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One-electron basis functions

I Molecular orbitals (MOs) may be constructed
I numerically: flexible but intractable
I algebraically by expansion in simple one-electron basis functions

φp(r) =
∑
µ

Cµpχµ(r)

I What are the requirements on the basis functions?
I they should provide a systematic extension towards completeness
I they should give a rapid convergence for any electronic state
I they should be easy to integrate over

I It is difficult to satsify all these requirements
I some compromise must be sought . . .

I We shall always insist on completeness of our basis functions
I completeness in one-electron space ensures completeness in (FCI) N-electron space
I in practice, we will always use incomplete basis sets
I however, these must be systematically extendable towards completeness

I Overview:
I general considerations
I angular functions (spherical harmonics)
I radial functions (STOs and GTOs)
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One- and many-center molecular expansions

One-center molecular expansions

I Mathematically, it is easy to set up one-center expansions that are

I universal and uniquely defined
I complete, discrete and orthonormal

I Convergence is invariably slow since little physics has been built into the basis

Many-center molecular expansions

I Atoms retain much of their identity in molecules

I atomic electron distributions are largely unaffected by bonding

I We therefore combine separate one-electron bases for each atom in the molecule

I The molecular orbitals are thus constructed from atomic orbitals (AOs)

I better convergence
I uniform quality
I less systematic
I linear dependencies
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Central-field systems

I We shall develop AOs by considering one-electron central-field systems:

−
1

2
∇2ψ(r) + V (r)ψ(r) = Eψ(r) ← V (r) spherically symmetric

I Their wave functions may be separated into radial and angular parts:

ψn`m(r , θ, ϕ) = Rn`(r)Y`m(θ, ϕ)

I The angular solutions are universal:

Y`m(θ, ϕ) ← spherical harmonics

and constitute a complete set on L2(S)∫ 2π

0

∫ π

0
Y ∗`m(θ, ϕ)Y`′m′ (θ, ϕ) sin θ dθ dϕ = δ``′δmm′

I By contrast, the radial solutions depend on the potential:

−
1

2

d2rRn`(r)

dr2
+

[
V (r) +

`(`+ 1)

2r2

]
rRn`(r) = ErRn`(r)

and constitute a complete set on L2(R+, r2)∫ ∞
0

R∗m`(r)Rn`(r)r2 dr = δmn
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From spherical to solid harmonics

I The radial forms of the AOs always contain the monomial r`:

Rn`(r) = r`Rn`(r)

I We therefore introduce the solid harmonics:

Y`m(r , θ, ϕ) = r`Y`m(θ, ϕ)

I To avoid complex algebra, we note that

Y∗`m = (−1)mY`,−m

and introduce the real-valued solid harmonics

S`|m| + iS`,−|m| = (−1)m

√
8π

2`+ 1
Y`m

I The real-valued solid harmonics S`m(s, y , z) for ` ≤ 2:

m \ ` 0 1 2

2 1
2

√
3
(
x2 − y2

)
1 x

√
3xz

0 1 z 1
2

(
3z2 − r2

)
−1 y

√
3yz

−2
√

3xy
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Radial forms

I The general form of the one-electron functions is

ψn`m(r , θ, φ) = Rn`(r)Y`m(θ, ϕ)

I A variety of radial functions are in use of the general form

[ a polynomial in r ]× [ a decaying function in r ]

I There are two main classes of radial functions:

I exponential functions
Rn`(r) = r`Pn−`−1(r) exp(−ζr)

I Gaussian functions
Rn`(r) = r`Pn−`−1(r2) exp(−αr2)

I Flexibility in the radial part is obtained by

I use of the principal quantum number n
I use of variable exponents ζ and α
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Hydrogenic functions

I The hydrogenic system with Hamiltonian

H = −
1

2
∇2 −

Z

r

would appear to be ideal for generating AOs

I The bound states have the radial form

Rn`(r) = cn`r
`L2`+1

n−`−1

(
2Zr
n

)
exp

(
− Zr

n

)
in terms of the associated Laguerre polynomials:∫ ∞

0
Lαn (x)Lαm(x)xα exp(−x) dx =

Γ(n + α+ 1)

n!
δnm

I the hydrogenic bound states decay exponentially
I the polynomial part is of degree n − 1 with n − `− 1 nodes

I Difficulties associated with the hydrogenic bound-state functions:

I they must be supplemented with unbound continuum states for completeness
I they spread out very quickly

〈r〉 =
3n2 − `(`+ 1)

2Z
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The Laguerre functions

I For a fixed exponent ζ, the Laguerre functions

RLF
n` = cLF

n` r
`L2`+2

n−`−1 (2ζr) exp (−ζr)

constitute a complete, discrete set in L2(R+, r2)

I They retain the exponential decay of the hydrogenic functions

Rn`(r) = cn`r
`L2`+1

n−`−1

(
2Zr
n

)
exp

(
− Zr

n

)
while avoiding the continuum

I They are much more compact than the hydrogenic functions: 〈r〉 = (2n + 1)/ζ
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Expansion of carbon orbitals in Laguerre functions
I Least-squares fits to the numerical carbon 3P ground-state orbitals

I RLF
n` expansions with n ≤ 2, 8, 15 and fixed exponent ζ = 1:
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I convergence is guaranteed but slow
I functions with a fixed exponent are ill suited for widely different radial distributions

I Solution: use functions with variable exponents adapted to the system

〈r〉 =
2n + 1

ζ
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Slater-type orbitals (STOs)
I With variable exponents, orthogonality is lost even in atomic systems

I there is no need to retain the nodal structure of the Laguerre functions
I Slater-type orbitals (STOs) are obtained by retaining only the highest monomial:

RLF
n` = r`L2`+2

n−`−1 (2ζr) exp (−ζr) → RSTO
n` = rn−1 exp (−ζr)

I note the simple structure of the STOs:

1s = exp(−ζr)

2s = r exp(−ζr)

2p0 = z exp(−ζr)

3s = r2 exp(−ζr)

3p0 = zr exp(−ζr)

3d0 =(3z2 − r2) exp(−ζr)

I For a fixed ζ, the STOs constitute a complete, discrete set of one-electron functions

I But radial flexibility may also by obtained with variable exponents: 〈r〉 = (2n + 1)/ζ
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STO basis sets

I In practice, n and ζ are used in combination to ensure radial flexibility:

I Minimal STO basis for carbon:

1s = exp(−5.88r), 2s = r exp(−1.57r), 2p0 = z exp(−1.46r)
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I Extended STO basis for carbon:

STO type exponents 1s 1s 2p
1s STO 9.2863 0.07657 −0.01196

5.4125 0.92604 −0.21041
2s STO 4.2595 0.00210 −0.13209

2.5897 0.00638 0.34624
1.5020 0.00167 0.74108
1.0311 −0.00073 0.06495

2p STO 6.3438 0.01090
2.5873 0.23563
1.4209 0.57774
0.9554 0.24756
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Gaussian radial forms

I Boys introduced Gaussians as molecular basis functions in 1950

I his motivation was to simplify integration
I Gaussians do not have a nuclear cusp and decay too rapidly
I nevertheless, they constitute a complete set of functions

I For STOs, we proceeded by

1 identifying a complete, discrete set of radial functions: Laguerre functions
2 simplifying their nodal structure: STOs
3 ensuring radial flexibility by a use of n and variable exponent ζ

I For GTOs, we shall proceed in the same manner by

1 identifying a complete, discrete set of radial functions: harmonic-oscillator functions
2 simplifying their nodal structure: GTOs
3 ensuring radial flexibility by use of variable exponents only
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Harmonic-oscillator (HO) functions
I For a fixed α, the three-dimensional harmonic-oscillator (HO) Hamiltonian

H = −
1

2
∇2 +

1

2
(2α)2 r2

has the following complete set of Gaussian radial solutions:

RHO
n` = cHO

n` r`L
`+1/2
n−`−1

(
2αr2

)
exp

(
−α2r2

)
I Note: the HO functions are obtained from the LF functions

RLF
n` = cLF

n` r
`L2`+2

n−`−1 (2ζr) exp (−ζr)

by globally substituting r2 for r in the radial part and adjusting for orthonormality

I the HO nodal structure is the same as for the LF functions
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GTOs: nodeless HO functions

I Dispensing with the HO nodes, we obtain the Gaussian-type orbitals (GTOs):

RGTO
n` (r) = cGTO

n` r`r2(n−`−1) exp(−αr2)

I like the HO functions, the GTOs form a complete, discrete set for fixed α

I A comparison of STOs and GTOs:

STO GTO
1s exp (−ζr) exp

(
−αr2

)
2s r exp (−ζr) r2 exp

(
−αr2

)
2p0 z exp (−ζr) z exp

(
−αr2

)
3s r2 exp (−ζr) r4 exp

(
−αr2

)
3p0 zr exp (−ζr) zr2 exp

(
−αr2

)
3d0

(
3z2 − r2

)
exp (−ζr)

(
3z2 − r2

)
exp

(
−αr2

)
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Spherical-harmonic GTOs

I For GTOs with a fixed exponent, convergence is exceedingly slow

I radial space must instead be spanned by variable exponents

〈r〉GTO ≈
√

2n−`−2
2α

, 〈r〉STO = 2n+1
ζ
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I Indeed, the radial space is usually spanned entirely by variable exponents

I we thus employ solid-harmonic GTOs with only two quantum numbers:

Gα,`m(r , θ, ϕ) = S`m(r , θ, ϕ) exp
(
−αr2

)
discarding GTOs with n > `+ 1 such as the 2s function r2 exp

(
−αr2

)
I Completeness is ensured by selecting the exponents in a special manner

I for example, using exponents such as n−1 and n−1/2 for n = 1, 2, 3 . . .
I in practice, such criteria are not very useful
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Molecular basis sets: some general comments

I Requirements for correlated and uncorrelated wave-function models are different

I uncorrelated models require an accurate representation of the one-electron density
I correlated models require also an accurate representation of the two-electron density

I Requirements vary also for different molecular properties

I energy-optimized basis sets have most flexibility in the valence region
I many properties depend on flexibility in other regions such as

I the outer valence region for electric properties
I the inner core region for nuclear field gradients

I It is impossible to develop basis sets that are universal, applicable in all situations

I we here concentrate on basis sets for uncorrelated energy calculations
I we will study basis sets for correlated energies after a discussion of the Coulomb hole

I Overview of our discussion of basis sets for uncorrelated calculations:

1 STO-kG
2 primitive GTOs from Hartree–Fock calculations
3 even-tempered basis sets
4 contracted basis setes
5 polarization functions
6 benchmarking
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STO-kG basis sets
I In the STO-kG basis sets, STOs are expanded in fixed linear combinations of GTOs:

χSTO
n`m =

k∑
i=1

diχ
GTO
α,`m

I STOs are retained as the conceptual basis
I GTOs are introduced to simplify integration

I The following basis functions are obtained by least-squares fitting:
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I these fits are only needed for ζ = 1
I scaling gives functions for ζ 6= 1

I The STO-3G basis sets are only useful for exploratory investigations
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GTO basis sets by energy minimization

I Treating the GTOs as primary basis, their exponents must be determined independently

I the most obvious approach is by minimization of atomic energies

I A large number of such primitive GTOs are needed for good accuracy

I example: Huzinaga 9s5p:
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I Errors in the electronic energy:

basis error (mEh)
STO-3G 460
STO-6G 79.6

9s5p 3.4
DZ STO 1.9

10s6p 1.3
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Even-tempered basis sets
I Full optimization of all exponents is a difficult nonlinear optimization problem

I However, regularity is observed in the optimized exponents (logarithmic plots)
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I In even-tempered basis sets, only two parameters are optimized for each `:

αi = αβi−1

I For a 9s5p basis set, we obtain the following values for s and p functions:

αs = 0.1364 βs = 3.381

αp = 0.1041 βp = 3.503

I In even-tempered basis sets, the overlap between neighboring orbitals is constant:

〈i |i + 1〉 =

(
2
√
β

1 + β

)3/2+`

I Basis-set extensions are often performed in an even-tempered manner
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Contracted GTOs

I To describe atomic orbitals accurately, a large number of GTOs are needed

I upon bond formation, the electron distribution does not usually change much
I there is no need to employ all GTOs individually in the molecular calculations

I Instead, we use contracted GTOs: fixed linear combinations of primitive GTOs

RCGTO
α (r) =

∑
i

dαiR
GTO
αi

(r)

I Segmented contraction

I each primitive contributes to just one contracted

I General contraction

I each primitive contributes to all contracted of same symmetry
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Dunning’s contracted basis sets

I Dunning’s contracted functions are based on a primitive basis optimized by Huzinaga

I The coefficients (here for carbon) are not reoptimized upon contraction

exponents [3s] [4s] [5s] [2p] [3p]

4232.61 0.002029 0.002029 0.006228
634.882 0.015535 0.015535 0.047676
146.097 0.075411 0.075411 0.231439
42.4974 0.257121 0.257121 0.789108
14.1892 0.596555 0.596555 0.791751

1.9666 0.242517 0.242517 0.321870
5.1477 1.000000 1.000000 1.000000
0.4962 0.542048 1.000000 1.000000
0.1533 0.517121 1.000000 1.000000

18.1557 0.018534 0.039196
3.9864 0.115442 0.244144
1.1429 0.386206 0.816775
0.3594 0.640089 1.000000
0.1146 1.000000 1.000000

I Plots of the [5s3p] contractions s and p functions:
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Pople’s 6-31G basis
I In the Pople-type basis sets, exponents and coefficients are simultaneously optimized

I Example: the 6-31G split-valence basis for carbon
I note: shared exponents for 2s and 2p

exponents 1s 2s 2p
3047.52 0.00183474

457.37 0.0140373
103.949 0.0688426
29.2102 0.232184
9.28666 0.467941
3.16393 0.362312
7.86827 −0.119332 0.0689991
1.88129 −0.160854 0.316424

0.544249 1.14346 0.744308
0.168714 1.0000 1.0000

I Plots of s and p functions:

1 2 3 4

1

2

3

4

1 2 3 4 5 6

0.2

0.4

0.6

0.8

Trygve Helgaker (CTCC, University of Oslo) Molecular basis sets 11th Sostrup Summer School (2010) 22 / 24



Polarization functions

I Up to now, we have used AOs of same symmetry as the occupied atomic orbitals

I in molecules, the atomic density is distorted and spherical symmetry broken

I To describe this distortion, we include polarization functions

I AOs of angular momentum higher than those of the occupied atomic orbitals

I Example: distortion of the 1s function:

s(A) = exp
(
−αr2

A

)
s(A + δz ) = s(A) + 2αzAs(A)δz + · · ·

= s(A) + 2αδzpz (A) + · · ·

I Choose the exponent so that the polarization function contributes most where the charge
density has a maximum

αpol
`+1 =

`+ 2

`+ 1
α`

I Examples: DZP, 6-31G*
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Basis-set convergence in Hartree–Fock theory
I For basis sets to be useful, their performance must be examined systematically

I For high accuracy and for establishing error bars, a series of calculations is necessary

basis set ∆ENe ∆EN2
∆EH2O RNN ROH θHOH

STO-3G 1942.57 1497.29 1104.47 146.82 98.94 100.03
6-31G 73.22 125.43 83.40 108.91 94.96 111.55
6-311G 24.54 99.02 58.01 108.60 94.54 111.88
6-31G∗ 73.22 51.32 58.27 107.81 94.76 105.58
6-31G∗∗ 73.22 51.32 44.75 107.81 94.27 106.05
6-311G∗∗ 24.54 23.76 20.95 107.03 94.10 105.46
cc-pVDZ 58.32 39.06 40.60 107.73 94.63 104.61
cc-pVTZ 15.23 9.72 10.23 106.71 94.06 106.00
cc-pVQZ 3.62 2.11 2.57 106.56 93.96 106.22
cc-pV5Z 0.32 0.43 0.31 106.54 93.96 106.33
cc-pCVDZ 58.17 38.27 40.20 107.65 94.60 104.64
cc-pCVTZ 15.14 8.79 10.04 106.60 94.05 106.00
cc-pCVQZ 3.52 1.88 2.45 106.55 93.96 106.22
cc-pCV5Z 0.32 0.36 0.30 106.54 93.96 106.33

I Some comments:

I STO-3G performs very poorly
I 6-31G gives qualitative accuracy (but not for the bond angle)
I 6-311G improves only the energy
I 6-31G* contains polarization functions and improves the geometry
I correlation-consistent basis sets (studied later) converge smoothly and rapidly
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