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In turn we can now calculate the eigenvector correction ¥'*. Applying the
same method as before to (17.37), we find

po _ cogo 1= P n

n n n E

n 0
Again we may set C® = 0, i.e., PO¥® = 0. Substituting also (17.35) for
Y we obtain

1 — P(o) ] — P(o)
v = T r EY — v) o ;{ 14 S (17.40)
n — 1o n — 1o

The relation (17.28) finally allows us to write ¥ entirely in terms of the
unperturbed system as

1 — P(O) 1 — P(O) 1 — P(O)
¥ = — ——2— VPOVY) + —— 2V yyY (1741)
(E(O) — Ho)z E© _ HO E9 _— H,
Exercise 17.1. Show that if CV = C? =,
(¥, V¥,) = E’ + 2¢E.7 + 0(g") (17.42)

Also evaluate (¥, H)Y',) to second order in g. Does the sum of (¥, H,¥,)
and (¥,, gV¥,) give E, to second order in g?

Exercise 17.2. Calculate the normalization factor for the perturbed eigen-
vector to second order in g.

The perturBation theory can be further developed in this way to any
desired order.? For practical purposes it is rarely necessary to go beyond the
second order.

Exercise 17.3. Obtain expressions for the mth-order correction to the energy
and the eigenvectors in terms of the corrections of lower order. Show that
with the choice C® = 0, for all £ > 0, the perturbed eigenvector, instead of
being normalized to unity, satisfies the condition

(Yo', ¥ =1
Derive the formula for the energy shift,

AE, =E, — E® = (¥, v¥,) (17.43)

4. Electrostatic Polarization and the Dipole Moment. As an important
example we consider an electron bound in an atom and placed in a weak

2T. Kato, Progr. of Theor. Phys., 4, 514 (1949); K. A. Brueckner, Phys. Rev., 100, 36
(1955). As shown by R. M. Sternheimer in Phys. Rev. 84, 244 (1951) and Phys. Rev. 95, 736
(1954), it is sometimes practicable to solve the inhomogeneous perturbation equations
directly without making an expansion in terms of unperturbed eigenfunctions.
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uniform external electric field E. The field can be derived from an electro-
static potential

()= —E-r

where the coordinate origin is most conveniently chosen at the position of
the nucleus, and the perturbation potential is

gV =—ep=¢eE.r

The energy of the system to second order is given by the formulas of the
last section as

E,=E® + eE-r,, + ¢ 3 L LB Lin) (17.44)

kEn Ei?) _ E;O)

where all matrix elements are to be taken with respect to the unperturbed
eigenstates.

The shift of energy levels in an electric field is known as the Stark effect.
The first two terms of the perturbation expansion give accurate results for
applied fields which are small compared to the internal electric field of the
atom. The latter is in order of magnitude given by E‘®/ea ~ 10'° volts/meter.
In practice this condition is always well satisfied and successive terms in the
perturbation expansion decrease rapidly and uniformly, except that some
terms may vanish owing to certain symmetry properties of the system. The
most important instance of this is conservation of parity which results in the
absence of the first-order term in almost all atomic states, with the important
exception of the excited states in hydrogenic atoms. If the unperturbed
electron is in a central field, H, is invariant under coordinate inversion
through the center of force, and the energy eigenstates may be taken to have
definite parity. We saw in Section 16.10 that the expectation value of the
operator r, which is odd under reflection, vanishes for states of definite
parity; hence, the external electric field can, in general, produce no first-
order, or linear, Stark effect. An exception arises if the central field is a pure
Coulomb field (hydrogenic atoms) because the excited states of such atoms
exhibit degeneracy of states with opposite parity. Superposition of such
states yields energy eigenstates which have no definite parity, and the
expectation value of r need no longer vanish. We shall resume discussion
of the linear Stark effect of the first excited state of hydrogen as an example of
degenerate perturbation theory in Section 17.6. The inevitable degeneracy of
the magnetic substates for states of nonzero angular momentum, on the other
hand, does not affect our conclusion concerning the absence of the linear
Stark effect, because all these substates have the same parity (Section 16.10).

Usually, then, the first-order term in (17.44) is absent. The second-order
term gives rise to the so-called quadratic Stark effect. If the electric field is
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along the z-axis, the quadratic Stark effect is given by the formula

E = E© + 2E22 Iznk|2
n n

e E(O) E (0) (17‘45)

The parity selection rule insures that the trivial degeneracy of magnetic
substates does not interfere with the applicability of this formula, because
two states which differ only by their magnetic quantum number have the
same parity. By inspection of the work of the preceding section we see that
such apparently indeterminate (0/0) terms may simply be omitted from the
sum in (17.45).

Perturbation theory may also be used to calculate the expectation value of
the static electric dipole moment, —er, in a stationary state of the one-
electron atom. In the lowest approximation,

Po = — el = —e f £ v 0| dr (17.46)

This is called the permanent electric dipole moment of the system, because it
represents a vector which is determined by the unperturbed state of the
system and entirely independent of the applied field. It vanishes, of course,
for all states which possess definite parity.

A better approximation is obtained by using the correction (17.36):

E.r
) (2 0 0% 5 ,, (0 e
~ |ya + gvn I ~ |92 1P + ey, k;nw E9 — gO
E-r
(0) (0) kn
+ ey, kgnzp £V _ O (17.47)

The last two terms describe the polarization of the atom by the applied field.
In this approximation we obtain for the dipole moment of the one-electron
atom

— 2 Fnilen + Fenl nge
P= —efpr dr = po — ekg E® _ E® -E

where the last term represents the induced dipole moment in the state n,

2 Flien + Tenl nk —
p1 = k_z;n o .E=a-E (17.48)
k n

This equation defines a tensor (or dyadic) of polarizability for the state n,

2 Fpilin + Tenlak
oa=-ce k; O _ g® (17.49)
r r ~ La
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It is of interest to note that this tensor is symmetric.® In many applications
we find «,, = «,, = «,, = 0, and «,, = «,, = «,,, so that the polarizability
is a scalar.

Exercise 17.4. Calculate the polarizability of an isotropic harmonic oscillator
from (17.49), and verify that the result agrees with an exact calculation of the
induced dipole moment.

Note that
E.-p= —fwn*ng,,dr=E- po+ E-a-E + 0(E)
Comparing this with (17.42), we obtain

E,=E?” —E-Pyp—}E-a-E+---

which upon substitution of p, and & can easily-be seen to be identical with
(17.44). The factor of § which appears in the energy owing to the induced
dipole moment is the same as that customarily found when “stress’’ (E) and
“strain” (p,) are proportional, as is the case in the approximation leading to
(17.48).

The rigorous evaluation of the sums over unperturbed states, which are
encountered in all higher order perturbation calculations, is usually a difficult
problem. However, sometimes special techniques may allow such sums to be
performed. As an example consider the quadratic Stark effect or the
polarizability of the ground state of the hydrogen atom. According to
(17.44) and (17.49), this requires the evaluation of

z | Zox| ? z 20k2 K0

k70 B — E” (S EY — E”

where the subscript 0 labels the ground state of hydrogen |0) and k labels
all other states of hydrogen.

Let us suppose that it is possible to find, by whatever procedure, an
operator F which satisfies the equation

2|0) = (FH, — H,F)|0) (17.50)
Then we have
2o = (k| 2|0y = (k| FH, |0y — (k| HyF |0) = (E — E”)k| F |0)

3 M. Born and E. Wolf, Principles of Optics, 3rd ed., Pergamon Press, New York, 1965,
p- 366. See also W K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
2nd ed., Addison-Wesley Publishing Company, Reading, 1962, p. 30 and Section 6-2.
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and

2
S |z | = > (0| z |k)k| F |0) = (0] zF |0) — (0] z |0XO0| F |0)

x#0 B — E(O) k#0
(17.51)

By the use of closure in the last step the sum over states has thus been
transformed into the calculation of expectation values in a single state. Of
course, the usefulness of (17.51) hinges on our ability to determine the
operator F.4

If H, stands for the Hamiltonian of the unperturbed hydrogen atom and
|0) for the ground state of hydrogen, it is easy to determine F by writing
(17.50) explicitly in the coordinate representation. Assuming that F is a
function of the coordinates only (and not of the momenta), a differential
equation for F is obtained, which is conveniently expressed in terms of
spherical polar coordinates and may be solved by separation of variables.
The details of the calculation are left to the reader, who may also verify by
direct substitution that

__pa
F = +a 17.52
=+ 9): (17.52)
(where a = Bohr radius) satisfies (17.50) in our example.

Since the expectation value of 2 in the ground state of hydrogen vanishes,
it follows from (17.51) that

|307c|2 uma (" 2
—_— = —'"— 0]|= 4+ a 0
kgo E{ — E,(CO) h? Ol 2 )z 10

The remaining expectation value is easily evaluated by noting that by virtue
of the spherical symmetry of the ground state (S-state)

(0] £(r)z2 |0) = (0] f(r)=* |0) = 0] f(r)y*|0) = 3¢OI f(r)r* |0)

Hence,

IZOkI —
kgo EO _E® 3 h2 EZ 5™ + atre)

™y = —fde 2 exp (— 2') dr =
a

We thus finally obtain

But

e 0
o = — — — —a 2|E| (17.53)
° 2a 4
4 Ingenious use was made of this method by A. Dalgarno and J. T. Lewis, Proc. Roy.
Soc., A 233, 70 (1955). For earlier polarizability calculations, based on direct solutions of
the inhomogeneous equations arising in perturbation theory, see H. M. Foley, O. M.
Sternheimer, and D. Tycko, Phys. Rev. 93, 734 (1954), and R. M. Sternheimer, Phys. Rev.
96, 951 (1954) and Phys. Rev. 127, 1220 (1962).
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for the ground state of the hydrogen atom to second order in the applied
electric field.®> The presence of the field causes a lowering of the ground state
energy. This was to be expected from (17.39), since every term in the sum may
be regarded as a repulsion of the nth level by the kth level.

5. Degenerate Perturbation Theory. We must now supplement our perturba-
tion methods by admitting the possibility that the nth unperturbed state may
be degenerate, usually as the result of certain symmetries. Thus, if the system
is in a central force field, the magnetic substates of a given angular momen-
tum all have the same energy, owing to rotational symmetry. If this sym-
metry is disturbed, as by the application of a magnetic field, the degeneracy is
usually removed.

The perturbation procedure developed in Sections 17.1 and 17.3 cannot
be applied without modification, because the expansion (17.7) of the
eigenvector was based of the assumption that we know into which unper-
turbed eigenvector ¥ the exact perturbed eigenvector ¥, collapses as g
approaches zero. This assumption breaks down when the unperturbed state
is degenerate and we have no prior knowledge which would allow us to
predict what particular linear combination of the given degenerate substates
the eigenvector ¥, will go into as g — 0. (However, frequently symmetry
properties can be used to avoid this ambiguity. For the resulting simplifica-
tions see below.)

The breakdown of the simple Rayleigh-Schrédinger theory in the case of
degenerate unperturbed states appears formally as the vanishing of some of
the energy denominators in (17.36) and (17.39). When this happens, the
perturbation expansions become meaningless (except if ¥, = 0 as a result
of some symmetry). For practical applications it is important to realize that
these difficulties arise not only if the unperturbed states are strictly degenerate,
but also if they are merely so close in energy that |V,,/(E® — E®)| is large
and causes large-scale mixing of unperturbed states in (17.36).

In order to keep the notation uncluttered, let us suppose that the un-
perturbed eigenvalue E® is only doubly degenerate, i.e., that two linearly
independent eigenvectors 19 and ¥ belong to it. We may assume these
two eigenvectors to be orthonormal. When the perturbation is “turned on,”
the level usually splits into two components, and we have the expansions,

E,,=EY + gEQ) + ’E} + - -~ (17.54a)
E,, = E® + gE{) + ¢E + -+ (17.54b)

5 An alternative method for obtaining the result (17.53) consists of using parabolic
coordinates in which the Schrodinger equation for the hydrogen atom is separable even in
the presence of a uniform electric field.



