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The ground state of the two-electron atom is treated
by a calculation, suggested by Slater, which combines
features of both the variational method and Hartree’s
method of self-consistent fields (SCF). The calculation
is mathematically simple, and it exposes the basic phys-
ics of the SCF method in a clear and direct way. The
result for the first ionization potential for the two-
electron atom is in good agreement with experimental
values for atomic number Z >= 2,

L. INTRODUCTION

Most courses in modern physics at the senior under-
graduate level, or in quantum mechanics at the first-year
graduate level, make some mention of Hartree's self-
consistent field (SCF) method for treating multielectron
atoms.' Because the SCF method is based on the so-
lution of simultaneous, coupled, nonlinear, integro-differ-
ential equations, it is often decided by both instructor
and student that a detailed solution is not feasible without
use of a computer, and the student is not often asked to
do a problem employing the SCF method. As a possible
consequence, the student may not fully appreciate the
physical content of Hartree’s theory. To remedy that situ-
ation, should it arise, we present here an explicit, analytic
solution of a Hartree-type variational problem which was
suggested by Slater? and which has the virtues of direct
physical appeal, calculational simplicity, and a result in
good agreement with experiment. We believe that the
method of solution illustrates the physical content of SCF
theory in a particularly lucid manner and, thus, may be of
some pedagogical value.

II. TWO-ELECTRON ATOM

The problem we shall do is perhaps the simplest of all
Hartree-type problems, namely the calculation of the first
ionization potential / for the ground state of a two-
electron atom of nuclear charge Ze. With each electron
described by a space wave function u(ry), k = 1, 2, the
Hartree problem here for the “‘first’’ electron is

[-(#Y/2m)V = (Ze¥/r)+ Glr)]ulr))= Eulry), (1)
where G(ry) is the interaction of the first electron with the
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central field produced by the second electron, namely

Glry)= f lu(ry) |2 (&% /71y) dTy (2)

with ry, the interelectron separation. The total system
energy is E = 2E, —~ G, where G is the average elec-
tron—electron repulsion energy:

G= [ |ulr)|*Gr) dr,. (3)

The desired first ionization potential / is the difference be-
tween E and the energy — Z%e?/2a,) of the one-electron
atom,; that is,

IZ)=G-2E, - Z%e"/2ay), (4)

where ay = h%/me? is the first Bohr radius.

Now an explicit calculation according to the Hartree
formulation of this problem could be done by using sim-
ple trial wave functions of the screened hydrogenic type,
namely

"(ka ak):(ak3/n)1/2 eXp(-' akrk) (5)

(which is properly normalized), where the «; are varia-
tional parameters which are adjusted to minimize the total
system energy E. However, even this calculation proves
to be tedious, and one runs into the usual difficulties in
evaluating the ‘electron—electron repulsion energy G,
which is ‘‘conveniently’’ done in elliptic coordinates. The
mathematical details of this exercise are sufficiently in-
volved so that physical insight may easily be lost.

Slater’s formulation of this problem avoids much of the
mathematical detail by concentrating on only one electron
and using the approximation that / =~ — E,. This often
used approximation is reasonable insofar as E, is the as-
signed single-electron eigenenergy in the Hartree prob-
lem, and it can be justified by direct calculation (see re-
marks in Sec. IV).? Variational wave functions of the
type defined in Eq. (5) are used, and expectation values
of the one-electron potential and kinetic energies are cal-
culated straightforwardly. The sum of these energies is
the total energy E,(ay,0,) of the first electron in the pres-
ence of the second. This result for E, is then minimized
with respect to «,, and «; is set equal to a; for self-
consistency. Imposing o, = «; not only treats the ground
state electrons as being equivalent but also satisfies the
required even exchange symmetry of the space part of the
ground state wave function. The result for the ionization
energy I calculated in this way agrees quite well with ex-
periment. In the next section, we carry out the details of
this method of solution.

III. SLATER’S PROBLEM

We begin by calculating the potential of one electron,
considered as a point charge, in the field of the other
electron, considered as having a charge density p(r,a)
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= — elu(r,a)|2, where u(r, ) is given by Eq. (5). The
electric field due to p(r,@) at distance » from the nucieus
is then of magnitude

E(r, a)=(4n/7%) for plx, a)x®dx
=—(4e‘/o!3)f0rx2 exp(- 2ax)dx. (6)

After a straightforward integration, we find
E(r, a)==(e/r){1 - [1+2(ar)

+2(ar)]exp(- 207} (7)

The work necessary to bring a charge — e from % up to r
against this field is given by

W(’r,a):ef:E(x,a)dx. (8)
Another straightforward integration produces the result
Wir, a)=(e?/r)1 - (1+ar)exp(-2a7)]. (9)

Adding the nuclear potential — Ze?/r to W(r,a), we get
the total potential energy U(r, ) of one (point) electron in
the presence of the nucleus and of the second (distributed)
electron:

Ur, a)==(e*/r)[(Z - 1)+ (1 + ar) exp(~ 2a)]. (10)

This U(r,a) exhibits the expected behavior: U(r,a)
=~ (Z — 1)e?/r for r — o, which is the nuclear potential
fully shielded by the electron left behind, and U(r,«)
=~ — Ze?/r for r — 0, which is the unshielded nuclear
potential.

Now, in the spirit of Hartree’s formulation of the prob-
lem, we assume that the first electron has a wave function
u(r,oy) and “‘sees’ the potential U(r, a;) generated by the
nucleus and the second electron. The average potential
energy of the first electron is then the expectation value

U1(a1 , )= ul(r, 011)| Ulr, a2)|u(r, CY1)>
= - 4efa’ fow exp(—2a,r)
X[(Z = 1) +(1+a,7) exp(- 2a7) |r dr.(11)
Integrating, we easily obtain
Ulay, ay)=-e’[Za, —a,a,(a,?
+30,a, + 0y )(a, + a,) ],

(12)

The second term on the right-hand side of this expression
is evidently the average electron—electron repulsion
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energy G [as defined in Egs. (2) and (3)] for our particu-
lar choice of wave functions. In fact, this can be shown
to be the case by suitably integrating Eq. (3) over ry,, but
the integration is considerably more difficult.

Next, we calculate the average value of the kinetic
energy of the first electron. This is the expectation value

Tl(al)'—'(u(r, al)’Top,u(”s a1)>7 (13)
where T, = — (f*/2m)V2. Using just the radial part of
the Laplacian operator, we get

2, 4
Ti(ay)= 2ha,
m
X ”exp(— @ r)i [#% exp(- @ ,¥)| dr
. "y !
= (Tl )2 /2m, (14)

where it is easiest to integrate by parts.

The total energy of the first electron is now E, =T,
+ U,. At this point, there is a clear advantage in adopting
atomic units for the problem, which means to measure the
variational parameters «; in units of the inverse Bohr
radius 1/a, = me®/fi%, and to measure the energy in Har-
trees (i.e., in units of e%/ay). Then the expression for the
total energy E; becomes dimensionless and can be written
as

ej(@y, a)=30,* - [Za, - ay0,(a,?

+3a,a,+ ayt) (@ + ay) . (15)
Treating the ‘electrons as being independent, we next
minimize €, with respect to «y; that is, we impose d¢,/0a,
= 0. This condition straightforwardly leads to

@ =Z —ay (4o +ay)(a + a,)d (16)

Now we impose self-consistency by requiring a, = ay;
this ensures that the Hartree-type central fields U(r, o) of
Eq. (10) are equivalent for both electrons.’ With o, = a,
= a, Eq. (16) yields

a=Z -0, 0=5/16. (17)

The screening constant o derived here is the same as that
obtained by the Ritz variational method for this problem.®
This is not accidental: For our choice of wave functions,
the Hartree and Ritz methods are mathematically similar,
although conceptually different.

With this result, the total energy of either electron is

el(a,a)=%a2_(z—%)a’ (18)
in Hartrees. Taking the first ionization potential / to be
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Table I. Ionization potentials (rydbergs).

H™ He® Li* Be?t B3t
1(Z), experiment 0.055 1.807 5.559 11.311 19.063
l(Z), theory 0.043 1.793 5.543 11.293 19.043
Difference 0.012 0.014 0.016 0.018 0.020
% difference 21.8 0.77 0.29 0.16 0.10

(approximately) the negative of this, we obtain (in ryd-
bergs)?

I(Z)=(Z -5/16)X(Z -15/16), (19)

IV. CONCLUSION

A comparison between the present theoretical value for
the ionization potential /(Z) of Eq. (19) and the experi-
mental value® is presented in Table I for the cases Z
= 1-5, that is, for the two-electron atoms H~ through
B#*. With the exception of H -, agreement between exper-
iment and theory is quite good; the percent difference is
< 1% for He® and of the order of 0.1% for B3*. That the
percent difference decreases with increasing Z can be ex-
pected because the electron—nucleus attraction becomes
relatively more dominant than the electron-electron repul-
sion for increasing Z, which thus renders the atom more
hydrogenic.

The good agreement between I(Z) and experiment for Z
= 2 and the fact that the present calculation predicts a
(1s)? bound state for H ™ (with binding energy =~ 0.58 eV)
are somewhat misleading. The reason is that we have
made the approximation / ~ ~ E;, when in fact / should
be defined as in Eq. (4). If we adopt the latter definition,
then it can be shown® that our present /(Z) of Eq. (19)
should be reduced by an amount

Al= [ ur)uy) -ul@)][60) - Clar,  (20)

where u(r) is the solution of Hartree’s Eq. (1), uq(r) is the
ground state eigenfunction of the one-electron atom, and
G(r) and G are defined in Egs. (2) and (3). In the present
case, this correction is of order o> = 0.098 Ry, and is
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enough to unbind the H™ state as well as to make the
agreement between our I(Z) and experiment for Z = 2
not quite so good.

In summary, we have presented a physical approach to
the Hartree formulation of the ground state problem for a
two-electron atom. Assumed electron charge distributions
are used to calculate actual average fields and potentials
within the atom, and the interaction energies are then cal-
culated directly as expectation values. The choice of sim-
ple hydrogenic wave functions with a variational screen-
ing parameter for the electron distributions leads to an
approximate value for the first ionization potential of the
atom that is in good agreement with experiment for nu-
clear charge Z = 2. At all points, the calculation is
mathematically simple and the physics is direct. The
method can be extended successfully to the calculation of
the excited state energies of the two-electron atom, al-
though if it is desired to distinguish between singlet and
triplet states the requirements of exchange symmetry
complicate the allowed choice of trial wave function.

1See R. M. Eisberg, Fundamentals of Modern Physics (Wiley, New
York, 1967), Chap. 13, Sec. 3, or L. 1. Schiff, Quantum Mechanics
(McGraw-Hill, New York, 1968), 3rd ed., Chap. 12, p. 431.

2J. C. Slater, Quantum Theory of Matter (McGraw-Hill, New York,
1968), 2nd ed., Chap. 7, problems 1-4 on p. 154.

3H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and
Two-Electron Atoms (Academic, New York, 1957), Sec. 31, pp.
144-145.

“The integration method for integrals over ry, is indicated in H.
Margenau and G. M. Murphy, The Mathematics of Physics and
Chemistry (Van Nostrand, Princeton, NJ, 1956), 2nd ed., Sec.
(11.19), pp. 382-383.

51t would be incorrect to require the self-consistency condition a; = oy
before the variational condition de,/0c; = O of Eq. (16), for then
we would not be treating «, and «, as independent variational
parameters.

8See Schiff, Ref. 1, p. 257; Bethe and Salpeter, Ref. 3, p. 146; or
Margenau and Murphy, Ref. 4, p. 380.

"One rydberg (e%2ao) = 0.5 hartree (e*/ao). We hope that Rydberg
would not have been dismayed by this fact.

8The experimental values of /(Z) are taken from C. E. Moore, Atomic
Energy Levels, Nat. Bur. Std. Circ. No. 467 (U.S. GPO,
Washington, DC, 1949).
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