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ABSTRACT m 
Spherical Gaussians can be expressed as linear combinations of the appropriate 
Cartesian Gaussians. General expressions for the transformation coefficients are given. 
Values for the transformation coefficients are tabulated up to h-type functions. 0 1995 
John Wiley & Sons, Inc 

Introduction 

n most computer programs for molecular elec- I tronic structure calculations, molecular orbitals 
are expanded as linear combinations of Gaussian 
basis functions [l]. Although the necessary inte- 
grals lover basis functions can be calculated for 
spherilcal harmonic Gaussians [2], 

g(a, I ,  m,  n, r) = N(n,  a ) ~ : r n e - ~ ~ * ,  (1) 

most current codes rely on efficient algorithms to 
calculate integrals over Cartesian Gaussians [3,4]: 

. (2) 

For a given angular momentum, I = 1, + 1, + 1,, 
the number of Cartesian Gaussians is greater 
than or equal to the number of pure spherical 
harmonic Gaussians [for fixed n,  ( I  + 1) ( 1  + 2)/2 

1 1 / -  --a9 g(a, L ,  1,, I , ,  r) = N ( L ,  I,, I , ,  a ) x  ‘ y  ’ z  ‘ e  

Cartesian Gaussians vs. 21 f 1 spherical harmonic 
Gaussians]. Higher angular momentum functions 
are more important at correlated levels of theory 
than at the Hartree-Fock level. Since methods 
for computing electron correlation depend on the 
sixth, seventh, and higher powers of the number of 
basis functions, it is very advantageous to keep the 
total number of basis functions as low as possible, 
e.g., by using spherical Gaussians rather than 
Cartesians. The pure spherical harmonic Gaussians 
can be constructed from the appropriate Cartesian 
Gaussians: 

riPng.(a, 1 ,  m, n,  r) = 

1 c(l ,  m ,  n,  I,, z,, l , )g(a,  I,, I,, 1,, r) . (3) 

Typically, only spherical Gaussians with n = 1 are 
retained in the basis set. This reduces Eq. (3) to a 
simple linear transformation that is very closely re- 

lx + I ,  + 1; =/ 
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lated to the transformation from Cartesian to spher- 
ical tensors [5]. The s- and p-type spherical har- 
monic Gaussians are equivalent to their Cartesian 
counterparts. The conversion of 6 d-type Cartesian 
Gaussians to five spherical harmonic Gaussians is 
fairly straightforward. The conversion of f-type 
functions is more complicated and the transfor- 
mation for higher angular momentum functions is 
quite tedious. Recurrence formulas for the trans- 
formation of Cartesian to spherical Gaussians have 
been discussed previously [2]. In this article, we 
present explicit expressions for the coefficients for 
the conversion between normalized Cartesian and 
pure spherical harmonic Gaussians. 

Theory 

The normalized spherical harmonics can be gen- 
erated using 

(21 + 1) (1 - Iml)! eiind (1 - cos28)lm~/2 
Y f ,  = d 4 r ( l  + Iml)! 2'1! 

a'+lml 
X (cos28 - 1)'. a cos e'+Jml  (4) 

In terms of the spherical coordinates, the Cartesian 
coordinates are 

x = r sin 8 cos 4, y = r sin 8 sin 4, 
z = r cos 8 .  

Substituting Eq. (5) into Eq. (4) and multiplying r' 
yields normalized harmonic polynomials [4]: 

(5) 

where + is for m 2 0 and - is for m < 0. This 
can be expanded into an lth degree polynomial in 
x ,  y ,  z ,  and r .  Substitution of r2  = x2 + y 2  + z 2 ,  
differentiating with respect to x, y ,  and z ,  and 
setting x = y = z = 0 yields the coefficients of 
x'xy'l z': in the polynomial: 

1 d' x-  
i,! l,! l,! dx'vdx'ydxlz 10 

for n = 1 = I ,  + 1, + 1,. These are the coefficients 
for transformation of the unnormalized Gaussians. 
The normalization factors in Eqs. (1) and (2) are 
given by 

N ( L  I,, Ix,a) = (21,)! 22'1,! (21,)! l,! l,! (21,)! (Y'+3IZ T3I2  ] - ' I 2 .  (9) 

The coefficients for transformation of the normal- 
ized Gaussians are 

After some simplification, this becomes 

for n = 1 = 1, + 1, + I,. Equation (11) is quite suit- 
able for evaluation with any of the symbolic algebra 
programs, such as Mathematica [6].  Since the angu- 
lar momentum of basis functions used in electronic 
structure calculations is relatively small, these co- 
efficients can be evaluated once and tabulated. The 
transformation from Cartesian to pure functions are 
listed in Table I for I = 0-5. 

It is more desirable to have readily computable 
expressions for the coefficients that can be evalu- 
ated up to arbitrary order using standard com- 
puter languages. After using the binomial theorem 
to expand ( z2  - r2)' and evaluating d'+lml/dz'+lml, 
Eq. (11) becomes 
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TABLE I 
Transformation from normalized Cartesian functions, v(&, I,, lZ), to normalized spherical harmonic 
functions, v(l, m)". - 

I 
~ ( 0 ~ 0 )  = v(O,O, 0); 

v(2,CI) = v(O,O,2) - 5{v(2,0,0) + v(0,2,0)1; 

~ ( 1 ~ 0 )  = v(O, 0, I); 

1 1 

i 

~ ( 1 ~ 1 )  = - {v(I, O,O) + iv(0, I, 0)) 

G! 

G! 
v(2,i) = --{v( i ,~, i )  + iv(o, i , i )}  

{v(2,0,0) - v(0,2,0)} + - v(1, 1,O) & 

J3 J3 
4 4& 

G! 

3 
v(3,O) = v(O,O,3) - - (v(2,0,1) + v(O,2,1)) 

2 6  

{v(l ,  0,2) + iv(O,l, 2)) - - {v(3,0,0) + iv(0,3,0)} - - {v(l,2,0) + iv(2,1,0)} 

{~(2,0,1) - ~(0,2,1)} + - v ( l , I , l )  

v(3,3) = -{v(3,0,0) - iv(0,3,0)} - --{v(l,Z, 0) - iv(2,1,0)} 

i 

J3 3 
4 4 

3 3J3 1 
8 G V(4,O)l = v(O,O, 4) + - {v(4,0,0) + v(0,4,0)} - - {v(2,0,2) + v(0,2,2) - 7 v(2,2,0)) 

3& 3 
4 8  4J7 

v(4,I) = E{v (1 ,0 ,3 )  + iv(O,I, 3)} - - {v(3,0,1) + iv(O,3,1)} - - {v(l,2,1) + iv(2,1,1)} 

3i & 
m 4Jz 

3J3 (v(2, 0, 2) - v(0, 2, 2)} + - v(1, 1, 2) - ---{v(4,0, 0) - v(0,4, 0)) v(4, 2) = - 
2m 

-*{v(3,1,0) + v(1,3,0)} 
2 m  

J3 3 
v(4,3j = - {v(3,0,1) - iv(O,3,1)} - -{v(1,2,1) - iv(2, 1, l)} 

8 3  3 8  v(4,4) = - {v(4,0,0) + v(0,4,0)} - - v(2,2,0) + 
8& 4-E 

4 4 

J E  
{v(3,1,0) - v(l,3,0)} 

m 8 4J7 
5 5 

v(5,O) = ~(0,0,5) - - {~(2,0,3) + ~(0,2,3)} + -{~(4,0,1) + V(O,4, I)} + __ V(2,2,1) 

v(5, 1) = E { v ( l , O , 4 )  + iv(O,1,4)} - - 3J3 {v(3,0,2) + iv(o,3,2)} - {v(1,2,2) + iv(2,1,2)} 
2m 

J% J3 
8 f i  8& 4 m  

{v(3,2,0) + iv(2,3,0)) + - {v(5,0,0) + iv(O,5, O)} + - {v(1,4,0) + iv(4,1,0)} + - 

v(5,2) = g { v ( 2 , 0 , 3 )  - v(0,2,3)} + v(l,1,3) - ~ { v ( 4 , 0 , 1 )  - v(0,4, I)} 
4& 

.&  
2 4  

- ~---{~(3,1,1) + ~(1,3,1)} 

J5 8 
2J3 2 

v(5,3) .= __ {v(3,0,2) - iv(O,3,2)} - - {v(1,2,2) - iv(2,1,2)} 

d% f i  
- - {v(5,0,0) - iv(o,5,0) - v(l,4,0) + iv(4,1,0)} + __ {v(3,2,0) - iv(2,3,0)} 

16 8v5 

v(5,4) == - {v(4,0,1) + v(o,4,1)} - __ v(2,2,1) + i- {v(3,1,1) - v(l,3, I)} 

~ ( 5 , s )  == - {v(5,0,0) + iv(O,5,0)] + __ {v(i ,  4 0 )  + iv(4,1, O)} - - {v(3,2,0) + iv(2,3,0)} 

J% 3J3 8 
8d2 4-E 242 

3JT 5 8  5J3 
16 16 8 

aThe transformations for rn < 0 are the complex conjugates of the corresponding ones for m > 0. 
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Substitution of r2' = (x2 + y 2  + z2)' and expan- 
sion gives 

(21)! l,! l , !  I , !  (1 + Iml)! 

$ ( i )  (x2 + y 2 ) ; .  (13) 
j=O 

Expansion of (x 2 iy)lml and (x2 + y 2 ) j  yields 

. (14) y l m ( - p + 2 j - 2 k  /- lm1+2j 
2 

After differentiating with respect to x, y ,  and z ,  
and setting x = y = z = 0, c(1, m, n,  l,, l,, I , )  = 0 
unless p + 2k = 1, and 1 - Iml + 2 j  = 1,. This re- 
duces the sums over p and j to single terms. With 

this simplification, the formula for the transforma- 
tion coefficients becomes 

i=O 

(- 1)'(21 - 2 i ) !  
( I  - Iml - 2 i ) !  

X 

k=O 

where j = ( I ,  + 1, - Iml) /2  and is an integer; 
c( l ,  m,  n ,  l,, l,, 1,) = 0 if j is a half-integral. Note 
that the binomial coefficients (: ) are zero for q < 0 
and q > p .  

For most applications, it is more convenient to 
use real basis functions rather than complex ones. 
The m = 0 functions are real. For m # 0 pairs, 
spherical harmonics can be combined into two real 
functions, (Yk + YLm)/& and (YA - YLm),/-. 
Equation (15) has been implemented in the 
Gaussian series of programs [7]. In connection 
with the Prism [4] integral package, this allows 
spherical harmonic Gaussians of arbitrary angular 
momentum to be used in electronic structure 
calculations. 

Some manipulations, such as symmetry projec- 
tion, may be easier to carry out with Cartesian 
functions than with spherical harmonics. The trans- 
formation from pure spherical harmonic Gaussians 
to Cartesians is 

The back transformation has the property 

C ~ ( 1 1 ,  m 1,  n ,  1, , I ,  , I ~ F '  (12, m2, n ,  L ,  I,, I,) = 
1, + l ,  + IL = I  

6 1 , , / 2 a m l , m 2  7 (17) 

where l ~ ,  12 5 1.  If S is the overlap matrix for Carte- 
sian Gaussians, then cSc + = I is the overlap trans- 
formed to spherical harmonic Gaussian and c- '  = 

Se t .  For a given total angular momentum, lower 
angular momentum spherical harmonic Gaussians 
are usually not included in the basis set, making 
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(19) 

and (1,1 + 1,2)/2, ( / ? I  + 1,2)/2, (lZ1 + l ,2)/2 are in- 
teger:<; s = 0 otherwise. 
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