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Since we are interested only in terms of order H "%, we expand the
denominator of (32.18) to obtain

(Eo + 2AQ[H'®0))(1 + AX0[H"(0)-1
= Fy+ (24 — EoAz)(OIH'zl()) (32.19)
If we remember that F, is negative, we find that (32.19) has a minimum

with respect to variation of A when 4 = 1/E,, in which case (32.17)
becomes

H’2 2 5
Eo+ W(R) < Eo + %,Oi? = E, — 6‘3R“6° (32.20)

Thus in (32.16) and (32.20) we have both upper and lower limits on the
interaction energy:

8eZq,s 6e2a,®
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More careful variation ecalculations have shown that the numerical
coefficient in W(R) is very nearly 6.50.

< WR) < — (32.21)

33LJALTERNATIVE TREATMENT OF THE PERTURBATION SERIES

We have seen in Sec. 32 how the expression (31.11) for the second-order
perturbed energy can give a useful limit even when the generalized sum-
mation S cannot be carried out. In some situations, however, closed-
form expressions for W, and ¢1, both of which otherwise involve infinite
summations, can be obtained. We illustrate this first with the problem
of the second-order Stark effect of a hydrogen atom in its ground state
and then generalize the procedure to a wider class of situations.

SECOND-ORDER STARK EFFECT IN HYDROGEN

The ground state of a hydrogen atom is nondegenerate, and the first-
order perturbed energy in a uniform external electric field is zero. Our
problem then is to calculate Eq. (31.11):

|01 |m)|?
Ey— E,

! See L. Pauling and E. B. Wilson, Jr., “Introduction to Quantum Mechanics,”” sec.
47a (McGraw-Hill, New York, 1935). The result (32.21) is not strictly correct, since
H’ in (32.12) included only the static dipole-dipole interaction between the two atoms,
In reality, there is also an effect of retardation, which arises from the finite speed of
Propagation of the electromagnetic interaction between the two dipoles. This causes
W(R) to fall off like —1 /K" when R is large in comparison with the electromagnetic
wavelength associated with an atomic transition frequency: B > hcao/e? = 137aq.
At such large distances the interaction is uninterestingly small, so that (32.21) actually
Provides useful limits on W(R). See H. B. G. Casimir and D. Polder, Phys. Rev. 73,
360 (1948).

W2 =S S.:L (331)
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The ground state ket |0) in the coordinate representation is
(I'lO) = umo(r) = (1ra03)—'}e—rlao’

and E, = —e?/2a0. Equation (33.1) and the variation method are
used in Prob. 9 to obtain lower and upper bounds, respectively, for Wo.

Instead of working directly with Eq. (33.1), we shall first find ¢
by solving the second of Egs. (31.4) subject to the condition (31.6), and
then make use of (31.7).! With H’ given by (31.26), W, = 0, and the
second of Egs. (31.4) is an inhomogeneous differential equation for y.:

h? e?
(— V- — Eg) Y1 = —ebr cos 6 uyo (33.2)

2;1 r
We show first that the only angle dependence of ¥, is through a multiply-
ing factor cos . One way of seeing this is to expand ¢, as a series of
functions of r times spherical harmonies in 6, ¢ and to note that each term
is an eigenfunction of the angular part of V2. Then the left side of (33.2)
is a similar series of spherical harmonics, and the only term we wish to
retain 1s that which has the same angular dependence as the right side:
Y10(8,¢) or cos §. An alternative way of seeing the same thing is to note
that ¢, given by (31.9) is a sum over only those unperturbed states w, for
which @, fails to vanish; in accordance with (31.10), this means that .,
is proportional to cos 6 since the unperturbed state is spherically sym-
metrical. Thus each term in the series for y; is proportional to cos 6,
and hence ¢, is also.

We can thus write

Yi(r) = f(r) cos 6 (33.3)

and Eq. (31.6) is auton"latically satisfied. Substitution of (33.3) into
(33.2) gives

&f  2df 2 9 1 2F

v — e — P — = - @@ '_rl’ao

dr? r dr Tzf T a,o‘,?"f aozf ea0(7a03)% s (334)
The solution of Eq. (33.4) is expected to have the form of a power series
in » multiplied by e—7/%; further, the series is expected to start with the
first or higher power of r, since otherwise (33.3) will be singular at the
origin. It turns out that the series terminates after two terms, so that the
solution of (33.4) is

o) = _(moa)—*% (aar + r)erico (33.5)

1 This approach appears to have been first published by M. Kotani, “Quantum
Mechanics,”” vol. I, p. 127 (Yuwanami Book Co., Tokyo, 1951).
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as may be verified by substitution. Thus the wave function that is
correct through first order in F is

(7ra03)—§e“"l'“° [1 — % (a(ﬂ' + %7‘2) COS 0] (33.6)

Substitution of the expression for ¥1 obtained from Eqs. (33.3) and
(33.5) into (31.7) gives for the second-order perturbed energy

W2 = eb(rac®)2[r cos? 6f(r)e—/o0 g3y

2 oD
- %3 L (@ort + Lrs)e—2rie
0

- ggzaos (33.7)
This expression for the second-order Stark effect was first obtained by
separation of the wave equation in parabolic coordinates,

POLARIZABILITY OF HYDROGEN

It was remarked at the end of Sec. 31 that the second-order Stark effect
could be interpreted in terms of an induced electric dipole moment.
This induced moment is proportional to the applied electric field and in
the same direction, and the ratio « of dipole moment to field strength
1s called the polarizability. Tt is easily seen that these conditions hold
exactly for a charged isotropic harmonic oscillator and that the energy
change in this case is —4aF? (Prob. 1). TFor a general system, in which
the energy change is not exactly proportional to E2, it is still true that

Wy = —1f2 (33.8)
Comparison of Eqs. (33.7) and (33.8) shows that
a = 2a® (33.9)

for a hydrogen atom its ground state (see Prob. 12).

'G. Wentzel, Z. Physik 38, 518 (1926); [. Waller, Z. Physik 38, 635 (1926); P. S.
Epstein, Phys. Rev. 28, 695 (1926). The general expression for the first- and second-
order Stark effect with nuclear charge Z, in terms of the parabolic quantum numbers
of Sec. 16, is 3n(n1 — ns)(eEao/2) — (E"’ao-”/lﬁZ“)n“[17n2 — 3{(n1 — n2)? — Ym2 4 19).
It should be noted that such a series in powers of E cannot converge since, strictly
Speaking, the system has no bound states, This is so because the electron of a hydro-
gen atom placed in a uniform electric field can gain enough energy by moving in the
direction -E to compensate for its binding energy. In other words, the electron can
tunnel through the potential barrier created by the nuclear coulomb field an-d 1-;he
external electric field, as discussed in Sec. 17. The rate of spontaneous dissociation
for a hydrogen atom in an electric field was calculated by J. R. Oppenheimer, Phys.
Rer. 31, 66 (1928), and is exceedingly small for fields of laboratory strength. Even
though the series for the perturbed energy in powers of E does not converge, it is
useful for ordinary field strengths.



266 QUANTUM MECHANICS

METHOD OF DALGARNO AND LEWIS

The foregoing procedure can be generalized in the following way.! We
start with Eq. (31.11), which is applicable to the ground state of any
system since in all known cases this state 1s nondegenerate:

(O|H'|nXn|H'|0)
V, =9, 33.10
W, =25, E, — L. ( )
Suppose now that an operator F can be found such that

H'|0 '

for all states n other than the ground state. Substitution into (33.10)
then gives
Wy = SL(0|H'|n)Xn|F|0) = (O|H'F|0) — (O|H'|0)XO|F|0) (33.12)

where the term n = 0 has first been added in to make the summation
complete and then subtracted out. Thus, if F can be found, the evalu-
ation of W, is greatly simplified, since only integrals over the unperturbed
ground-state wave function need be evaluated.

Equation (33.11) can be written as

(n|H'|0) = (Eo — E.)(nlF|0) = (n|lF,H]|0)
which is evidently valid if F satisfies the operator equation
[F.H] =H +C

where C is any constant. However, this last equation is unnecessarily
general; it is enough that F satisfy the much simpler equation

[F,HJ\0) = H'|0) + €|0) (33.13)
from which it follows that C = — (0|H’|0).
We now define a new ket |1), which is the result of operating on [0)
with F. Then Eq. (33.13) may be written
(Eo — Ho)|1) = H'|0) — (0|H’|0)0) where 1) = F|0)
(33.14)
The ket |1) can evidently have an arbitrary multiple of |0) added to it; we
choose this multiple so that (0]1) = 0. If now Eq. (33.14), which is an

inhomogeneous differential equation, can be solved for |1), the second-
order perturbed energy (33.12) can be written in terms of it as

W, = (O|H'|L) (33.15)

1 A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A233, 70 (1955); C. Schwartz,
Ann. Phys. (N.Y.) 6, 156 (1959).
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In similar fashion the series (31.9) for ¥1 can be written in closed form -

w =5, O g cairio)
= FI0) — [0XOIFI0) = [1) (33.16)

It is apparent that Eqs. (38.15) and (33.16) are consistent with Eq. (31.7),
as of course they must be.

The Dalgarno-Lewis method thus replaces the evaluation of the
infinite summation (31.9) by the solution of the inhomogeneous differ-
ential equation (33.14). The latter procedure may be much simpler even
when it cannot be done in closed form, as with (33.4).

THIRD-ORDER PERTURBED ENERGY

The ket |1) = F|0) is all that is needed to find the third-order perturbed
energy W; We make use of Egs. (31.7), (31.12), (31.13), and the com-
plex conjugate of (33.11) to write

Ws = (uo,H'y2)
_g (O|H'|k) (S’ (k|H'|[n)Xn|H'|0) (le’IOXOIH'IO))
*E, — E.\"" E,—E, E, — E,
= S}OIF k) Stk H |nXn|F|0) — (k|F|0)O|H’|0))
= (O|FTH'F|0) — (O|F*|0XO|H'F|0) — (O|FTH’{0)X0|F|0)
— (O|F'F|0)O|H'|0) + 2(0|F*|0)0[H’|0)0|F|0)
= (1|H'[1) — (1|1)O0|H’}0) (33.17)

since (0|1) = 0. We thus obtain a closed expression for W as well.l

INTERACTION OF A HYDROGEN ATOM AND-A POINT CHARGE

As an example of this method, we now calculate the change in energy of a
hydrogen atom in its ground state when a point charge Ze is placed at a
fixed distance £. The perturbation is

_ Ze? i Ze?
~ R (R4 r® — 2Rr cos o)t

2 - 1
- -z (1%‘) Pi(cos 6) (33.18)
I=1

HI

provided that £ > r or, equivalently, that R is much greater than ao.

' This result can also be obtained directly from Eqs. (31.4) and (31.6) as a special case
of the formula derived in Prob. 14.
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From the structure of Eq. (33.14), we expect that the coordinate
representation of the ket [1) can be written in the form

(1) = Y, fulr)Pi(cos 6) (33.19)
=1

Substitution of (33.19) into (33.14) leads to the following differential
equation for fi(r):

&, 2dh M0+ D 27

P 1
—J° s i . = e e ypleg—rlae
dr? r dr 72 fu aer J ao? T ao R (rag®)?

(33.20)

As expected, this agrees with Eq. (33.14) when we put I = 1 and E =
—Ze/R2.

A solution of Eq. (33.20) is easily found in analogy with (33.5) and
again contains only two terms. Substitution into (33.19) gives

o

7 l 1+1
(rll) = Z Rl"'l(?rao”)% (a({r + lT—I— 1) e—"1%oP(cos 6) (33.21)
I=1

which, in accordance with (33.16), is equal to Yi(r). Similarly, Eq.
(33.15) shows that W is given by

(L + 2)(21 + 1)! g™
l22l+1 R2I+2

W, = (O|H'|1) = —Z%? E

=1

(33.22)

Again, the leading term (I = 1) agrees with (33.7) when E = —Ze/R?.

It should be noted that, although Eq. (33.22) gives the first two
terms of an asymptotic series in 1/R correctly, the third term, which is
proportional to 1/R?#, is dominated by the leading term of W;. Equation
(33.17) shows that W5 = (1{H’|1) in this case and that the leading term
for large R is proportional to 1/R7 (see Prob. 15).1

34 THE WKB APPROXIMATION

In the development of quantum mechanics, the Bohr-Sommerfeld quanti-
zation rules of the old quantum theory (Sec. 2) occupy a position inter-
mediate between classical and quantum mechanies. It is interesting that
there is a method for the approximate treatment of the Schrodinger wave

1 A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London) A238, 276 (1956). It
should be noted that, unlike the situation with the van der Waals interaction discussed
in the preceding section, there is no correction arising from retardation in the present
problem. This is because the only motion is that of a single electron in the electro-
static potential of two fixed charges.



