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A simple model is presented in which the instantaneous dipole moment of the exchange hole is used
to generate a dispersion interaction between nonoverlapping systems. The model is easy to
implement, requiring no electron correlationsin the usual sensed or time dependence, and has been
tested on various atomic and molecular pairs. The resultingC6 dispersion coefficients are
remarkably accurate. ©2005 American Institute of Physics. fDOI: 10.1063/1.1884601g

I. INTRODUCTION

The classical explanation of the dispersion or van der
Waals interaction between chemically inert systems is famil-
iar even to introductory chemistry students. Given two inert
or widely separated systems, aninstantaneousdipole
moment on one systeminducesa dipole moment on the
other. The attraction between these moments results in an
interaction which, in the limit of large separationR, has the
behavior

Edisp= −
C6

R6 , s1d

whereC6 is a constant whose value depends on the systems
involved. This picture begs the obvious question. How do
“instantaneous” dipole moments arise in systems which may
otherwise have a zero permanent dipole moment? How, for
example, do instantaneous dipole moments originate in a
noble gas atom?

The usual quantum mechanical approach is complicated
swe recommend Ref. 1 for a nice treatmentd. Electron corre-
lation invokes the mixing ofexcitedstates with the ground
state, creating virtual or “transition” dipole moments that in-
teract with each other. Second-order perturbation theory and
additional approximations1 give the famous London formula
sin atomic unitsd for the dispersion energy between two
systemsA andB,

Edisp= −
3

2
S IAIB

IA + IB
DaAaB

R6 , s2d

which conveniently depends on properties, the ionization en-
ergy I and polarizabilitya, that are experimentally acces-
sible. The London formula is instructive for understanding
trends but is prone to large errors. Correlatedab initio cal-
culations of high quality can produce accurate dispersion en-
ergy curves2 but are very demanding and provide little physi-
cal insight. Also, a rigorous expression forC6 involving
frequency dependent polarizabilityasivd is known,3

C6 =
3

p
E

0

`

aAsivdaBsivddv, s3d

which can be used to compute accurateC6 values from time-
dependent electronic structure calculations.4,5 These are also

very demanding, however, and must be performed with care.
Methods able to produceC6 coefficients ofreasonable

quality, without the demands of the highly accurate ap-
proaches, are widely useful. Here we present such a method.
It is based on a novel answer to the question posed at the
outset. How do instantaneous dipole moments arise in a
quantum system? We propose thatspherical asymmetriesin
the exchange holeare the source.

II. THE PRESENT MODEL

Consider an electron ofs spin in an atomic or molecular
system. As it moves through the system it is accompanied by
anexchangeor Fermi holewhose shape depends on the elec-
tron’s instantaneous positionr1. The hole is given by the
expression

hXssr1,r2d = −
1

rssr1doi j cissr1dc jssr1dcissr2dc jssr2d,

s4d

where r2 defines the shape of the hole andr1 is called the
“reference” point. Summation is over all orbitals ofs spin
sHartree–Fock or Kohn–Sham, and assumed in this paper to
be reald and rs is the total s-spin electron density. The
s-spin exchange energyEXs is related to the exchange hole
by

EXs =
1

2
E E rssr1d

hXssr1,r2d
r12

d3r2d
3r1. s5d

This simple deconstruction of the exchange energy of a
Slater determinant has great conceptual power6 which will be
exploited presently.

The exchange-hole definition enables us tovisualizethe
effects of self-interaction correction and exchange. When an
electron is atr1, the hole measures the depletion of probabil-
ity swith respect to the total electron densityrd of finding
another same-spin electron atr2. The probability of finding
another same-spin electron atr2=r1 is completely extin-
guished,

hXssr1,r1d = − rssr1d, s6d

as required by the Pauli exclusion principle. The hole is al-
ways negative, as can be seen by rewriting Eq.s4d as
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hXssr1,r2d = −
1

rssr1d
fo

i

cissr1dcissr2dg2 s7d

and the hole always contains exactlysminusd one electron:

E hXssr1,r2dd3r2 = − 1. s8d

This is easy to prove from Eq.s4d and the orthonormality of
the orbitalscis. Equation s8d guarantees that the electron
plus its holealways haszero chargeoverall.

The hole is not, in general, spherically symmetric around
r1. Only in a uniform electron gas does it have spherical
symmetry. Even in systems with spherically symmetric den-
sities, the hole is aspherical unlessr1 is at the center of the
system. Thus the electron plus its Fermi hole, though of zero
charge overall, generally has anonzero dipole moment. Since
the exchange energy, Eq.s5d, senses only the spherical aver-
age of the hole around eachr1, a nonzero dipole moment has
no effect on the energy of the system containing the electron.
Might the asphericity of the hole be the source, however, of
the instantaneous dipole moment responsible for the disper-
sion interaction withother systems?

Consider a second systemsBd at positionR relative to
the firstsAd and assume that the distanceR is large compared
to the sizes ofA and B. The instantaneous dipole moment
dXssr1d of the exchange hole plus its electron at pointr1 in
systemA generates an electric field

E =
3sdXs ·RdR

R5 −
dXs

R3 s9d

at positionR. If systemB has polarizabilityaB, then a dipole
moment of value

dind = aBE s10d

is induced inB. The electrostatic interaction between these
dipoles has energy,

Vdip-dip =
dXs ·dind

R3 −
3sdXs ·Rdsdind ·Rd

R5 , s11d

which, after substituting Eqs.s10d and s9d, becomes

Vdip-dip = − aBFdXs
2

R6 +
3sdXs ·Rd2

R8 G . s12d

Theorientation averagedisotropic interactionsi.e., averaged
over all orientations ofdXsd is obtained by integrating over
angles as follows:

Vdip-dip
avg = −

aB

4p
E

0

2p E
0

p SdXs
2

R6 +
3dXs

2

R6 cos2qDsinqdqdw

= −
2dXs

2 aB

R6 , s13d

whereq andw are polar angles with respect to the direction
R. The resultingVdip-dip

avg thus depends on the magnitude
squared,dXs

2 sr1d, of the exchange-hole dipole moment at
eachbody centeredreference pointr1 in systemA.

Now integrate overr1 in systemA and overa and b
spins as well. Denoting this integral bykdX

2l, we have

kdX
2lA =E rasr1ddXa

2 sr1dd3r1 +E rbsr1ddXb
2 sr1dd3r1, s14d

and we obtain the following formula for the total dipole-
dipole interaction energy:

Udip-dip
AB = − 2kdX

2lAaB/R6. s15d

The same derivation with systemsA and B interchanged
gives

Udip-dip
BA = − 2kdX

2lBaA/R6, s16d

which is not, unfortunately, the same as Eq.s15d. For unlike
systems our model lacksA-B symmetry. An appropriate av-
eraging of Eqs.s15d and s16d will be suggested below. For
like systems, however, there is no ambiguity and the dipole-
dipole interaction energy is

Udip-dip = − 2kdX
2la/R6. s17d

Initial tests of Eq.s17d on various atomic dimersscomputa-
tion of kdX

2l is described in the following sectiond gave inter-
esting results. Despite the simplicity of the underlying
model, Eq.s17d reproduces knownC6 values with remark-
able accuracy if divided by a factor of 4. An incorrect pref-
actor is not surprising. Our model takes dipole-dipole poten-
tial energy into account, but not kinetic energy7 or charge
rearrangement8 effects. These, especially the latter, are very
difficult to model. That Eq.s17d doeswork well with a modi-
fied prefactor is, in our opinion, fascinating. We therefore
take a heuristic approachsfor nowd and propose the formula

C6 = 1
2kdX

2la s18d

for like-system interactions.
For unlike systems a suitable average of Eqs.s15d and

s16d needs to be taken with, in light of the above, prefactors
divided by 4. Straightforward algebraic averaging is unsuc-
cessful. Geometric averaging also fails. Recognizing that
successful combination formulas in the literaturese.g., Lon-
don formula or Slater–Kirkwood formula9d feature a sum of
some property ofA andB in a divisor, we propose averaging
inversesas follows:

2

C6
=

1

C6
AB +

1

C6
BA , s19d

which, after insertingC6 coefficients divided by 4 from Eqs.
s15d and s16d, gives

C6 =
kdX

2lAkdX
2lBaAaB

kdX
2lAaB + kdX

2lBaA

. s20d

If this heuristic approach is unsatisfying, Eq.s20d can be
derived by strong theoretical arguments as well. There are
connections between the formulas of this section and the
second-order perturbation theory of the dispersion interac-
tion. We draw these connections in the Appendix rather than
digressing now. In the following section, Eq.s20d is applied
without further ado to a wide variety of atomic and molecu-
lar, like and unlike, interactions.
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III. COMPUTATIONS AND APPLICATIONS

The calculation ofC6 dispersion coefficients in the
present model requires onlykdX

2l and a for individual sys-
tems. We take polarizability data from tables instead of
computing a ourselves. Accurate values are readily avail-
able.10 This leaves as our only task the computation ofkdX

2l.
kdX

2l is a sum of two terms, one for each spin, as in
Eq. s14d:

kdX
2l = kdXa

2 l + kdXb
2 l, s21d

where

kdXs
2 l =E rssr1ddXs

2 sr1dd3r1. s22d

Recall thatdXs
2 sr1d is the magnitude squared of the dipole

moment of the electron plus its exchange hole at reference
point r1. Given a set of occupied orbitalscis, the dipole
moment is easily computed by integrating overr2 in Eq. s4d:

dXssr1d = F 1

rssr1doi j r i j scissr1dc jssr1dG − r1, s23d

r i j s =E rcissrdc jssrdd3r . s24d

Note that the dipole moment of a neutral object is origin
independent and we therefore conveniently use the molecular
origin in Eq. s23d. All integrations, the moment integrations
of Eq. s24d and the integration of Eq.s22d, are performed
numerically.11 The cost of computingkdX

2l is negligible com-
pared to the cost of computing the orbitals themselves.

Orbitals are obtained in this work from the grid-based
NUMOL program of Becke and Dickson.12 We usesspin un-
restrictedd Hartree–Fock orbitals in these first tests.13

Hartree–Fock orbitals are preferable to, e.g., local-density
approximationsLDA d or generalized gradient approximation
sGGAd Kohn–Sham orbitals because the Fermi-hole dipole
moment is sensitive to orbital behavior at long range. We
therefore avoid the well-known long-range deficiencies of
the LDA and GGA Kohn–Sham potentials. The dependence
of kdX

2l on orbitals and electron correlation will be explored
in greater detail in future work.

In Tables I and II, we presentC6 dispersion coefficients
obtained from Eq.s18d for like systems and Eq.s20d for
unlike systems for a variety of atomic and molecular pairs.

TABLE I. CalculatedC6 coefficients for atomic pairs, in atomic units.

Atoms CalculatedC6 LiteratureC6
a

He–He 1.64 1.47
He–Ne 3.09 3.13
He–Ar 9.81 9.82
He–Kr 14.08 13.6
He–Xe 20.91 18.3
Ne–Ne 5.83 6.87
Ne–Ar 18.61 20.7
Ne–Kr 26.72 28.7
Ne–Xe 39.73 37.8
Ar–Ar 62.71 67.2
Ar–Kr 90.93 94.3
Ar–Xe 137.4 129
Kr–Kr 132.1 133
Kr–Xe 200.1 184
Xe–Xe 304.7 261
H–H 6.76 6.49
H–Li 71.64 66.4
H–Na 85.76 71.8
H–K 143.2 109
Li–Li 1528 1390
Li–Na 1683 1450
Li–K 2910 2320

Na–Na 1879 1510
Na–K 3230 2410
K–K 5567 3890
He–H 2.99 2.82
He–Li 24.17 22.6
He–Na 29.53 24.4
He–K 48.88 38.0
Ne–H 5.69 5.71
Ne–Li 46.51 44.0
Ne–Na 56.79 47.7
Ne–K 94.02 74.9
Ar–H 20.13 20.0
Ar–Li 185.7 175
Ar–Na 224.8 189
Ar–K 373.6 292
Kr–H 29.44 28.5
Kr–Li 278.7 259
Kr–Na 336.7 281
Kr–K 560.0 433
Xe–H 45.14 40.9
Xe–Li 446.5 404
Xe–Na 537.5 438
Xe–K 895.3 669

MAPEb 14.0 s9.8cd ¯

aLiterature values from Ref. 14.
bMean absolute percent error relative to the literature values.
cExcluding atomic pairs involving potassium.

TABLE II. Isotropic C6 coefficients for molecular pairs, in atomic units.

Molecules CalculatedC6 LiteratureC6
a

H2–H2 14.01 12.11
N2–N2 66.62 73.39

CH4–CH4 115.3 129.6
CH4–CO2 128.7 142.6
CO2–CO2 143.7 158.7

Methane–acetylene 147.5 162.5
Acetylene–CO2 164.7 178.2

Acetylene–acetylene 188.7 204.1
Acetylene–ethylene 225.3 247.7
Acetylene–ethane 241.9 278.9
Ethylene–ethylene 270.1 300.5

Acetylene–propylene 320.2 367.6
Ethane–ethane 310.6 381.8

Acetylene–propane 332.8 395.6
Propylene–propylene 548.6 662.8

Propane–propane 589.4 768.1

MAPEb 12.5 ¯

aLiterature values from Refs. 5 and 18.
bMean absolute percent error relative to the literature values.
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The mean absolute percent errorsMAPEd of our atom-atom
C6’s in Table I relative to highly accurate literature values14

is 14.0%. The potassium atom is a significant outlier. Omit-
ting all cases involving potassium leads to a reduced MAPE
of 9.8%. OurC6’s are in slightly better agreement with lit-
erature values than the approximate density-functional
method of Andersson, Langreth, and Lundqvist,15 which
yields a MAPE of 15.5% for the same set of 45 noble gas
and alkali atom pairs.

IsotropicC6 coefficients for molecule-molecule pairs are
reported in Table II. We use B3LYP16/6-31Gs2df ,pd geom-
etries obtained from theGaussian98program package.17 Our
calculated values tend to be smaller than accurate literature
values,5,18 but a reasonably good MAPE of 12.5% is
achieved.C6’s from Eq. s3d combined with time-dependent
Hartree–Fock calculations of frequency dependent polariz-
abilities have been reported by Spackman5 for eight of the
sixteen systems in this set. His results also underestimate
accurate values, and their MAPE of 12.6% is similar to the
12.5% obtained from our much simpler time-independent
model.

The present method performs remarkably well given its
simplicity. Neither time dependence, nor excited states, are
necessary. The instantaneous dipole moment of the exchange
hole, and the polarizability of the partner system, is all we
require.

IV. CONCLUSIONS

This work proposes an elegant connection between
exchange-hole asphericity and the dispersion interaction. If
the position dependent dipole moment of the exchange hole
splus its electrond in a systemA is considered to induce di-
pole moments in another systemB, then aC6 dispersion
coefficient of very good accuracy can be obtained through
Eq. s20d. The model works for molecular as well as atomic
systems.

This approach may have practical benefits in addition to
its fundamental theoretical appeal. We hope to incorporate it
into molecular structure and molecular mechanics codes in
future work in order to efficaciously handle long range inter-
actions.
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APPENDIX: CONNECTIONS WITH SECOND-ORDER
PERTURBATION THEORY

We refer the reader to Ref. 1 for an excellent and com-
prehensible account of the second-order perturbation theory
of the dispersion interaction. We will here adopt notation and
formulas from Chap. 12 of this book. Equations12.32d of

TABLE III. CalculatedC6 coefficients for atomic pairs, in atomic units.

Atoms Eq.s20d C6 Eq. sA4d C6 LiteratureC6
a

He–He 1.64 1.64 1.47
He–Ne 3.09 3.61 3.13
He–Ar 9.81 12.19 9.82
He–Kr 14.08 17.95 13.6
He–Xe 20.91 27.87 18.3
Ne–Ne 5.83 8.12 6.87
Ne–Ar 18.61 26.58 20.7
Ne–Kr 26.72 39.02 28.7
Ne–Xe 39.73 60.21 37.8
Ar–Ar 62.71 91.02 67.2
Ar–Kr 90.93 134.3 94.3
Ar–Xe 137.4 209.1 129
Kr–Kr 132.1 198.4 133
Kr–Xe 200.1 309.2 184
Xe–Xe 304.7 482.7 261
H–H 6.76 6.76 6.49
H–Li 71.64 71.64 66.4
H–Na 85.76 89.97 71.8
H–K 143.2 157.2 109
Li–Li 1528 1528 1390
Li–Na 1683 1727 1450
Li–K 2910 3062 2320

Na–Na 1879 1992 1510
Na–K 3230 3522 2410
K–K 5567 6230 3890
He–H 2.99 2.99 2.82
He–Li 24.17 24.17 22.6
He–Na 29.53 31.16 24.4
He–K 48.88 54.25 38.0
Ne–H 5.69 6.20 5.71
Ne–Li 46.51 47.38 44.0
Ne–Na 56.79 61.38 47.7
Ne–K 94.02 106.8 74.9
Ar–H 20.13 22.94 20.0
Ar–Li 185.7 191.7 175
Ar–Na 224.8 246.4 189
Ar–K 373.6 429.1 292
Kr–H 29.44 34.19 28.5
Kr–Li 278.7 289.1 259
Kr–Na 336.7 371.3 281
Kr–K 560.0 646.7 433
Xe–H 45.14 54.11 40.9
Xe–Li 446.5 467.5 404
Xe–Na 537.5 599.3 438
Xe–K 895.3 1044 669

MAPEb 14.0 31.7 ¯

aLiterature values from Ref. 14.
bMean absolute percent error relative to the literature values.

TABLE IV. Atomic values ofkdX
2l ,km2l, anda, in atomic units.

Atom kdX
2l km2l a

He 2.37 2.37 1.38
Ne 4.36 6.08 2.67
Ar 11.31 16.42 11.09
Kr 15.74 23.64 16.78
Xe 22.30 35.34 27.32
H 3.00 3.00 4.50
Li 18.61 18.61 164
Na 23.10 24.49 163
K 37.98 42.50 293
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Ref. 1 is obtained when all excitation energies in systemA
are approximated by a constant “average” valueDEA and
similarly for systemB:

Edisp= −
2

3
S 1

DEA + DEB
D kmA

2lkmB
2l

R6 . sA1d

The quantitykm2l is the expectation value of the squared
dipole moment operator

m2 = So
i

qir iD2
= o

k

qk
2rk

2 + o
iÞ j

qiqjr i · r j , sA2d

where the sums are over all particles including nuclei. It is
assumed thatA and B have zero total charge and zero per-
manent dipole moment. From the analogous second-order
perturbation theory of polarizabilitya, and again making an
average excitation-energy approximation, one obtains1

a =
2km2l
3DE

. sA3d

This equation can be used to eliminatekm2l from Eq. sA1d
thus deriving the London formula, Eq.s2d, after further ap-
proximatingDE by the ionization energy. Alternatively, we
can eliminateDE from Eq.sA1d and derive another formula,

Edisp= − F kmA
2lkmB

2l
kmA

2laB + kmB
2laA

GaAaB

R6 , sA4d

the focus of which iskm2l. The m2 operator, Eq.sA2d, con-
sists of nuclear and electron one-body operators and two-
body operators arising from the cross terms. In anatom the
nuclear parts can be ignored andkm2l in the Hartree–Fock
approximation is given by

km2l =E r2rsrdd3r − o
i j

sr i j a
2 + r i j b

2 d , sA5d

wherer is distance from the nucleus,rsrd is the total electron
density, andr i j s is the moment integral of Eq.s24d.

km2l is not the same quantity askdX
2l. For atoms contain-

ing only s electrons, however,km2l andkdX
2l are identical and

are both given by

kdX
2l = km2l =E r2rsrdd3r . sA6d

The fact thatkdX
2l equalskm2l in atoms such as H, He, Li, and

Be suggests an obvious way to incorporatekdX
2l into a dis-

persion model. Simply replacekm2l everywhere in Eq.sA4d
by kdX

2l. This gives Eq.s20d of the text and confirms our
heuristically obtained result.

How well does Eq.sA4d itself perform?C6 values from
Eq. sA4d are presented in Table III for the same atom-atom
pairs as in Table I. We see thatC6 values from Eq.s20d are
superior to those from Eq.sA4d. The MAPE arising from Eq.
sA4d is 31.7%, more than twice the MAPE of 14.0% arising
from Eq. s20d. Our exchange-hole-based model therefore of-
fers, in addition to conceptual beauty, a significant advance
over the putative model of Eq.sA4d.

Individual values ofkdX
2l , km2l, and a for the atoms

comprising our atomicC6 test set are presented in Table IV.
These may be of interest to some readers.
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