ���Z��r12
−1���Z�� is routinely estimated

by a partial-wave expansion. It is sufficient, as done, for
example, by Peebles,14 to use Gauss’s theorem, which states
that the potential created at distance r2 by a spherical shell
�q1 of radius r1 is �q1 /r2 if r1�r2 and �q1 /r1 if r1	r2 to
give

E1 = 4Z6	
0




exp�− 2Zr�r2dr
	
0

r exp�− 2Zr��
r

r�2dr�

+ 	
r


 exp�− 2Zr��
r�

r�2dr�� =
5Z

8
. �2�

For Z=2 we obtain the energy of �2.75, in comparison to
E=−2.903 72. . . from the most sophisticated estimates15,16

and the lowest dissociation threshold Eth=−2. In this ap-
proach the energy to bind two electrons must be less than the
ground-state energy of one electron atom, which in our units
is Z2 /2. Thus, −Z2+5Z /8�−Z2 /2, or Z	5 /4. An easy and
instructive improvement consists of replacing ��Z� by

���� = ��3/��exp�− ��r1 + r2�� , �3�

where � is a variational parameter that is a measure of the
effective charge seen by each electron. The matrix elements
are the same as for �=Z, and the variational energy, denoted
E���, is

E��� = min
�

�2 − 2Z� +

5�

8
� = − �Z −

5

16

2

. �4�

The minimum is reached for �=Z−5 /16. For Z=2, Eq. �4�
gives the improved result Ẽ�−2.8477. Binding with this
wavefunction is demonstrated only for Z�1.067. Thus Z
=1 requires another treatment, as discussed in Sec. II B.

B. The negative hydrogen ion

Variational wavefunctions that bind H− have been given
by Bethe, Hylleraas, and others.2 For instance, the correla-
tion factor �1+�r12� or exp��r12� can be inserted into wave-
function �3�. The most elegant solution is perhaps that of
Chandrasekhar,13,9 which is �un-normalized�,


 = exp�− ar1 − br2� + � exp�− br1 − ar2�, �� = + 1� ,

�5�

where the permutation symmetry is explicitly broken by
a�b and restored by the second term. In comparison to the
standard shell-model wavefunction in Eq. �3�, sometimes la-
beled �1s�2, this wavefunction is named “unrestricted” by
Goddard,17 who gives a generalization.

The matrix elements of 
 involve the same integrals as
the simpler wavefunction ��, and it is straightforward to
derive the kinetic energy T, the potential V, and the normal-

ization N entering the expectation value Ē�a ,b�= �
�H�
� of
the Hamiltonian

Ē�a,b� =
�
�H�
�
�
�
�

=
T + V

N
, �6�

N =
1

8a3b3 +
8�

�a + b�6 , �7�

T =
1

16ab3 +
1

16a3b
+

8ab�

�a + b�6 , �8�

V = −
Z

8a2b3 −
Z

8a3b2 −
8Z�

�a + b�5 +
5�

2�a + b�5

+
a2 + 3ab + b2

8a2b2�a + b�3 , �9�

where the attractive terms �proportional to Z� are supple-
mented by the contribution from 1 /r12. The variational en-

ergy is E�
�=mina,b Ē�a ,b�.
Because H− is weakly bound, the interpretation is that of

one electron far away and the other one near the nucleus,
feeling an almost unscreened Coulomb potential. This pic-
ture suggests the following approximation: We freeze a=Z
=1 and assume that one of the electrons is unperturbed; we

then vary b to obtain a first minimum Ē�1,b0��−0.5126,
which already establishes binding. This minimum is reached
for b0�0.279 �see the dashed curve in Fig. 1�.

The use of standard minimization software easily leads to
the best minimum E�
��−0.5133 for a�1.039 �very close
to the approximate a=1� and b�0.283 �or a↔b�. For com-
parison, the best energy for an infinitely massive proton
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is15,18 E�−0.52775. As seen in Fig. 2, the minimum is not

extremely sharp; however, the stability criterion Ē�a ,b�
�0.5 clearly requires b�a �or a�b�.

The task of minimizing Ē�a ,b� or any similar variational
energy can be simplified by using the virial theorem, which
also holds for the best variational solution, with the mild
restriction that the set of trial functions be globally invariant
under rescaling.19,20 Also see Refs. 21–23. A simple deriva-
tion of the virial theorem is based on the property that the
expectation value of the Hamiltonian remains stationary near
an eigenvector. In particular, if one considers the scaling
��r1 , . . .�→�−3n/2���r1 , . . .�, where n is the number of inter-
nal variables and the factor �−3n/2 maintains normalization,
the expectation value should remain stationary near �=1. For
the Coulomb problem this requirement means that �2T
+V /� is minimal at �=1, that is, V=−2T. This derivation
works for both the exact solution and the best variational
approximation. For instance, for the Chandrasekhar wave-
function, we can set a=a0�1+x� and b=a0�1−x�. For a given
value of x, the minimization over the overall scale a0 fixes
the proper balance of the kinetic and potential energy, as
required by the virial theorem. We are left with minimizing
−V2 /4NT over the single variable x or over b /a to recover
the minimum at E�−0.5133, as shown in Fig. 1 �solid
curve�.

C. Varying the proton charge

The method used for H− can be applied to other values of
Z. For Z�2 wavefunction �5� gives an energy E�
�=

−2.8757 instead of E����−2.8477 from factorized wave-
function �3�. As Z increases, the improvement becomes less
significant, that is, factorized wavefunction �3� works almost
equally well �see Tables I and II�.

Alternatively, we can investigate how far we can decrease
Z without losing the bound state. It can be checked that sta-
bility remains down to Z�0.949 with wavefunction �5�. The
most sophisticated estimate24–26 of the critical charge to bind
two electrons is Zc�0.9107, which comes from the 1 /Z ex-
pansion. The Hamiltonian is rewritten as

H

Z2 =
p1

2

2m
+

p2
2

2m
−

1

r1
−

1

r2
+

1

Zr12
, �10�

and the energy is expanded in powers of 1 /Z. From Eq. �2�,
the first terms are Z2�−1+5 / �8Z�+. . .�. Elaborate studies24–26

beyond the scope of this article have shown that the first few
terms in the expansion are

Fig. 2. Contour plot of the variational energy Ē�a ,b�, given by Eq. �6�, of
Chandrasekhar wavefunction �5�. The symmetric part where a�b is not
shown.

Fig. 1. One parameter minimization of the variational energy Ē�a ,b� of H−

obtained from the Chandrasekhar wavefunction with the approximation of a
fixed a=1 �dashed curve� and without approximation but using the virial
theorem, which removes one parameter �solid curve�.

Table I. Binding energies �in natural units� for a series of central charge Z and electron spin S. The experimental
energy Eexp is taken from current data bases �Refs. 30 and 31� and compared to the best nonrelativistic
calculation with an infinitely massive nucleus, ENR �Refs. 18, 32, and 33�, the simplest Hartree–Fock type of
calculation with an effective charge, Efac corresponding to Eq. �3� for S=0 and Eqs. �17� for S=1, and the
energy from the Chandrasekhar wavefunction �5� with �=+1 for S=0 and �=−1 for S=1, with optimized range
parameters a and b.

Z S Eexp ENR Efac EC a b

1 0 �0.5274 �0.5277 �0.4727 �0.5133 1.04 0.28
2 0 �2.9034 �2.9037 �2.8477 �2.8757 2.18 1.19
2 1 �2.1750 �2.1752 �2.1666 �2.1607 1.97 0.32
3 0 �7.2800 �7.2799 �7.2227 �7.2488 3.29 2.08
3 1 �5.1103 �5.1107 �5.1026 �5.0718 2.93 0.60
4 0 �13.657 �13.656 �13.598 �13.623 4.39 2.98
4 1 �9.2988 �9.2972 �9.2892 �9.2240 3.89 0.88
8 0 �59.195 �59.157 �59.098 �59.122 8.68 6.69
8 1 �38.579 �38.545 �38.537 �38.233 7.73 2.00
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E = − Z2�1 −
5

8Z
+

0.157666429

Z2 −
0.008699032

Z3

+
0.000888707

Z4 + . . .
 . �11�

The convergence of the series is associated with well isolated
bound states lying below the threshold. When the conver-
gence breaks, the binding is lost. The radius of convergence
1 /Z�1.098 leads to the critical charge Zc�0.9107.

D. Proton recoil

We can examine the effect of a finite mass for the proton
and more generally study the stability of �M� ,m� ,m�� as a
function of the mass ratio M /m. The Hamiltonian now reads

H =
p1

2

2m
+

p2
2

2m
+

p3
2

2M
−

1

r1
−

1

r2
+

1

r12
. �12�

The negative hydrogen ion corresponds to M /m→
, the
positronium ion, Ps−, corresponds to M /m=1, and the
molecular-hydrogen ion, H2

+, corresponds to M /m→0.
Hill27 showed that Chandrasekhar’s wavefunction �5�

demonstrates binding for any M /m. When M /m is varied,
the minimum is reached with the same b /a and the same
quality of binding, as measured by the ratio of the best varia-
tional energy to the threshold energy. The proof is rather
straightforward. We introduce the standard coordinates

x = r1 − r3, y = r2 − r3, R =
mr1 + mr2 + Mr3

2m + M
, �13�

and the conjugate momenta

px =
�m + M�p1 − m�p3 + p2�

M + 2m
,

py =
�m + M�p2 − m�p3 + p1�

M + 2m
, �14�

P = p1 + p2 + p3,

in terms of which the Hamiltonian becomes

H =
P2

4m + 2M
+ 
 px

2

2�
−

1

�x�
+

py
2

2�
−

1

�y�
+

1

�x − y��
+

1

M
px · py . �15�

Once the center of mass motion is removed, we are left with
the Hughes–Eckart term28 px ·py /M and, in the bracket, a
rescaled version of H− with an infinitely massive proton and
two electrons whose mass is �=mM / �m+M�. The Hamil-
tonian in the bracket gives stability with respect to decay into
a �M+ ,m−� atom and an isolated negative charge. However,
the Hughes–Eckart term has zero expectation value using
wavefunction �5� with r1→ �x� and r2→ �y� and in any similar
wavefunction in which there is no dependence on the angle
between x and y. Hence the Chandrasekhar wavefunction
gives the same energy as it did for H−, apart from an overall
scaling factor � /m.

E. Symmetry breaking in three-charge systems

So far we have discussed configurations of the type
�M+ ,m− ,m−� with two identical negative particles. We can
address the question of stability of more general mass con-
figurations �M+ ,m1

− ,m2
−�. The most general case is discussed

in Ref. 22 with stable configurations such as Ps− or H− and
unstable ones such as �p , p̄ ,e−�. We shall restrict the discus-
sion here to small differences between m1 and m2.

It is known that symmetry breaking lowers the ground
state. For instance, one-dimensional systems described by
h= p2+x2+�x have a ground state at �=1−�2 /4 shifted
down by the odd term �x, compared to the even �=0 case.
More generally, if H=H0+�H1, with H0 even and H1 odd
under some symmetry, then the variational principle applied
to H with the even ground state �0 of H0 as a trial wave-
function gives for the ground-state E����E�0�, provided
that ��0�H1��0�=0.

Hence, if the �M+ ,m1
− ,m2

−� Hamiltonian is split into29

Table II. Binding energies of H− �Z=1� and He �Z=2� with an infinitely massive nucleus obtained from the
variational wavefunction �18�. For He we also show the two first excitations in the scalar sector: He� �para� with
the same spin S=0 as the ground state and He� �ortho� with a symmetric S=1 and thus an antisymmetric space
wavefunction.

N ai ,bi ,ci H− He He� �para� He� �ortho�

1 a=b=Z, c=0 �0.375 �2.75
1 a=b, c=0 �0.47266 �2.84766
1 a=b, c�0 �0.50790 �2.88962
1 a�b, c=0 �0.51330 �2.87566 �2.16064
1 a�b, c�0 �0.52387 �2.89953 �2.16153
2 a�b, c�0 �0.52496 �2.90185 �2.14461 �2.17512
3 a�b, c�0 �0.52767 �2.90328 �2.14538 �2.17521
4 a�b, c�0 �0.52771 �2.90347 �2.14551 �2.17522
“Exact”a �0.52775 �2.90372 �2.14597 �2.17523

aReference 15.
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H�M+,m1
−,m2

−� = H�M+,m̄−,m̄−� +
m1

−1 − m2
−1

4
�p1

2 − p2
2� ,

�16�

where m̄ is the average inverse mass and the ground-state
energy is shifted down by the second term, that is,
E�M+ ,m1

− ,m2
−��E�M+ , m̄− , m̄−�. But the gain is only second

order in m1
−1−m2

−1, and the lowest threshold decreases to first
order, with E2�M ,m2��E2�M , m̄� if m1�m2 and thus m̄
�m2. Not surprisingly, the net result is that stability deterio-
rates as the two negative charges are given different masses.

It is an interesting exercise to modify wavefunction �5�
and to study the domain of stability of �M+ ,m1

− ,m2
−� as a

function of m1 and m2 in the limit M→
.

III. FIRST EXCITATIONS OF TWO-ELECTRON
ATOMS AND IONS

A. Spin-triplet ground state

If wavefunction �5� is used with �=−1, that is, in its anti-
symmetric version, it becomes a trial wavefunction for the
lowest spin-triplet state. For H− this level is unstable. Some
results are shown in Table I for Z�2. In particular, we find
E�−2.16064 for the lowest spin-triplet state of helium, in
comparison to E�−2.17523 from wavefunctions with many
parameters. Also shown in Table I is the result obtained from
the simplest alternative wavefunction that comes to mind,

�a,b�r1,r2� =
�1s�a,r1��2s�b,r2� − �2s�b,r1��1s�a,r2�

�2
,

�17a�

with

�1s�a,r� =
a3/2

��
exp�− ar� ,

�17b�

�2s�a,r� =
a3/2

�8�
�1 − ar/2�exp�− ar/2� .

For a=b Eqs. �17� represent a standard normalized shell-
model wavefunction and corresponds to the fifth column of
Table I. The results are slightly better than those from the
Chandrasekhar wavefunction. If this wavefunction is used
with different range parameters a and b �and thus with non-
orthogonal individual wavefunctions�, corresponding to a un-
restricted Hartree–Fock wavefunction in the notation in Ref.
17, we find slightly better results, especially for small Z. For
large Z, wavefunctions �17�, with a→b→Z, become exact.

B. Toward a more accurate calculation

For both the spin-singlet and the spin-triplet cases, the
Chandrasekhar wavefunction cannot describe completely
three-body ground states such as H−. It can be improved by
superposing more terms of the same kind. For instance,
Goddard17 considered a symmetrized combination of prod-
ucts of 1s ,2s , . . . ,5s orbitals with different range parameters.
For the ground state with spin singlet, he found E�
−0.5138, which is a modest improvement compared to Chan-
drasekhar’s result E�−0.5133, which corresponds to consid-
ering only two 1s orbitals.

The most general scalar wavefunction depends on three
variables, which can be chosen as the relative distances r1
=r31=y, r2=r23=x, and r12=z. Hence the wavefunctions
without an explicit r12 dependence will never approach the
exact solution with arbitrary accuracy.

Starting from Eq. �5�, a natural extension is

� = exp�− ax − by − cz� � �a ↔ b� �18�

and a superposition of such terms. With a single term �N
=1�, we obtain the results listed in Table II. Also shown are
the improvements brought by superposing N=2, 3, and 4
such terms. For larger N, the numerical minimization be-
comes delicate and requires clever tools, such as a stochastic
search of the parameters. Frolov,34 Korobov,16 and others
developed a systematic expansion based on such exponential
terms and obtained extremely accurate results.

C. Hydrogen ion with unnatural parity

Another challenging problem deals with states of unnatu-
ral parity P= �−1�L+1 if L is the total orbital momentum, in
particular the lowest state LP=1+. Consider again the
�p ,e− ,e−� system, although similar considerations can be de-
veloped in the four-body case. If we neglect the spins and
intrinsic parities, the ground state has angular momentum
and parity LP=0+. It is the only level of H− below the lowest
threshold H�1s�+e−, as shown by Hill.27

However, the state with quantum numbers LP=1+, that is,
unnatural parity, cannot decay into H�1s�+e−, at least as long
as radiative corrections and spin-dependent effects are ne-
glected. Its lowest threshold is H�2p�+e− at Eth=−0.125. It
has been discovered35 that the lowest state of H− with 1+ lies
below this threshold, and other calculations36–38 have con-
firmed the energy E�−0.1253. The problem is to find the
most economical way of demonstrating this binding.

The simplest wavefunction bearing the right quantum
numbers for this state is

��a,b,c� = �x � y�i�exp�− ax − by − cz� + �a ↔ b�� ,

�19�

where i is any projection of the vector product.
After angular integration, we are left with integrating a

polynomial in x, y, and z times an exponential; the result can
be deduced from a single generating function, as outlined in
the Appendix. After optimization of the range parameters a,
b, and c �or two of them if we use the virial theorem�, we can
show that this wavefunction just fails to bind the unnatural
parity state of H−. We need a superposition such as

�
i

�i��ai,bi,ci� . �20�

For a given set of range parameters �ai ,bi ,ci�, the coeffi-
cients �i and the resulting energy are given by a generalized
eigenvalue problem. Then the range parameters can be ad-
justed by standard techniques if the number of terms is lim-
ited. If this number increases, special care is required to
avoid numerical instabilities. To simplify the minimization,
we can extract the range parameters ai, bi, and ci from an
arithmetic series � ,�+� ,�+2� , . . ., allowing the possibility
of equal values, for example, bi=ci. The minimization thus
runs only on � and �. If ��0 and �	0, which help in
introducing some anticorrelation among the two electrons,
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we should impose ai+bi	0, bi+ci	0, and ci+ai	0. For
H− with 1+ we demonstrated the stability with a few terms
and thus confirmed earlier results.35–38

If we do the calculation for Ps−, we never reach a varia-
tional energy below the Ps�2p�+e− threshold. This result
confirms the conclusion by Mills, who found that this state is
unbound.39

IV. TWO-ELECTRON MOLECULES

A. The positronium molecule

In 1945 Wheeler suggested a variety of new states con-
taining positrons, which could be stable in the limit that in-
ternal annihilation �e++e−→��s� is neglected.11 Among the
predictions was the existence of the positronium molecule,
Ps2 �e+ ,e+ ,e− ,e−�. In 1946 Ore tried to do the calculations
for this molecule and concluded that it is likely to be
unstable.40 The next year, Hylleraas and Ore41 presented a
beautiful proof of stability based on the wavefunction

� = exp�− ar13 − br14 − ar24 − br23� + �a ↔ b� , �21�

which is an obvious generalization of Eq. �5�. All the matrix
elements can be calculated analytically.22,41 Some hints are
given in the Appendix. With a+b=1 and a−b=�, the nor-
malization, kinetic energy, and potential energy are

N =
33

16
+

33 − 22�2 + 5�4

16�1 − �2�3 , �22a�

T =
21

8
−

3�2

2
+

21 − 6�2 + �4

8�1 − �2�3 , �22b�

V =
19

6
+

21 − 18�2 + 5�4

4�1 − �2�3 −
1

�1 − �2�2

�
1 −
5�2

8
−

1

4�4 +
7

8�2 +
�1 − �2�4

4�6 ln
1

1 − �2� .

�22c�

By using the virial theorem, the quantity E=−V2 / �4TN� is
minimized by varying �. Although it does not include an
explicit dependence on r12 or r34, wavefunction �21� suffices
to establish binding at E�−0.5042, below the threshold for
spontaneous dissociation into two positronium atoms, at Eth
=−0.5. This energy has been lowered by more and more
sophisticated computations42 to �−0.51600. It was later re-
alized that there are excited states whose threshold is higher
than two positronium atoms in the ground state due to selec-
tion rules �see, for example, Ref. 43�. Indirect experimental
evidence for the Ps2 molecule was reported recently,12 62
years after its prediction.

B. Other molecules

Once the positronium molecule is shown to be stable, we
may study what happens for other mass configurations. Al-
though the hydrogen molecule �M+ ,M+ ,m− ,m−� is better de-
scribed from the large M /m limit, that is, the Born–
Oppenheimer approximation, it is amazing that its stability
can be understood from the M =m limit. It is also instructive
to study whether or not symmetry breaking improves bind-
ing.

The molecule ��+ ,�− ,�− ,�−�, that is, any rescaled ver-
sion of Ps2, has many symmetries: Exchange of the positive
or the negative particles and overall charge conjugation. For
simplicity, consider a breaking of permutation symmetry,
identically in the positive and the negative sectors, keeping
the average inverse mass �−1 constant. This symmetry break-
ing corresponds to writing the Hamiltonian as22

H�M+,m+,M−,m−� = H��+,�+,�−,�−� +
M−1 − m−1

4

��p1
2 − p2

2 + p3
2 − p4

2� . �23�

The second term decreases the energy of the molecule. The
same effect is observed as for the three-body ion: The energy
of the molecule decreases less substantially than the energy
of the atom-atom threshold, which benefits from the property
of two-body energies,

E2�M+,M−� + E2�m+,m−� � 2E2��+,�−� . �24�

Detailed numerical studies have shown that stability is lost
for M /m�2.2 �or m /M �2.2�.44

If charge conjugation is broken instead, that is, if the mass
configuration becomes �M+ ,M+ ,m− ,m−�, the decomposition
is

H�M+,M+,m−,m−� = H��+,�+,�−,�−� +
M−1 − m−1

4

��p1
2 + p2

2 − p3
2 − p4

2� , �25�

and again the four-body ground-state energy is lowered by
the second term. Now, the threshold remains constant at
2E2�M+ ,m−�=2E2��+ ,�−�, and thus the stability is im-
proved. The hydrogen molecule is bound by about 17% be-
low the atom-atom threshold, compared to only about 3% for
the positronium molecule.

V. SUMMARY

We have reviewed how the stability of the ground state of
H− and the lowest spin-triplet state of helium can be reached
with simple wavefunctions whose matrix elements can be
determined by straightforward calculus. A more delicate and
less advertised problem is that of the stability of the unnatu-
ral parity states, which forces us to push the variational ex-
pansion further to demonstrate binding.

The main message is that the Hartree–Fock method, that
is, factorized wavefunctions with suitable �anti�symmetriza-
tion, is very efficient for deeply bound systems but fails in
demonstrating the binding of states at the edge between sta-
bility and spontaneous dissociation. This failure is also ob-
served in nuclear physics: Halo nuclei with a weakly bound
external neutron and the Borromean nuclei with two external
neutrons require special treatment.

The strategy initiated by Hylleraas,45 Chandrasekhar,13

and others consists of using a basis of functions for which
each term breaks permutation symmetry. The proper boson
or fermion statistics is restored by superposing terms de-
duced by permutation. The same strategy guided Hylleraas
and Ore41 when they derived the first proof of stability of the
positronium molecule, and it also forms the foundation for
the most recent calculations of this molecule. For example,
in their study of the positronium molecule,42 Suzuki and
Varga46 used a basis of correlated Gaussians and their own
variant of the parameter search. This method is becoming
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widely used in quantum chemistry and other few-body prob-
lems. It consists of describing the wavefunctions as superpo-
sitions of states such as

� = exp
− �
i�j

aijxi · x j� + . . . , �26�

where x1 , . . . ,xn are the internal variables and the ellipses are
meant for terms deduced by permutation, charge conjuga-
tion, and any other relevant symmetry, which can be explic-
itly enforced.

APPENDIX: CALCULATION OF THE MATRIX
ELEMENTS

We give here some suggestions on how to determine the
matrix elements, which for the wavefunctions in Eqs. �3� and
�5� have been given explicitly. Consider the generalization
�=exp�−ax−by−cz���a ,b ,c�, whose symmetrized or anti-
symmetrized version, Eq. �18�, is used for spin-singlet and
spin-triplet states, respectively. Here x=r2−r3, x= �x�, etc.
The matrix elements are integrals over xyzdxdydz, restricted
by the triangular inequality, and can be deduced from the
generic function

F3��,�,�� =	 	 	
�x−y��z�x+y

�exp�− �x − �y − �z�dxdydz

=
4

�� + ���� + ���� + ��
, �A1�

and its derivatives

G�i, j,k;�,�,�� = �− 1�i+j+k�i+j+kF3��,�,��
��i � � j � �k . �A2�

For instance, the normalization of Eq. �5�, besides a factor
8�2 due to trivial angular integration, is

�a,b,c�a,b,c� = G�1,1,1,2a,2b,2c� . �A3�

A potential energy term is similar, for example,

�a,b,c�r12
−1�a,b,c� = G�1,1,0,2a,2b,2c� . �A4�

The calculation is easily extended to nondiagonal terms, with
2a→a+a� etc.

Consider now the term p1 of the kinetic energy. It is a
linear combination of gradients with respect to the distances,

p1 = �− i���z − �x� . �A5�

Including additional constant factors and ŷ · ẑ= �x2−y2

−z2� / �2yz� gives

�a,b,c�p1
2�a,b,c� = �bb� + cc���a,b,c�a,b,c�

−
bb� + cc�

2
�G�3,0,0, ā, b̄, c̄�

− G�1,2,0, ā, b̄, c̄� − G�1,0,2, ā, b̄, c̄�� ,

�A6�

where 2ā=a+a� etc. For wavefunction �19� some angular
integrals should be done beforehand, and we are left with
similar integrals over x, y, and z.

We now consider the four-body problem, with a wave-
function of the type

� = exp�− ar13 − br14 − cr23 − dr24� . �A7�

If r12, r13, and r23 are chosen as the internal coordinates for a
scalar wavefunction and a scalar operator that do not depend
explicitly on r34, we can work independently with the triplets
�1,2,3� and �1,2,4� as done for the three-body systems. After
summing over the trivial angular variables, the integrals run
over

d� = r13r14r23r24dr12dr13dr14dr23dr24. �A8�

A basic integral is

F4�a,b,c,d,u� =	 dr12dr13dr14dr23dr24

r12

�exp�− ar13 − br23 − cr14 − dr24 − ur12�

=
16

�a − b��a + b��c − d��c + d�

�log
 �b + c + u��a + d + u�
�a + c + u��b + d + u�� , �A9�

where the triangular inequalities are more easily accounted
for by using the variables si=r1i+r2i and ti=r1i−r2i for i
=3,4. All matrix elements are related to F and its deriva-
tives. For instance, the normalization, first attractive term,
and internuclear and electronic repulsion of Eq. �A7� are

n�a,b,c,d� = �−
�F4�a,b,c,d,u�
�u � a � b � c � d

�
u=0

,

v13�a,b,c,d� = � �4F4�a,b,c,d,u�
�u � b � c � d

�
u=0

,

�A10�

v12�a,b,c,d� =
�4F4�a,b,c,d,0�

�a � b � c � d
,

v34�a,b,c,d� = v12�a,c,b,d� .

For the kinetic energy of the third particle, for example, we
obtain

���p3
2��� = �a2 + b2������

− 2ab����r12
2 − r13

2 − r23
2 �/�2r13r23���� ,

�A11�

which can be expressed as a combination of derivatives of
F4. For nondiagonal matrix elements between the wavefunc-
tion in Eq. �A7� and an analogous function with range pa-
rameters a� , . . . ,d�, the coefficients in Eq. �A10� become
aa�+bb� and ab�+a�b, respectively, and the arguments of F4
are taken to be �a+a�� /2, . . . , �d+d�� /2.
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