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°For some interesting ways to visualize (photographically) the instanta-
neous center in the motion of a wheel that rolls without slipping, see P. L.
Tea, Jr., “On seeing instantaneous centers of velocity,” Am. J. Phys. 58,
495-497 (1990).

19Gee, for example, A. S. Ramsey, Dynamics, Part I (Cambridge U.P,,
Cambridge, England, 1959), 2nd ed., p. 240; Brian H. Chirgwin and
Charles Plumpton, 4 Course of Mathematics for Engineers and Scien-
tists, Volume 3, Theoretical Mechanics (Pergamon, New York, 1963),
pp. 278-280

Since the body is at any instant undergoing pure rotation around the
instantaneous center, the velocity of any point of the body must clearly
be perpendicular to the line joining the point to the instantaneous center.
If the directions of the (nonparaliel) velocities of any two points are
known at some instant, the instantaneous center at that instant can be
obtained as the intersection of the lines through these points, perpendic-
ular to the velocities.

12I am indebted to Prof. Harry Soodak for suggesting this simple proof.
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The Dalgarno-Lewis technique [A. Dalgarno and J. T. Lewis, “The exact calculation of long-
range forces between atoms by perturbation theory,” Proc. R. Soc. London Ser. A 233, 70~74
(1955)] provides an elegant method to obtain exact results for various orders in perturbation
theory, while avoiding the infinite sums which arise in each order. In the present paper this
technique, which perhaps has not been exploited as much as it could be, is first reviewed with
attention to some of its not-so-straightforward details, and then six examples of the method are

given using three different one-dimensional bases.

I. INTRODUCTION

For most problems in quantum mechanics, with notable
exceptions being the particle in a box, the hydrogen atom,
and the harmonic oscillator, one must eventually have re-
course to some approximation scheme. One systematic ap-
proximation approach involves using standard perturba-
tion theory.! The difficulty with this approach, however,
lies in the infinite sums that arise in all but first order, there
being one in second order, two in third order, etc. If, on the
other hand, one takes only a few terms in a particular order,
one does not usually feel very comfortable with this trunca-
tion since one is then uncertain whether or not one has
obtained a good enough approximation to the correct ener-
gy, or wave function, to that order. In Some cases, one can
get around this summation problem by using the Dal-
garno-Lewis (DL) approach®? or by the equivalent loga-
rithmic perturbation theory approach (LPT).* The pres-
ent paper concentrates on the Dalgarno-Lewis formalism
but the interested reader may also consult Ref. 4, which
gives a derivation of the LPT method, applies it to seven
examples, and lists previous papers on this method. In the
Appendix, it is further shown that the (one-dimensional)
second-order LPT ground-state energy expression and the
corresponding Dalgarno-Lewis expression are in fact iden-
tical. The Dalgarno-Lewis method and the LPT method
involve formalisms of roughly equivalent complexity.
Thus, though the LPT method does not require obtaining
the “Dalgarno-Lewis function” F,, it instead involves solv-
ing a nonlinear Ricatti differential equation.

The ingenious and convenient Dalgarno-Lewis tech-
nique, which includes all terms in a given order, has been
applied to some interesting problems, notably the Stark
effect,’ and in the evaluation of the rotational contribution
to the energy of N noninteracting, spinless particles moving
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in a common deformed, harmonic oscillator poftential,6
and has made its way into some quantum mechanics text-
books.*’ It is not, however, an approach most students of
quantum mechanics are as comfortable with as they could
be. Section II reviews and comments on this technique and
on some of its not-so-straightforward details. In Sec. Il the
formalism is then illustrated in three different one-dimen-
sional bases, namely, those of the infinite square well, the
one-dimensional Coulomb potential, and the one-dimen-
sional harmonic oscillator.

II. THE DALGARNO-LEWIS FORMALISM

Given a Hamiltonian that may be decomposed into an
“unperturbed” part H, and a “perturbation” 4, i.e.,

H=H, +h, (1)
the Schrédinger equation one wishes to solve is
HY,=E\VY,, (2)

where it is assumed one knows the solutions of the unper-
turbed Schrédinger equation,

H, o = EO0L, €)

and the solution ¥, reduces to ®'» as the perturbation
becomes vanishingly small. In Eq. (3) the solutions ®}”
are all assumed to be nondegenerate. If this is not the case,
the subsequent discussion is restricted to those levels that
are nondegenerate and, if it happens that all the excited
states are degenerate, the discussion must be restricted to
the ground state which is always nondegenerate.” Then

E = (n|h |n), (4)

where for any state 7, |[r)=®, and E”, E " are the
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zeroth- and first-order terms in an expansion

E =E(°)+E(1)+E;2)+Ef,3)+ ey : (5)
where
E® — 2 (n|h|m){m|h |n) , (6)

mstn Ef,o) —EE'?)
E®= Y (n|h |m){m|h |p){p|h |n)
n /. (Ef,o)—Ef,?))(ELO)—E;O))

& (EYV —EPY

Similarly,
¥, =N +PL + ), (8)
where
IO 2 1) {plh ) 9)
S E® —E©’
while for any Hermitian operator O,
(¥,101¥,)
0 |p){plh |n)
=N?[(n|O|n) +2 (nO|p
(< om+2 3 e
(nlh|p)(p|O|p')p'|h 1) )
+ + e,
p,,ge,, (ELX—EPOYWEP —ED)

(10)

where the matrix elements (p’|O |p), (p’|# |p) have been
assumed real and

143 (n ho|p) {p|h |n
=t E( ) E(O))Z
In the above perturbation theory framework, the basic

equation that defines the state-dependent Dalgarno-Lewis
operator F, is a commutator relationship, namely,

(F,H, — H,F,)®®
= [F,,Hy | P = (h— E") . (11)
From this equation one sees that F,, is uncertain to with-
in a constant Csince [ C,H, | = 0. Additionally, from Eq.
(11), F, is seen to be dimensionless. Moreover, if H, com-
mutes with the parity operator, and # has definite parity,
F, has the same parity as . The definition of F, is consis-
tent since, using Eq. (3) and the Hermitivity of H,, Eq.
(11) gives correct results for diagonal matrix elements:
(7| [FyHo ]|n) = (nF,E® — EOF, |n)
= (nlh— E P|n) =0, (12)
while for nondiagonal matrix elements, again using Eq.
(3):
(m|F,|n) = (m|h|n)/(E;” —E) (m#n). (13)
Equation (13) shows why F, is a useful quantity since,
for instance, in terms of F, one can write

E®» = S (nlh|m){m|F,|n), (14)

mstn

i.e., the energy denominator has disappeared enabling one
to use closure in Eq. (14), i.e.,

> |m){m| =1
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or
3 m) (m| +fdk|k)(k| -1, (15)
if there are also continuum states in the basis. Hence
E® = (n|hF,|n) — ES(n|F, |n), (16)

i.e., instead of the, in principle, infinite number of summa-
tions in Eq. (6) one need only evaluate at most two inte-
grals (n|hF,|n), (n|F,|n) or only one if E (" is zero for
some reason, e.g., parity considerations, as is the case in
Examples 1 and 4 of Sec. IIL.

By similar manipulations one obtains

E® = (n|F,hF,|n) — 2E P (n|F,|n)

— E(n|F2|n) (17)
and to first order
¥, =N(1+F,—(n|F, |n)) DL, (18)

with N =1 if one requires ‘“cross normalization,” i.e.,
(n|¥,) = 1. Alternatively N = (1+ AF2)~'?, where
the variance of F,, AF2=(n|F2|n) — (n|F,|n)? if the
W’s are normalized, i.e., if (¥, |¥,) = 1. Also, assuming O
and F commute
(¥,|0|¥,) =N*({n|O|n) + 2{n|OF,|n)

— 2(n|O |n){n|F,|n)

+ (nIFnOFn|n> - 2(’1{0Fn 'n><n|Fnln>

+ {n|F,|n)*(n|O|n) + --*), (19)
where, in this case, since the ¥’s are normalized
N=(14+AF, +-)" "~

The central problem is thus to obtain the function F,,.

From the defining commutator relationship, Eq. (11), if
h does not involve differential operators, in the one-dimen-
sional case one obtains the differential equation:

oo Fn 5 dF, 4O
" dx? dx dx

21 (h— EP)yo® = L —d—(q>(°>2——dF"),
OO dx \ " dx

(20)
and, with a little manipulation, this leads to
o () L) |
. " dx a

.—:-2}:?—'[ [A(x) — EP]D2(x)* dx.

If @ is chosen such that & (q) is zero, after a further
integration one obtains the closed-form expression

x 1
o =[ s

X(%J [#(5) —

where K is an arbitrary constant.

One notes that in Eq. (21) the integral over d¢ is a defi-
nite integral with { varying from a to x while the integral
over dx is indefinite. The constant K can be chosen to be

E,‘,”]<I>f,°’(§)2d§>dx+1(,
(1)
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zero with no loss of generality because the commutator
definition, Eq. (11), leaves F,, undetermined to within an
arbitrary constant. The choice of the lower limit g in the §
integral is, however, more problematic. This is because the
choice of a determines the value of an additional variable
contribution to F,, namely,

Df D (x) ~*dx,
where
D= _______J‘ [h(é’) E(l))q)(O)(é-) d;

The correct choice for a may, however, be determined by
noting that F, must satisfy Eq. (13) for any m+n, and that
PP (@) =0

Another way to see why there is this uncertainty is to
note that from Eq. (20) dF, /dx is undetermined to within
the variable D /&% (x)?, since

_‘.1_(<p<0)(x)2____D =
dx \ " P (x)?

Thus F, is undetermined to within
Df @ (x) ~?dx.

This matter is further illustrated in the examples of Sec. II1.
An additional interesting fact about F, is that its defini-
tion involves a linear relationship. Thus, for a given Hj, if
F,, is the F function for 4,, while F,,2 is the F function for
h,, then automatically F,, + F,, is the F function for
h = h, + h,. Therefore, complicated systems may some-
times be analyzed with the help of simpler ones. This is
illustrated in Example 5 of Sec. I11. The reader should not,
however, be left with the impression that for all one-dimen-
sional systems Eq. (21) will result in a simple expression
that will obviate the need to do sums. In fact, for some
systems, the F, which results from performing this integral
is itself only expressible as an infinite sum.
With techniques similar to those illustrated above, it is
J

J (£ cos® &)dE dx

cos® x

=a (r_nﬁ_c_y fx sec? x (—2— + 71( (24 sin 2 + cos 2§)) :

3 d 2
=£(ﬂﬁ> J- [xzseczx+2xtanx+1——sec2x

2

Here, the ambiguity mentioned in Sec. II arises as to the
correct choice for a. The condition ®> (a) = 0, however,
restricts a to two possible values, namely, a = 7/2 and

= — 77/2. Both these choices result in

o =2 (= [(#-FJumro]-

As mentioned in Sec. 11, this ambiguity arises because, for
this example, dF, (x)/dx in Eq. (20) is uncertain to within
Dsec? x, ie., F,(x) is uncertain to within the variable
D tan x, with D an unknown constant. To verify the choice
for a is correct, one notes, for instance, that a condition on

(26)
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also possible to get simplified higher-order expressions,
e.g., for EY, E®, which do not explicitly involve infinite
series. Unfortunately, however, only in the one-dimension-
al case can a simple integral expression be obtained for F,
and the additional operators that are needed for these high-
er-order expressions.

1. EXAMPLES
A. Infinite square-well basis

Example 1. Consider a one-dimensional system with
Hamiltonian:

H =p*/2m + V(x),
V(x) = a(m’*c/fi)x (|x|<7/2),
(|x]|>m/2),

where « is a dimensionless constant.
The obvious perturbation theory decomposition of this
system (which cannot be treated exactly analytically) is

H=HO +h(-x)9
=p*/2m + V| (x),

(22)

- o0

V() =0 (Jx|<m/2),

=0 (|x|>7/2), (23)
h(x) = a(m’/B)x  (|x|<7/2),

=0 (|x]>n/2).

Here,
D (x) = 2/m cos x, @ (x) =2/ sin 2x,
OO (x) =2/msindx, E” = (n+ 1Y#/2m.
One immediately obtains
EY = {n|a(m?*c*/H)x|n) =0, (24)

since /(x) has odd parity. [Using Eq. (17) one also obtains
E Y = 0,in this case, since # and F,, have the same parity. ]
Substituting into Eq. (21) for F; (x),

dx

— sec? x(a2 + g sin2a + io—szﬁz-)]dx. (25)
L
Fyis
(0}A|1) 2Lam’c’/3 i
O|lF,|1) = =
OIF 1) E® —EQ® —3%/2m
= (—2%/3ma(me/A)’.
(27)

Evaluating this expression shows that the choice which
yields Eq. (26), namely, @ = + 7/2, is the correct one.
Once one has evaluated this expression one can also imme-
diately display the first term contributing to the second-
order energy, namely, from Eq. (6),

Harry A. Mavromatis 740



g = SOA[DAR) |

EQ® —E©
2° a’m’c®
I TR
One may additionally confirm that ((Q|F,|2) being zero
from parity considerations),

(O/F[3) = D) __
E(()O)_ng

(28)

— 2Pam?c®/3*5% 7k
— 15#/2m

(29)

Thus
29 a2m5c6 211 a2m5c6
5% #7  3%5° #r
= — (2.1070 + 0.0027 + ---) (m’c®a’/#*n?)
~ — 21097 (a?m’cS/H*m*) (30)
versus the exact second-order contribution from Eq. (16):

/2 2.3 3
E® — 2 am‘c _a (mc
B ==

(2) _
EP = —

7J_wr # 2\ %

X[(x2 — ?) tan x +x} cos? x dx

2...5,.6 21,500
T (15— ) M ) 1098 LT
24 #r fitr
3D

showing that almost all the correctiont in this case comes
from the first excited state and incidentally that

(1 — 7%/15)

12 2 2
=L( 1 " 2 + 3

5 \(1x3)°  (3x5)° (5x7)°

42
Ft ) (32)
(7%9)
is a very quickly converging series relation (giving five-
digit agreement after three terms) which to the knowledge
of the author is not quoted in the literature.®®

B. One-dimensional Coulomb basis

Example 2. Consider a one-dimensional system with
Hamiltonian

J

H=p*/2m — afic/x + V(x),
V(ix)=C[QRamc/f)x]" (x>0
(x<0),

where Cis a constant that has units of energy. The obvious
perturbation theory decomposition of this system, which
cannot be treated exactly analytically (see, however, Ex-
ample 3 where the problem can also be solved analytically
ifn= —1)is

H=Ho +h(x)7
HO =P2/2m+ Vl (X),

n=12,..), (33)

= o0

V,(x) = —afic/x (x>0),
=w (x<0), (34)
h(x) = C[QRamc/A)x]" (x>0, n=12,.),
=0 (x<0).

Here,
(I)(()o) (x) == 2 (amc/ﬁ)Sxe_amcx/ﬁ’

3
(Dgo)(x) = _1_ (M) x(] — _{M) e—amcx/Zﬁ,
2\ % 2 %

3
O (x) =2 (—"”"C)
= () 3

2...2,2
Xx(l _ g @me | 2 aimc ) ¢ ames/3h,
3% 27#

EQP = —1&’mc®[1/(g + 1)?].

One immediately obtains:

E{M =4 (a:c)3cf°° (2a’ﬁncx)ne—2amcx/ﬁx2 dx
o

=£f w+re=du=S (n42)! (35)
2 Jo 2

Substituting into Eq. (21) for F,(x) with the choice
a = o [the only other choice for which ®§” (@) = 0 being
a = 0, which yields the same result for F, (x)],

2] amex/# vy
Fox) =2 _#C L f((;')"-————-‘”+2)’)§'2e-¢'d§'dy'

ﬁz 4a2m2c2 ylze e 4

o0

___cC f"'"”"”#["iz (n+2)!
2a’mc? y? W&o (n4+2—-k)!

my2—k (R4 2)! i 2

:2—kd:
2 S e’ ]y

C JZamcx/ﬁ ’_2,,_] (n+2)!
— y m+2—k d ’
2a’mc? ;;::o (n+2—FKk) Y Y
_ _Cn2"d! 1 (Zamcx)"““" 36
20°me? = (n+2—k)W(n+1—k) # ’ (36)
. { o .
where use was made of the expression'° correct one by verifying that for this value of a
n ] 2n+ 6 1
fx”e”‘dx: e z n! nk (0|F, [1) = (0lA|1) =\/22 (n+2).nC. (37)
o (n—k)! E®» —E® 3" +5a’me?
One can confirm that the choice @ = o in Eq. (36) isthe ~ Hence, using E{’ — E(© = — 3a’mc?,
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Ol [(AL) .
E(()O) _Ego)
24n+10(n + 2)!2n2C2 + B

32n+9

) —
E =

a’mc? ’ (38)

whereas the exact second-order result from Eq. (16) is

EP = — C*n+2)/2%a*mc?
X"“ 22n+3 k) — (n+2)(n+ 3 —k)!
“o (n+2~kl(n+1—k) '

(39)

A feeling for the rate of convergence may be obtained by
comparing the exact second-order result for the case n = 1,
where F, (x) = — CxX’m/#,

Eéz) = <0|hF0 |0> - E(()l)<0|F0 |0>

15C? C? 2
B (40)
a‘me

a’mc? aPmc?
versus the first term in the second-order expansion in this
case, namely, — 2'°C*/3°a’mc*~ — 3.3296(C*/a’mc?).
Thus, for n = 1, the first term is little over half the total
second-order value which also includes a contribution
from the term

[ i K)o
E(()O) _ E[((O)

since there are also continuum states in this basis. As noted
in Sec. II, Egs. (39) and (40) also automatically include
this contribution. For n =23, however, one obtains
E{ = — 42 780C?*/a*mc? from Eq. (39), versus the first

i

second-order term, Eq. (38) ~ — 37 883.15C ¥/ a’mc?, in-

dicating that the convergence improves with increasing ».
Example 3. Consider the Hamiltonian in Example 2,

H=7p"2m — afic/x + V(x), (41)
but with

Vix) = CQamex/#) ' (x>0),
» =0 (x<0). (42)
Rewriting this Hamiltonian as

H=H, + h(x),

Hy =p/2m + V, (x),

Vi(x) = —afic/x  (x>0),
= (x<0),

h(x) = CQamex/A) ' (x>0),
=0 (x<0),

the same unperturbed energies and eigenstates arise as in
Example 2 and

E{=C/2. . (43)

Additionally, with @ = o (the same choice as in Example
2),

C 2amex/f 1
Fo(x)= > Zf Ty
2a°mc y'e

S ) vao

C 2amex/# 1 ,
P I) —
2a°mc 2

= Cx/2ac, (44)
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where hF, = C?/4a*mc? is a constant in this case. This
yields

E® = (0[hF,|0) — E {"(0|F, |0)
= C%/4a*mc* — 3C*/8a*mc?
= — C?*/8a’mc™. (45)

Using Eq. (17) one can also obtain the third-order con-
tribution to the ground-state energy,

E§ = (0|F,hF,|0) — 2E P(0|F, 0)
— E{"(0|F2|0)

LN NN\
a‘mic* \ 16 16 8

=0.

In this case one can also trivially solve this problem ex-
actly by writing the Hamiltonian as

HZ_EZ__ afic (1_ ¢ )zﬁ_gﬂ
2m x 2a*mc’ ’

2m X

where a’ = a(1 — C/2a’mc?) which has exact ground-
state energy:
1 2 02 1 C C?

E,= ——mca?= ——mdad® + = — ,
° 2 2 2 8a’mc?

in agreement with the result obtained by the Dalgarno-
Lewis approach above, verifying also that the choice
a = o was the correct one. One may also write

C*  _ (0lh[1)(1]A]0)

8a’me? E® —E®
(0[A]2)€2|A10) ...
E(()O) _ E;O) +
dk (OJh [k Yk |1 [0)
E® _E®
20 C? 3 C?
TV @md 27 &md ’
2
—0.125 ¢
a*mc?
2 2
- —0.029—5 0007 ¢ + (46)
a*mc? a’me?

indicating the series is slowly convergent in this case.

C. One-dimensional harmonic oscillator

Example 4. Consider the Hamiltonian

2 3
H=p—+—l—mw2x2+/lﬁa)( ﬁa—)x)
2m 2 #

(— o<x<0), (47)

where A is a dimensionless constant. The obvious perturba-
tion theory decomposition of this system, which cannot be
treated exactly analytically, is

Hy = p*/2m + imaw’x?,

h(x) = Ao (mw/fx)’ (= o<x<w). (48)

Harry A. Mavromatis 742



For this H,,
DL (x) = (mw/mh) Ve~ "o/,
L (x) = (VI/7V*) (mas/B)*xe = ™/,
o0 = L (1)
212 \7h

L RN

E? = (n+ Hfw.

Both E (" and E (¥ are again zero (as in Example 1) from
parity considerations. With the choice a = o« [the only
other choice for which ®{” (x) = Obeinga = — « which
yields the same result for F (x) ]:

2m ﬁ Jmw/fix
Fy(x) = Aw — — B¢ d¢'dy
# mo
Jmaw/fix
=,1f Pe=¢7de " dy'

Vmao/fix
= —Af *+ Ddy

)

By evaluating
OA]1)  _ V2/H)Afw _ 3V24
EQ—E® e 4
one finds that the choice a = « is okay. Evaluating Eq.
(16) yields E§» = — (11#iw/8)A % There are only two

nonvanishing terms in the second-order series expansion in
this case, namely,

O]A[1)(1]A[0) | €O]A|3)(3{A|0)
EéO) __E§O) E(()O) _EgO)
= — % — P = — YA o,

in agreement with the above result.
Example 5. Consider the Hamiltonian

pZ 1 3
H =S 4+ — me’x*+ iha)( / x)
2m 2 #i

+ 6tiw ne
h

= (0[F, [1)

2)
Ey =

(— 0<x< ), (50)

where A and & are dimensionless constants. With the per-
turbation theory decomposition

H, = p*/2m + ime*x?,

ﬁw(\/mﬁw )J”%w # it

(— 0o<x<w), (51)

hix) =

this problem may be simplified by writing # =k, + A,
where 4, = Afiw(\maw/#x)°>, for which F,, (x) was ob-
tained in Example 4, and #, = &#iw\ mw/#ix, for which it is
easy to show F, (x) = — 8ymw/#ix. Thus, in this case,
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-8 / (52)
#
and EQ = — #in (YA 2+ A6 + 16%).

Example 6. Consider the Hamiltonian in Example 4,

2 1 3
H=2_ 1~ mox? + /Hiw( x)
2m 2 ﬁ

(_ w<x<w):

where A is a dimensionless constant.
With the same decomposition as in Example 4 one may
evaluate F, (x) and hence obtain E {*.

From Example 4, E (" = 0, while
3/4 5
<I>§°)(x) — v2 (ma)) xe— mx /2
77,|/4 h

Substituting into Eq. (21) with a = o (as in Example
4) one obtains

1 me mo
o= 4[4
1 (%) [ 3 ( 7 )T P
1
A
mo/hx
One can verify that Eq. (53) is correct by calculating
(1A ]0) _ W24

Ep P 4 IR0
Using F, one can obtain E {* by evaluating Eq. (16), with
the result

E® = — 1) %0, (54)

IV. CONCLUSIONS

In this paper the Dalgarno-Lewis summation technique
was reviewed. It was shown how to eliminate the ambigu-
ities that arise in the definition of the relevant function F,,,
and additionally a useful consequence of the linear rela-
tionship by which it is defined was pointed out. Finally, six
examples of the technique in three bases, those of a particle
in a box, the one-dimensional Coulomb potential, and a
one-dimensional harmonic oscillator, were given. These
are only a few of the many interesting problems the reader
can investigate with this technique.

APPENDIX

The second-order ground-state energy expression ac-
cording to the Dalgarno-Lewis approach is given by Eq.
(16) of the text:

E by = (0|hF|0) — E 5V (0| F, |0). (A1)
Assuming 4 and F,, do not involve differential operators,
for a one-dimensional system this may be written
EQ,, — f Fo () |09 (x) [P[A(x) — E ] dx.
- (A2)

For the case ®’(x)-0, as x- — w0, (ie,
“a” = — o), the corresponding LPT expression is given
in Eq. (20) of Ref. 4, namely (using the same notation),
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2m (7
-]

x 2
f |57 ()P [#(8) —E(‘)”]dgl dx.
(A3)

Assuming ®{” is real and integrating (A2) by parts, one
obtains

(2) —
EO(LPT) -

|©5” (x)| ~*

X

o0

B, =Fo(x) f O (x)*[A(x) — E§"]dx

_Jw MJX (D(O)(;)Z[h(g)
~w dx e 0
— E§")d¢ dx.

But using Eq. (4) in the text, and the fact that &% (x) is
a normalized wave function,

Jw O (x)*[A(x) — E§V]dx

— o

=E(()1)—E61)J. q)(()o)(x)zdx:O.

Thus one can also write
E® _—r’ dF, (x)

o(DL) — dx

[ ep@rhe -~ E¢Ydsax (ad)

Differentiating Eq. (21) and substituting the resulting

expression for dF, (x)/dx in (A4) one obtains

E(()%I))L) = _fw ! 2_m
—w BO(x)* #

x f OO (£ [h(E) — E)dE

xf OO [R(E) —EN]dEdx,  (AS)

which is just Eq. (A3), the corresponding LPT expression.
Generalizing these results to complex ®’s presents no
problem.
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The analysis of the importance of the amplitude and the phase of Fourier transform has been
carried out by means of combining these functions between two images and observing the
reconstructed image after a second transform. This processing has been studied by taking into
account several possibilities, especially for very structurally different images. It is proved that the
phase carries the most relevant information, but when common images are combined with images
constituted by strongly marked geometric forms it is not so evident and the amplitude could play a

more important role.

1. INTRODUCTION

In digital image processing the Fourier transform pro-
vides a powerful method of analyzing and manipulating the
spatial frequency plane of an image.!

In the Fourier representation of images, the spectral am-
plitude and phase tend to play different roles. Oppenheim
and Lim? showed that in many contexts the phase contains
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much of the essential information in an image and that the
phase is sufficient to reconstruct the image completely.
This fact has been successfully applied to pattern recogni-
tion, using only the phase information of the Fourier trans-
form of the model to be detected in order to elaborate a
filter for recognition with greater efficiency than the usual
matched filter.’

In this paper, we review and discuss the aforementioned
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