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The interaction between two neutral but polarizable systems at separatisally called the van
der Waals force, is discussed from different points of view. The change in character R3rto1/
1/R” due to retardation is explained. @01 American Association of Physics Teachers.
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I. INTRODUCTION 1, ) 5 , 1 ) 5
p1+ 5 MwoX]+ ﬁpﬁ— 5 MwgX5,

To=omPit 3 2
The interaction between charged particles via the Cou-

lomb interaction is one of the most important features in e2 (1 1 1 1 @
physics and is familiar to any student of the subject. The way H;=—|=+ - .

in which electrons and protons bind to form the hydrogen 4m iR R+x=x; R+X; R=Xx,
atom is also well known and is a staple of any quantum Assuming that the atomic separation is large compared to
mechanics courseHowever, less familiar is the interaction the size of the atomR>x,,x,), we can approximate
between such bound systems at separa@@pmhich is the

. . 2
so-called van der Waals force and is of a completely differ- o~ — €7X1X2 @)
ent character from its Coulombic anald@hat this must be 1 47R?

the case is clear from the fact that the hydrogen atom is d th N be di lized in t f dinat
neutral, so that to lowest order there is no interaction. On th@n_ efys em can be diagonailzed In terms of coordinates
other hand the system is polarizable, and thus can intera&t: = (X1+X2)/v2, yielding

with the other polarizable system, leading to a short-ranged 2 2 2
. : . i S p: 1 , 2e , P2
attraction which varies asR?, and this feature is discussed H= om T 2| Meo™ g g3 Xs+ 5
by a number of quantum mechanical referent&Somewhat m g m
less well known is the fact that at larger distances the char- 262
acter of the interaction changes and varies as + > mwj+ IR X2, ©)

1/R’—discussion of this feature can be found, e.g., in the
quantum field theory book by Itzykson and ZuBéris clear  i.e., in terms of independent harmonic oscillators with shifted
that the origin of this change is retardation, i.e., the finitefrequencies
propagation time of signals connecting the two systems, but 5
the precise way in which this modification comes about is =] wlF 2e
not so easy to calculate and is not generally presented. - " 4mrmR®
The nature of the van der Waals force is quite topical at
present due to the possible importance of such effects for the ~woT 5— g
interactions of small color dipoles such as charmonium or dmmwoR® 327 m“wyR

bottomoniunt, so it is useful to examine the physics of this The van der Waals potential is simply the shift in the ground

effect. 'T‘ the ne>_<t section, then, we reg'?w the gquaI tethOOl§tate(zero poini energy due to the Coulomb interaction and
discussion leading to the London1/R® interaction: Then is found to be

in Sec. lll, we show how retardation effects modify the char-

acter of the force and change its asymptotic dependence to 1 1 1 et

the Casimir—Polder form-1/R’.8 In a brief concluding sec- V(R)= S0+t S0 =2\ Swo| =~ 2 wRE

! | L/ ! 32r°m“wyR

tion we summarize our findings and discuss the relevance to ) ) ] - .

modern particle and nuclear physics. We can write this result in a more familiar form by noting
that when an external electric field is applied to this system,
the leading order Hamiltonian becomes

e? et

4

. ®)

e’E3
II. STANDARD VAN DER WAALS INTERACTION H="THy(Xq,Xo) + €EpXy+ € EoXo=Ho(Z1,25) — —

The basic physics of the van der Waals force can be un- 0 (6)

derstood from a simple one-dimensional model of the atom ) ]
which consists of electrons bound by harmonic oscillatorVith Zi=X;+eEq/mawg, and corresponds to an induced elec-
forces to heavy protons at fixed separat®in addition to  tric dipole moment

Coulomb interactions between the four chafges SH  2e%E,

d=— 7)

T T2
H="Ho+Hy, %F0  Mwp
Defining the electric polarizabilityxg in the conventional

with (see Fig. 1 fashion, viad=4magEy, we find aE=2e2/4wmwS so that
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ex,
d2:47TC¥EEl(R):47TaEm. (13)

—2ze— f—z+—|

The electric field generated his electric dipole moment

n _ + - then acts back on the original atom, yielding an energy
zxiaE
l R ] AByw~ —diEx(R) =~ 7 —=5", (14

which is the van der Waals interaction. What makes this
work, then, is the point that one can use the instantaneous
position of one atom to provide an action at a distance cor-

Fig. 1. Simple one-dimensional model of interacting hydrogen atoms.

the van der Waals interaction can be written in the “Lon-
don” form’

aéwo

BRE .

One can also derive E@8) via simple second-order per-
turbation theory

V(R)=—

(0| Hy|n)(n|H,|0)
EO_En .

Since for a simple one-dimensional harmonic oscillator

1
(11x[0y=6) 1 \/ —meo’

AE,=V(R)= >,

n#0

9

(10
Eq. (9) becomes
V(R)=< 2923>22 5n1,15n2,1|<1!1lxlx2|010>|2
47R°) nih, (n1+ny)wg
_( 2e2)2( [ 1 )4—1_ et
| 47R3 2Mwgy) 209 3272mPwiRS’
(11)

in agreement with Eq(5).

It is useful to spend a bit of time examining the “physics”
of this result. The form of the interaction potential, E@),
can be understood in terms of the energy of the dipole m
ment of “atom” #2 (d,= —eX,) in the electric field created
by the dipole moment of “atom” #1,

—ex; €%,
le_dZEZ(dl):eX247TR3 ST aaR

(12

Of course{x;)=(x,)=0, i.e., there exists no average dipole

moment, so this energy change vanishes in first-order pertur-

bation theory

AE;=(4o| Ha|tho)=0.
However, theras a shift at second order since at any given

instant of time there exists an instantaneous dipole moment

O-

relation with a second atom in the vicinity.

Finally, we note that the electric polarizability itself can be
extracted by calculating the shift in energy of the atom in the
presence of an external electric fidlg in second-order per-
turbation theory’

(0]eEgxq|n)(n|eEgx,|0) 1

(2)= =—— 2

AE go - 5 AmaES,
(15

We find thenag~ e?(x%)/w, and
2
GeWo

AEVdWN 47TR6 (16)

so that it is thisself-interaction energyvhich is responsible
for the London form—cf. Eq(8).

With this background in hand it is straightforward to move
to the physical(three-dimensionalsituation!! In this case
the dipole moment generated by atom #I, €er,) gener-
ates an electromagnetic potential

dl'R
47R3’

which means that at locatidR one has the electric field

U(R)= (17)

e ~
E(R)=~VaU="— ;—5[r—3RR,]. (18)

The corresponding dipole—dipole interaction energy is

2

e ~ a
W[I’l°l’2—3rl°Rl’2°R].

7 (19

Uygw= —dz:E(R)=
Choosing thez axis along the directioi?, we can write
2

e
Uvdwzm[xlxz"‘ Y1Y2—22125]. (20

The lowest order energy shift involving a pair of hydrogen
atoms is then
AE1:<‘//(1%,o

2 dUvawl 943,08 0 =0 (21)

in, say, atom #1. The corresponding electric field at the poand vanishes sinag )= (r,)=0. However, to second order
sition of atom #2 generates a correlated electric dipole mothere exists a nonvanishing energy—this is the van der

ment due to its electric polarizability,

Waals interaction

1 2) 1 2
V(R)=AE _( 2 )2 s |<(//E1,I),mlr/j§1’l’m'|xlx2+y1YZ_ 22:2,| Y W0 0 12 22
= 2=\ A -p3 :
47TR nIm;n’I’,m’ 2E10_En|_Enr|r
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Since the state), o is the ground state, the denominator is was doné. However, use of the usual Coulomb gauge
always negative and it is thus clear that this result is nonzerd;jamiltonian for two neutral hydrogen atoms at distafite
although no exact evaluation is possible. Nevertheless, wiateracting with the electromagnetic fiéfd

can obtain an approximate form by noting that selection rules

allow only electric dipolgAj=0,=1, parity changeexcita-
tion of both atoms so that, using closure, we can write

V(R)=

47R3) 2E.p— 2E,,

e’ )2 1
x 2

nlm;n’l’m’
+Y1Yo— 22, 25| %
yiYo 122|¥10,0
2 \2

2
() 2, [ Xax

ool
e
4R

2E;o— 2Ex; ( w(l%()),o'ﬂ(l%,o' Xix%

r1~l‘2— 3r1'l’:\2r2'§

_ (0) rady o2
H= > H{O+H™4e pp=

=12

+ 2

=12

2

e e
G PrAr) + 5 A(r) (27)
leads to a rather complicated analysis involvitigrteen
diagrams—including seagull termise., the diagrams arising
from the termA?(r;) in Eq. (27) involving a pair of photons
emitted from the same point, which diagramatically look like
a child’s drawing of a flying seagdlhnd instantaneous Cou-
lomb interactiondi.e., the term involving

Yy +42323 v i 0 (23 G212 8RR
3 )
Using (x?)=(r?)/3=a3, wherea,=1/ma is the Bohr ra- 4mR
dius, we find which arises from expansion of the instantaneous Coulomb
6aal interactions between the charged particles making up the
V(R)=— _RFO_ (24) systen. It is thus advantageous, as pointed out by Power

and Zienau? to isolate the important physics by working in

Expressing this result in terms of the electric polarizabilitythe gaugep=0 and using the electric dipole approximation,

via wherein the variation of the vector potential over the atomic
2 size is neglected. In this case the Hamiltonian becomes
|<‘/’n|m|z|¢l,0,0>| 3
a’EZZQ’E T:ao, (25
nim 10 nl H:_E H](())-I— Hrad—.E eri-E, (28)
we have j=12 i=1.2
a ag woaé whereE; represents th&ansverseelectric field so that only
V(R)Na—()ﬁg:—Rr, (26)  radiation photons are involved. The resulting fourth-order

diagrams which contribute to the van der Waals interaction
are now only six in number. They are shown in Fig. 2 and
can be divided into three classes. One class is that where the
interaction with the electric field by atom #1 occurs entirely
previous to the interaction with the field by atom #2. For

. . . . . L OEedagogical simplicity, we suppose that the atom has only a
The discussion given in the previous section is standar ingle excited statél1)) connected to the ground staté))

but it is clear that it must be altered at large distances sincgia the electric dipole operater, and for didactic purposes

S . . e shall explicitly demonstrate how to evaluate one of the
netic interactions. Indeed, since the van der Waals force ISix diagrams—Fig. @), which is shown in more detail in

due to the self-interaction of the dipole moment of an atom;
with the electric field generated by the correlated dipole mg]:|g. 3. We use
ment of an atom at distand®, this simple nonrelativistic . (O|V[n)(n|V[1){1|V|K)(K|V|O)
action at a distance analysis must begin to break down when AEq"= E_EVE—ENE—E)
the time required for a signal to travel from atom to atom nfko (BEo=En)(BEo—E)(Eo—Ey)

(AT,~R) becomes comparable to or greater than a charaGynere we have dropped self-energy terms, which do not con-

teristic time[AT,~1/(E1 o~ Ezy)] associated with the evo- i yte In the gaugeb=0 we can write the interaction as
lution of the atom, i.e., whemwyR=1. For hydrogen this

transition occurs aR~7#c/10eV~ay/a~200A. For dis- A
tances comparable to or greater than this value, we must take V= 9.2212 M T
retardation into account. There are at least two ways in ==

which this can be accomplished, and we shall consider eacthere A is the quantized radiation field. For the diagram
In turn. shown we identifyfE,— Eq= w19+ k,, E;—Eg=k;+k,, and
Ex— Eo= w10t kq, wherew,g=E;—Ej is the excitation en-
ergy. Also,

which is the London form.

[ll. RETARDATION

(29

(30

A. Fourth-order perturbation theory

Perhaps the most straightforward way to understand the (k|V|0)=iek,&; - (1|r e (11X1)|0),
effects of retardation is through a simple perturbation theory
evaluation. Of course, since the van der Waals interaction isshere X, is the location of the atom, with similar expres-
O(e* this must be a fourth-order perturbative calculation.sions for the remaining three transition amplitudes. Putting
This is how the original calculation of Casimir and Polder all these together we find
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2 B d3k,
o7 et Gh ) emik g
’ : 7 ,::,’/ Now combine this result with that obtained by interchang-
i ing atoms #1, #2 and include the corresponding contribution
from Fig. 2b). The result is
(a) (b) |
AE, p=—¢* E 2 k%k%el(kfrkz)-R
K1.é1 Kp.ep
/,/”/ \‘\\\ y & +(0[ra|1)€;-(1]r,|0)&5 -(0fry|1)€1+(1[r,|0)
(w10t Ky) (w101 Kp) (kg k)
+%1-<0|rz|1>%z-<1|rz|0>%§-<0|r1|1>%1-<1|r1|0>
(w10t k) (w10t Ky)(Ky+Kp)
() (d)
+H#1—#2|. (32
- PR Similarly one finds contributions from Figs(@ and 2d),
PR e AEg.q=—e* > > kikze/(kitkaR
‘ ~ K1.é1 Kz, €5
) © €5 +(0r5|1)&;-(1|r,[0)€3 (0[ry|1)€&;+(1|ry|O0)
(e (w10t k) (w10t K2) 2010
Fig. 2. Time-dependent perturbation theory diagrams contributing to the van %k, A Ak, -
der Waals interaction. Here the dashed line indicates a photon exchange. €5 (0[r2|1)&;+(1[r2|0)&5 «(0[ra|1)&;+(1[r4|0)
(w10t Ky) (w10t Kz) 2019
AEg=—e*'> 3 KKZe(kutkoR +#1-#2 (33

K161 Koo 60
XEZ-(0|r2|1)“e1-<1|r2|0>%’2‘-(O|r1|1)%1-<1|r1|0>
(w101 K1) (@101 Ko) (Ky+Ky) ’ -
AE [ e4 k2k26|(k1+ ks)-R
(31) o kE kE 2
€5+(0[rp|1)e;(1|r,|0) €t «(0r 1| 1)€,+(1[r4|0)
(w101 K1) (w101 K1) (20101 K1 +Ky)

and from Figs. 2&) and Zf),

where

0> €5 (0[r,|1)&;«(1|ro|0)&] «(0|ry|1)&,-(1]r,|0)
P (w10 Ky) (0107 Kp) (2019t Ky +Ky)
0> knéy -7 > +#1#2|. (34)
L K Consider first the contribution from Figs(& and Zb). Sum-
// L7 ming over polarization states, FiggaRand Zb) become
o i d3k, d3k, .
[ z — _ 4 21,2 4l (k1 +ko)R
X ] ABaip=-¢ f Py (2m)? 2ky(2m)® ke
1 > Ve - N > PPN
Pl ha H1zI0) (11201 + (kykp)?)
' (w191 Kky) (ki t+ky)
0> ! ! 35
X (1)10+ k2+ (1)10+ kl ' ( )
#1 2 Consider first the long distance limitog,R>1) wherein re-

Fig. 3. One of the time-dependent perturbation theory diagrams contributintardatlcm effects are important. Then since, due to the expo-

to the van der Waals interaction. Here the dashed line indicates a photo%emialv the sum over photon momenta extends onli,to
exchange. k,<1/R, we can write
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wgR>1

ABaip —

4f d3k, d3k,
2k, (27)° 2k,(277)3

X kikgei(kﬁ ko)-R

e

N
Wig

><|<1|zll0>|2|<1|z2|0>|2<1+(Rl-@z)

kq+ky
(36)
Using the definition of electric polarizability
_ € & [nlZ0))* _ e* [1]7]0)[? 3
T on& E,—E, 27 wp (37)
this becomes
wR>1 aé
AEa-*—b - (2_77)4
ek | 1 (Kako)®
X f 3k, d3k,k, kpe! etk R K,
= i J 38
=" 2at (38)

The integration can easily be performed, as shown in Appe
dix A, and the result is

23a2

AEa+b: - 47TR7'

(39

which is the result given by Casimir and Polde8imilarly,

the contributions from the remaining diagrams become, in

this limit,
AEcg=AEe+t

wgR>1
—

ag

- (2m*2w50

X f d3k, 3K,k koe K1tk R(1 + (kyi-k,)?).
(40)
By simple scaling arguments, it is easy to see thét, 4
=AEq, i~ a2/ w1 R®~AE,  p/01R<AE,., and can be
neglected in the long distance limit.

As an aside we note that it is also straightforward to in-
clude the effects of magnetic polarizability; since

D (8182 =1+(kykp) 2= D) (&Xky-&,Xk,)?
€1,€p €1,€p

(41)

n

—23(aZ+ BE) + T(aeBu+ Buae)

V(R)= =y N
where we have used the result
A 2kik, 2870
J d3k,d3k,k kel (ki tk2) Rkl R (44)

as shown in Appendix A.

Here the fact that the large distance—retardation
corrected—van der Waals interaction variesa@éR’ is eas-
ily understood from simple physical arguments, as cited by
Kaplan!* In Figs. 2a) and 2b) the photon emission/
absorption involving, say, atom #1 occur entirely beftoe
aften those involving atom #2, so this interaction may effec-
tively be shrunk to a local two-photon vertex characterized
by the electric/magnetic polarizability. Since polarizabilities
have units of volume and since two such interactions are
involved, the requirement that the potential energy have the
proper units gives/(R)~ «2/R’, where we have used the
feature that the separatid® provides the only scale in the
problem.

The above derivation breaks down, however, for short dis-
tances where the photon emission/absorption by the atoms is
correlated so that the photon emitted from atom #2, say, is
absorbed by atom #theforeany emission/absorption of the
second photon. Indeed, if we assume thgR<1, then it is
easy to see that the dominant diagrams become Figs. 2

and Zd) with

w1gR<1 4
x|(1]z1] 0)]%(1]zo] 0} *(1+ (kyk2)?).

dk; d3k,
(2m)* (2m)°

e

E = ei(k1+k2)~R
c+d 2(1)10

(45)
The integration is performed in Appendix A, yielding

2
BwyoaE

AEc+d=—W'

(46)

which is the London form. For this short distance situation
the contribution of the remaining diagrams is found to be

AEa+p=AEes+

R<1 2 2
10 QgWig
o =
(2m*

(1+ (kyvkp)?)

31, 431 ai(ki+ko)R
xfdkld k,e'f1Tk2 KK,

(47)

By simple scaling arguments we find thAaE, ,=AE.,

the contribution to the van der Waals interaction from a pair~ a2 w3 /R~ 0, RAE.. y<AE. 4 and can be neglected in

of magnetic interactions is found simply by replacinﬁ
—>ﬁf,, in Eq. (39). Similarly, we can include interactions

involving electric and magnetic polarizabilities via the iden-
tity

AZ (%1XR1'%2)2: 2R1'R2: AZ (%1'%2XR2)2.

€1,€2 €1.€2

(42

the short distance limit.

The general form of the van der Waals interaction at arbi-
trary distance can, of course, be found by adding togetter
of the above diagrams, which yields the Casimir—Polder
integral

2

Then the overall van der Waals interaction at long distance

assumes the familiar form

445 Am. J. Phys., Vol. 69, No. 4, April 2001
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However, the physics is more clearly identified by working 1
in the separate long and short distance limits, as shown 2 Imamp,(t)= >+ > 2 Mo (t=(ky+kp)?)|?

above. If intermediate distance results are needed, a good ki€ ko6
numerical match to the exact form is given'by X (27464 Q— K, —ky) (54)
2
V(R)=— M(E) - 23 ) (49) yvhere 'the factor 2! is due to the identity of the two photons
4R> \ 7 BwyR in the intermediate state ar@* represents the four-vector

It is also interesting to see why the Kaplan argument lead{+/t,0). Note here that the unitarity relation gives the imagi-
ing to 1R” behavior breaks down at short distance. Thenary component of the amplitudé,, at positivevalues oft,
point is that since emission/absorption by atoms #1, #2 arehich can be related by crossing symmetry and analytic con-
correlated, it is not possible to shrink the interactions involv-tinuation to the Compton scattering amplitudenapative t
ing a single atom down to an effective point vertex involving Definingt=(2w)?, we can write
the polarizability. Indeed, in this case one must deal with

both the ground and excited states of both atoms, so that a V(R = ifoc ' do’ exp(—20'R) Imampy.(i o)
new scalew;, enters the problem and this is why simple I R Ryl 7).
Kaplan scaling fails. (55)

The electric polarizability contribution to the Compton scat-

tering amplitude from a neutral object can be written in the
An alternative, but completely equivalent, way to derive general form

the van der Waals interaction is to use the feature that the ) e

potential is the Fourier transform of the quantum mechanical Mcomr=47ae(w)E*(w)=4mag(w)w’E e, (56)

scattering amplitud&

B. Two-photon exchange

whereag(w) is the dynamic polarizability. Thus the van der

3 .
V(R)=f d Q3 R amu(q), (50) Waals potential assumes the form
(27) )
4 (= o, 5. , eXp(—20'R)
where g=p;—p is the momentum transfer. Thus, for ex- ~ V(R)=—3— ¢ do" aglio’) ———Fm——. (57)
ample, for the Coulomb scattering amplitude amp
=e?/g? we find Now suppose that the time taken by light to travel between
d%q 1 2 the two systems §t,~R) is large compared to a typical
VcOu|(R)=ezf 2n? e'q-R?z F|R| (51 excitation timedt,~1/wq,. In this case ¢1oR>1) the inte-

gration in Eq. (57) involves only valuesw’<1/R<wq,.
as required. In our case, we wish to isolate the portion of th&henag(i ) may be approximated by its valueat=0 and,
atom—atom scattering which is dueti@o-photon exchange after five integrations by parts, the van der Waals potential
This is, in general, a nontrivial relativistic Feynman diagramcan be written in the form
calculation, but may be simplified by realizing that the scat-

tering amplitude is causdl.e., the scattered wave cannot be @1 B5142(0) (= ,exp(—20'R)
emitted before the incoming plane wave strikes the scattering V(R) — - " 24w 0 TR
centej and is an analytic function in momentum transfer-
squared, meaning that it satisfies a dispersion relation in the 2oa§(o)
: — _ 2 _~——
variablet=—g?, IR (58)
1 (=dtlimamp.(t’ - e o
amp,(t)=— J ,—Qy() (52)  Here the coefficient sitting in front of the polarizability is not
mlo U-t-le quite correct since we have not used the proper relativistic

The full discussion from this point onward is a bit technical forms (cf. Appendix B, but the “physics™ is properly in-
and is outlined in Appendix B. However, it is possible to cluded. o _ o
isolate the basic physics more simply and that is what we In the alternative I|m|t.where Fhe_ Ilgh.t transition time is
shall present here. Readers wishing a more complete discuMall compared to a typical excitation time{,R<1), the
sion can refer to Appendix B or to Ref. 15. convergence of the integration in EG7) is set now byw’

The desired van der Waals potential is found by taking the< w,0<1/R and we must include the frequency dependence
Fourier transform of the two-photon-exchange amplitude. Byof the dynamic polarizability. The correct way to do this can
reversing the order of integrations we see that the result cape found in Appendix B, but one can understand the essential
also be written in terms of a superposition of Yukawa poten-physics of this result by inserting2(i »') in Eq. (58),
tials,

i 51 (»  ai(io')
1 * d3q quR V(R = — — f r_E -2 /R
V(R):;fo dt’ Im amgy(t’) (277)3 t'+q2—ie ( ) 247 o dw TGXF( w )
wgR<1 | w
1 (= L exp—\t'R) et sl o,
=122 fo dtimamp,(t') ———— (53 ~ e ), 4" aklio). (59)

The necessary input to E¢G3) is provided by the unitarity Now the polarizability can itself be written in terms of a
stricture, which in the center-of-mass frame takes the ¥orm dispersion relatiotf
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1 (»do' o o(w) tween the two forms arises because of the requirement to
f T 2w (60) utilize the static versus dynamic polarizability in the long

“0 versus short distance limits. Either discussion involves inter-
esting pieces of physics and offers an attractive means by
where the spectral density(w’) is nonzero only in the vi- which to enhance discussion of this universal and familiar
cinity of excitations of the system in question. As a Slmp|ephenomenon

representation, we may write, then, for the case of a single

such excitationnote thatag(0) corresponds targ in the
notation of the previous sectipn ACKNOWLEDGMENTS
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7l L e e APPENDIX A

5!7-ra§(0)w10 3 In order to perform the integrals
TR (62

— | q43k.q43 i(ky+ko)R
which is the expected London form. J[l:z](R)_j Pladlh el

[1+ (kyvkp)?;2kyoky]
kqi+ks '

[V. CONCLUSIONS

(63

In this paper we have examined the origin of the van der
Waals interaction, both in its traditional London—
1/R6—form, valid when the photon travel time between at-
oms is small compared to a typical quantum mechanical ev
lution time AT~1/w,9, and the retarded or Casimir—
Polder—1R7—ver.sion, valid in the opposite limit when the ky+k,=c0s6; cOSO,+ sin 6, Sin 6, Cog b1 — b5),
guantum mechanical evolution time is small compared to the (64)
time required for interatomic photon travel so that finite
propagation times must be considered. The calculation was
performed in two very different but equivalent ways. The k1+ K, J do exp—o(ki+kp),
first was a direct evaluation of the atom—atom interaction in
fourth-order perturbation theory, where the two limiting
forms are seen to arise from the dominance of dlfferlngWherekl,kz are chosen to lie along the directiofis¢ and
graphs depending on the interatomic separation. The secorfll, ¢', respectively. Performing the, ¢’ integrations in Eq.
was based on dispersion relations wherein the difference b&63) and definings,=k;R, «=¢R we find

we select the axis to lie along the directioR and use the
Jdentities

% o o 1 1
J[1;2]=(277)2J’0 dofo dk, kffo dks, kgf_ldzf_ldz’exp(iklRHiszz’)

X exp—o(ky+ky)[ 2+ 22%2'°— L (22+72'?);227 ]

(4w)2fd fd fd |3,3 d? o|2+ d2+d2 ., 4 d]sins; sins, .\
SR oI 98 e s5t s G202 2 a2 ag) 2an ds) 5 s P Kt
(477)2f q J q fd 3 3 sins; 5|n52+3 sins; _sins; _ coSs; i

=Y K $151 8282 275 s, > s Srf 51 (same withs;—s,)

1(sins; _sins; CoSs;| . S )
= - —+ >— | Sin—+(same with s;«<-s,)
2\ s ST ST S2

COSs; Sins;
- 2( exp— k(S;+Sy). (65

same withs;—s
s 2 )( 1—S2)
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Defining*® We begin by decomposing the Compton scattering ampli-

COSX  SinX tude for the reactio®\(p) + y(k)—A(p’) + y(k') into elec-

M (x) = sinx+ N(X) = SinX + ——— —~ tric and magnetic components. Defining
X 1
Sinx (66) T,,=(k-k'-Pg,,+k-k'P,P,—k-Pk,P
K(x)=cosx—T, —k'"PkVPM)/Mi,
. (74)
we find _k Kk’ g;w V M,
2(4m)? 2 - .
Jl—R—f dk| 2 j ds £N(s)e™ *S where P=p+p’, it is easy to see that the corresponding
electric and magnetic tensors can be written as
o0 2
fo ds s?M(s)eKS) } TS, =—3T,,, Th=—3T,,+2T2, (75)
2(4m)? 2 (67)  Then the general Compton scattering amplitude can be writ-
JZ—R—f dx<f ds £K(s)e” "S> . ten as
Using ALS™P=TE Fe(s. )+ T) Fu(ss ), (76)
_ a1 where we have definesl. = (p*k)?, u.=(p¥k’)?, andt
fo ds s'sinsexp—«s=(—)"y 5 72 =(k—k’)2. Using crossing symmetry, one now writes
Fe,Fu in terms of a dispersion relation at fixed momentum
Nk (68) transfer,

n
fdsé‘cossexp—xs (— )d 1T 2

1 o
Fem(sy )= p JMzdS, pem(s’,t)

1 1
+ ) . (77

’ !
s'—s, s'—u.,

the remaining integrations ovarbecome trivial and we find

[23—7]47°
=" g7 (69) X

Likewise the corresponding short distance integration  1he amplitude Im amg,(t) needed for the Fourier transform

_ o in Eq. (53) is then given by unitarity as
L. (R)= f d3k,d3k,e' K1tk R(1 + (ky+k,)?) (70)
_ 2 ’
may be performed. If we write Imamp, = x,ng,M M f ds ds px(s,t)py(s’,1)
k2=k? f dk; exp— kik; (71) XDyy(s,s",1), (78)
0
where
then by very similar steps to those used in deriving 64)
we find d*k d*k’
2(41)2 o o 2 Dyy(s,s' )= f(277)42k0 (277)42k0
Li=——p5—|2 f dKf ds €N(s)e™*s
R X (2m)46Mt—k—k ) Ty:Ty
2
* * 1 1 1 1
J’ dKJ ds §M(s)e"s) . (72 X( + )( ; +5 )
0 0 s—s, s—u,/\s'—=s_ s'—u_
Using Eg. (68) the integrations are again straightforward, (79
yielding

In order thatt be positive and small it is necessary to do an
4 _ _ _ : _ Mg
] _ 24 (73 ~ @nalytic continuation to consider the reactioAs-A—A
! ' +A at a total center-of-mass energ§. In order that par-

RG
ticles A, Kstay on their mass shells we must use
APPENDIX B

t t
The fully relativistic calculation of the van der Waals in- Panr= (7,iiMAf)), pA’A—=(g,tiMAﬁ’),
teraction via the Fourier transform method can be found in

the work of Feinberg and SuchErWe have tried in Sec. (80)
[II B to identify the basic physics behind this result. How- K k'
ever, a number of the steps are less than rigorous. Here we ™’
present a more detailed summary of how the calculation is
performed. Then
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t
s—s_=s—M2+ E—i\/fMAz,

t
s—u+=s—Mf\+§+i\/fMAz,

¢ (81
s’—s+=s’—M,§+§+i\/fMAz,
’ ’ 2 t H
s'—u_=s —MA+§—|\/EMAZ,
wherez=p-k=—p’-k. We find then
® 1fdm T s Ma
T2 XY (s—M2)Z+HtMEZ
s M 82
X :
(s'=Mp)*+tMzz'2 (82

Defining o=(s—M3)/M,, o'=(s'—M3)/M,, and 7
=w/\t, 7' =w'/\t the solid angle integration becomes
® at fl q T 7! ®

_ZMi 1 ZTZ+22 242X

Where EE:MM:2_222+24’ @EM:G)ME:ZA_ZZZ,
and may be performed directly, yielding

(83

_ e gyy(7) — gxv(7)

SV 22 (84)
with
2+27%+ 7
gee(n =gu(n=72—| ———Jtanir,
277474 (85
gEM(T):gME(T):TZ_(TT tan 1.

Using these results the integration in E§3) can be per-
formed by making the substitution=4¢? followed by a
fivefold integration by parts in order to remove the tam
dependence. The result is

Cxv(R)
V(R)=— R (86)
where
449 Am. J. Phys., Vol. 69, No. 4, April 2001

1 ©
Cxv(R)=— fo dge”*RPyy({R)ag(id) (87)
with
Pee(X)=Pyum(X) =34+ 6x+5x%+2x3+ x4,
Pen(X)=Pye(x) = — (x2+2x3+x%). (88)

The integration overf may now be done, yielding results
identical to those found via perturbative methods.
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