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Basis sets
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A basis set is a set of functions used to create the molecular orbitals,
which are expanded as a linear combination with coefficients to be
determined.

■ Usually these functions are centered on atoms, but functions centered
in bonds or lone pairs have been used.

■ Additionally, basis sets composed of sets of plane waves are often used,
especially in calculations involving systems with periodic boundary
conditions.

Quantum chemical calculations are typically performed within a finite set
of basis functions.

■ These basis functions are usually not the exact atomic orbitals, even for
the corresponding hydrogen-like atoms, due to approximations and
simplifications of their analytic formulas.

■ If the finite basis is expanded towards an infinite complete set of
functions, calculations using such a basis set are said to approach the
basis set limit.



Slater type orbitals (STOs)
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In the early days of quantum chemistry so-called Slater type orbitals (STOs)
were used as basis functions due to their similarity with the eigenfunctions of
the hydrogen atom. Their general definition is
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with N being a normalization factor and Y m
l being the spherical harmonics.

■ STOs have an advantage in that they have direct physical
interpretation and thus are naturally good basis for molecular orbitals.

■ From a computational point of view the STOs have the severe
shortcoming that most of the required integrals needed in the course of
the SCF procedure must be calculated numerically which drastically
decreases the speed of a computation.

■ Recently, new numerical methods have been developed that allow very
efficient SCF calculations using STOs



Gaussian type orbitals (GTOs)

Lecture 5. Basis functions September 27 – 4 / 24

STOs can be approximated as linear combinations of Gaussian orbitals.
Gaussian type orbitals (GTOs) are defined as
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Nα
ijk is a normalization factor, R and α are called the center and the

exponent of the Gaussian function, respectively. GTOs are not really orbitals.
They are simpler functions and are frequently called gaussian primitives.

■ Gaussian primitives are usually obtained from quantum calculations on
atoms (i.e. Hartree-Fock or Hartree-Fock plus some correlated
calculations, e.g. CI).

■ Typically, the exponents are varied until the lowest total energy of the
atom is achieved.

■ For molecular calculations, these gaussian primitives have to be
contracted, i.e., certain linear combinations of them will be used as
basis functions.

■ Such a basis function will have its coefficients and exponents fixed.



Gaussian type orbitals (GTOs)
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The main difference to the STOs is that the variable r in the exponential
function is squared. Generally the inaccuracy at the center nor the
qualitatively different behaviour at long distances from the center have a
marked influence on the results.

STO-1G STO-2G STO-3G

Slater orbital

Slater orbital Slater orbital

Figure 1: Slater type s- and p-orbitals approximated by Gaussian orbitals.



Gaussian type orbitals (GTOs)
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To understand why integrals over GTOs can be carried out when analogous
STO-based integrals are much more difficult, one must consider orbital
products ψaψb and ψcψd, where a, b, c, and d refer to different atomic
centers. These products give rise to multi-center integrals, which often arise
in polyatomic-molecule calculations, and which can not be efficiently
performed when STOs are employed. For orbitals in the GTO form, such

products involve e−αa(r−Ra)2e−αc(r−Rc)2 which can be rewritten as

e
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e
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and
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Thus, the product of two GTOs on different centers is equal to a single other
GTO at center R

′ between the original centers. As a result, even a
four-center integral over GTOs can be written as two-center two-electron
integral. A similar reduction does not arise for STOs.



Gaussian type orbitals (GTOs)
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The sum of the exponents of the Cartesian coordinates, L = i+ j + k, is used
to mark functions as s-type (L=0), p-type (L=1), d-type (L=2), and so on

■ Unfortunately GTOs are not eigenfunctions of the squared angular
momentum operator L2.

■ However, combinations of gaussians are able to approximate correct
nodal properties of atomic orbitals by taking them with different signs.
For example combining three d-type Cartesian GTOs yields a Cartesian
GTO of s-type:

G
α,R
200 +G

α,R
020 +G

α,R
002 ∝ G

α,R
000 . (6)

■ Today, there are hundreds of basis sets composed of GTOs. The
smallest of these are called minimal basis sets, and they are typically
composed of the minimum number of basis functions required to
represent all of the electrons on each atom. The largest of these can
contain literally dozens to hundreds of basis functions on each atom.



Minimal basis sets
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A minimum basis set is one in which a single basis function is used for each
orbital in a Hartree-Fock calculation on the free atom.

■ However, for atoms such as lithium, basis functions of p type are added
to the basis functions corresponding to the 1s and 2s orbitals of the
free atom. For example, each atom in the first row of the periodic
system (Li - Ne) would have a basis set of five functions (two s
functions and three p functions).

The most common minimal basis set is STO-nG, where n is an integer. This
n value represents the number GTOs used to approximate STO for both core
and valence orbitals.

■ Minimal basis sets typically give rough results that are insufficient for
research-quality publication, but are much cheaper than their larger
counterparts.

■ Commonly used minimal basis sets of this type are: STO-3G, STO-4G,
STO-6G



Extended basis sets
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■ The minimal basis sets are not flexible enough for accurate
representation of orbitals

■ Solution: Use multiple functions to represent each orbital

■ For example, the double-zeta basis set allows us to treat each orbital
separately when we conduct the Hartree-Fock calculation.

Figure 2: 2s atomic orbital expressed as the sum of two STOs. The two
equations are the same except for the value of ζ which accounts for how large
the orbital is. The constant d determines how much each STO will count
towards the final orbital.



Extended basis sets
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The triple and quadruple-zeta basis sets work the same way, except use three
and four Slater equations instead of two. The typical trade-off applies here as
well, better accuracy...more time/work.
There are several different types of extended basis sets

■ split-valence

■ polarized sets

■ diffuse sets

■ correlation consistent sets



Split-valence basis sets
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Pople’s basis sets n-ijG or n-ijkG.

■ n - number of primitives for the
inner shells; ij or ijk - number
of primitives for contractions
in the valence shell. The ij
notations describes sets of va-
lence double zeta quality and
ijk sets of valence triple zeta
quality.

■ The s and p contractions be-
longing to the same electron
shell are folded into a sp-shell.
In this case, number of s-type
and p-type primitives is the
same, and they have identical
exponents. However, the coef-
ficients for s- and p-type con-
tractions are different.

Figure 3: Pople’s 3-21G basis set no-
tation



Example: Hydrogen 1s orbital

Lecture 5. Basis functions September 27 – 12 / 24

Four s-type gaussians used to represent 1s orbital of hydrogen as:

ψ1s = 0.50907N1e
−0.123317r2

+ 0.47449N2e
−0.453757r2

(7)

+ 0.13424N3e
−2.0133r2

+ 0.01906N4e
−13.3615r2

(8)

where Ni is a normalization constant for a given primitive. These primitives
may be grouped in 2 contractions. The first contraction contains only 1
primitive:

φ1 = N1e
−0.123317r2

(9)

3 primitives are present in the second contraction:

φ2 = N [0.47449N2e
−0.453757r2

+0.13424N3e
−2.0133r2

+0.01906N4e
−13.3615r2

]
(10)

where N is a normalization constant for the whole contraction. In this case, 4
primitives were contracted to 2 basis functions. It is frequently denoted as
(4s) → [2s] contraction. The coefficients in function are then fixed in
subsequent molecular calculations.



Example: Silicon 6-31G basis set
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■ The corresponding exponents
for s- and p-type contractions
are equal but coefficients in
s- and p-type contractions are
different.

■ Gaussian primitives are nor-
malized here since coefficients
for basis functions consisting
of one primitive (last row) are
exactly 1.

■ The basis set above repre-
sents the following contraction
(16s,10p) → [4s,3p]

#BASIS SET: (16s,10p) -> [4s,3p]

Si  S

16115.9000000 0.00195948

2425.5800000 0.01492880

553.8670000 0.07284780

156.3400000 0.24613000

50.0683000 0.48591400

17.0178000 0.32500200

Si  SP

292.7180000        -0.00278094          0.00443826

69.8731000         -0.03571460          0.03266790

22.3363000         -0.11498500          0.13472100

8.1503900           0.09356340          0.32867800

3.1345800           0.60301700          0.44964000

1.2254300           0.41895900          0.26137200

Si  SP

1.7273800          -0.24463000         -0.01779510

0.5729220           0.00431572          0.25353900

0.2221920           1.09818000          0.80066900

Si  SP

0.0778369           1.00000000          1.00000000

Exponents s-coefficients p-coefficients

Figure 4: 6-31G basis set for silicon.



Polarized basis sets
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■ Polarization functions denoted in Pople’s sets by an asterisk

■ Two asterisks, indicate that polarization functions are also added to
light atoms (hydrogen and helium).

■ Polarization functions have one additional node.

■ For example, the only basis function located on a hydrogen atom in a
minimal basis set would be a function approximating the 1s atomic
orbital. When polarization is added to this basis set, a p-function is
also added to the basis set. The 6-31G** is synonymous to 6-31G(d,p).

Figure 5: p-function is added to the 1s orbital



Polarized basis sets
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■ Polarization functions add
flexibility within the basis set,
effectively allowing molecular
orbitals to be more asym-
metric about the nucleus.

■ This is an important for ac-
curate description of bonding
between atoms, because the
precence of the other atom
distorts the environment of
the electrons and removes its
spherical symmetry.

Figure 6: p orbital



Polarized basis sets
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■ Similarly, d-type functions can be added to a basis set with valence p
orbitals, and so on.

■ High angular momentum polarization functions (d,f ,...) are important
for heavy atoms

Figure 7: d-function is added to the p orbital



Polarized basis sets
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Some observations concerning polarization functions:

■ The exponents for polarization functions cannot be derived from
Hartree-Fock calculations for the atom, since they are not populated.

■ In practice, these exponents are estimated ”using well established rules
of thumb” or by using a test set of molecules.

■ The polarization functions are important for reproducing chemical
bonding.

■ They should be included in all calculations where electron correlation is
important.

■ Adding them is costly. Augmenting basis set with d type polarization
functions adds 5 basis function on each atom while adding f type
functions adds 7.



Diffuse functions
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The basis sets are also frequently augmented with the so-called diffuse
functions.

■ These gaussians have very small exponents and decay slowly with
distance from the nucleus.

■ Diffuse gaussians are usually of s and p type.

■ Diffuse functions are necessary for correct description of anions and
weak bonds (e.g. hydrogen bonds) and are frequently used for
calculations of properties (e.g. dipole moments, polarizabilities, etc.).

For the Pople’s basis sets the following notaton is used:

■ n-ij+G, or n-ijk+G when 1 diffuse s-type and p-type gaussian with the
same exponents are added to a standard basis set on heavy atoms.

■ The n-ij++G, or n-ijk++G are obtained by adding 1 diffuse s-type and
p-type gaussian on heavy atoms and 1 diffuse s-type gaussian on
hydrogens.



Diffuse functions
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Figure 8: The area which is modelled by diffuse functions.

Diffuse functions are very shallow Gaussian basis functions, which more
accurately represent the ”tail” portion of the atomic orbitals, which are
distant from the atomic nuclei.



Correlation consistent basis sets
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Widely used basis sets are those developed by Dunning and co. These basis
sets have become the current state of the art for correlated calculations

■ Designed to converge systematically to the complete basis set (CBS)
limit using extrapolation techniques

■ For first- and second-row atoms, the basis sets are cc-pVNZ where
N=D,T,Q,5,6,... (D=double-zeta, T=triple-zeta, etc.)

■ The ’cc-p’, stands for ’correlation consistent polarized’ and the ’V’
indicates they are valence only basis sets.

■ They include successively larger shells of polarization (correlating)
functions (d, f , g, etc.).

■ The prefix ’aug’ means that the basis is augmented with diffuse
functions

■ Examples: cc-pVTZ, aug-cc-pVDZ, aug-cc-pCV5Z



Correlation consistent basis sets
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■ Correlation consistent basis
sets are built up by adding
shells of functions to a core set
of atomic Hartree-Fock func-
tions. Each function in a
shell contributes very similar
amounts of correlation en-
ergy in an atomic calcula-
tion.

■ For the 1st and 2nd row atoms,
the cc-pVDZ basis set adds 1s,
1p, and 1d function. The cc-
pVTZ set adds another s, p, d,
and an f function, etc.

■ For third-row atoms, addi-
tional functions are necessary;
these are the cc-pV(N+d)Z
basis sets.

Figure 9: Adding shells of functions
to a core set of atomic Hartree-Fock
functions.



Basis set superposition error
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Calculations of interaction energies are susceptible to basis set superposition
error (BSSE) if they use finite basis sets.

■ As the atoms of interacting molecules or two molecules approach one
another, their basis functions overlap. Each monomer ”borrows”
functions from other nearby components, effectively increasing its basis
set and improving the calculation.

■ The counterpoise approach (CP) calculates the BSSE employing ”ghost
orbitals”. In the uncorrected calculation of a dimer AB, the dimer basis
set is the union of the two monomer basis sets. The uncorrected
interaction energy is

VAB(G) = EAB(G,AB) −EA(A) − EB(B) (11)

where G denotes the coordinates that specify the geometry of the
dimer and EAB(G,AB) the total energy of the dimer AB calculated
with the full basis set AB of the dimer at that geometry. Similarly,
EA(A) and EB(B) denote the total energies of the monomers A and
B, each calculated with the appropriate monomer basis sets A and B,
respectively.



Basis set superposition error
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The counterpoise corrected interaction energy is

V
cc

AB(G) = EAB(G,AB) − EA(G,AB) − EB(G,AB) (12)

where EA(G,AB) and EB(G,AB) denote the total energies of monomers A
and B, respectively, computed with the dimer basis set at geometry G, i.e. in
the calculation of monomer A the basis set of the ”other” monomer B is
present at the same location as in dimer A, but the nuclei of B are not. In
this way, the basis set for each monomer is extended by the functions of the
other monomer.
The counterpoise corrected energy is thus

E
cc
AB = EAB(G,AB) + V

cc
AB(G) − VAB(G) (13)

■ The counterpoise correction provides only an estimate of the BSSE.

■ BSSE is present in all molecular calculations involving finite basis sets
but in practice its effect is important in calculations involving weakly
bound complexes. Usually its magnitude is few kJ/mol to binding
energies which is often very significant.



Final picture
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Figure 10: Towards exact solution of Scrödinger equation
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