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For the electric polarizability of a bound system in relativistic quantum theory, there are two
definitions that have appeared in the literature. They differ depending on whether or not the vacuum
background is included in the system. A recent confusion in this connection is clarified. ©1999

American Association of Physics Teachers.

Recently three papers appeared in this journal discussing
the electric polarizability ~EP! of a relativistic bound
system.1–3 In Refs. 1–3 it was illustrated by model calcula-
tions that the EP of a relativistic system can be negative
when the interaction that binds the system is very strong. The
model used in Refs. 1–3 is a particle that is bound in a given
potential in one dimension and subject to the Dirac equation.
Reference 3 presents interesting discussions on effects of the
vacuum background on the EP on the basis of Dirac’s hole
theory ~HT!.

The purpose of this note is to point out that the definition
of the EP that was assumed in Refs. 1–3 is different from the
one that was used in earlier papers.4,5 The two definitions
differ depending on whether or not the vacuum background
is regarded as part of the system. We are not going to argue
that one is correct and the other is wrong but we have to be
clear about the distinction between the two. Unfortunately
the two definitions are apparently confused in Ref. 3; see the
remark at the end of this note. As we emphasize below, if the
vacuum background is included, the EP is positive no matter
how strong the binding interaction is.

Consider a bound system like the hydrogen atom. When it
is perturbed by an external electric field, the system is polar-
ized and its energy shifts. Assume that the electric fieldE is
constant and weak. Then the energy shiftW takes the form

W52 1
2aE2. ~1!

This W is nothing but the second-order energy shift caused
by the perturbation due toE. The coefficienta is the EP of
the system. This is how the EP is defined but there can be
different definitions depending on how the system is inter-
preted. In Refs. 1–3 the bound system was regarded as a
single particle system, a particle bound in a given potential.
In quantum field theory~QFT! or equivalently in HT, in
addition to the bound particle, the vacuum background is
considered. When the vacuum background is interpreted as
an integral part of the bound system, it is no longer a single
particle system. This is how the bound system is treated in
Refs. 4 and 5.

Let us elaborate on the two definitions. As a way of setting
up notation, let us start with the problem as that of the single-
particle quantum mechanics. Let the Hamiltonian be

H5H01V, ~2!

whereH0 is the Dirac Hamiltonian with a binding potential
and V is the external perturbation. More explicitly,V5
2qE•r whereq is the charge of the particle. We takeH0 as
the unperturbed Hamiltonian and treatV by perturbation
theory. It is understood that the solutions of the Dirac equa-
tion with H0 are known for all stationary states,

H0u i &5e i u i &, H0u2 j &5e2 j u2 j &, ~3!

where i 51,2,... and2 j 521,22,... . Theui&’s ~u2 j & ’s! are
positive~negative! energy states;e i.0 (e2 j,0). In particu-
lar u1& is the lowest positive energy state. We are assuming
that the eigenvalues are all discrete but it is straightforward
to include the continuum. Theui&’s and u2 j & ’s form a com-
plete orthonormal basis set. For the unperturbed state, let us
takeu1&, the state of the lowest positive energy.6 The second-
order energy shiftWQM of stateu1& caused by perturbationV
is given by

WQM5(
iÞ1

uVi ,1u2

e12e i
1(

j

uV2 j ,1u2

e12e2 j
, ~4!

whereVi ,1[^ i uVu1& and V2 j ,1[^2 j uVu1&. The suffix QM
refers to single-particle quantum mechanics. The summation
for i ( j ) is for the positive~negative! energy intermediate
states. The contributions from the negative energy interme-
diate states can makeWQM positive.1–3

Let us examine the vacuum background following Ref. 3.
In HT the vacuum is such that all negative energy states are
occupied. We replaceWQM obtained above with

W15(
iÞ1

uVi ,1u2

e12e i
, ~5!

where the Pauli principle excludes the negative energy states
as intermediate states. On the other hand the vacuum energy
also shifts. The vacuum energy shift is given by

Wvac5(
j

W2 j , W2 j5(
iÞ1

uVi ,2 j u2

e2 j2e i
. ~6!

Again the summation overi ( j ) is for positive~negative! en-
ergy states. The intermediate state ofi 51 is excluded be-
cause it is already occupied. If we interpret that the vacuum
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background is part of the system, the total energy shift is
given by7

WHT5W11Wvac. ~7!

The W1 andWvac are both negative and henceWHT is nega-
tive.

As shown in Ref. 3,WHT can be rewritten as

WHT5WQM1Wvac8 , ~8!

Wvac8 5(
j

W2 j8 , W2 j8 5(
i

uVi ,2 j u2

e2 j2e i
. ~9!

The restrictioniÞ1 has been removed in thei-summation
for W2 j8 . TheWvac8 is the vacuum energy shiftin the absence
of the particle inu1&. TheWHT of Eq. ~8! contains terms that
violate the Pauli principle but such terms all cancel out. This
is an interesting illustration of Feynman’s time-honored
trick.8

In QFT no negative energy particles appear but antipar-
ticles of positive energies appear instead. The unperturbed
state that we consider isc1

†uvac&. Hereuvac& is the state that
contains no particles or antiparticles at all. The energy of this
unperturbed vacuum is zero. Thec1

† is an operator that cre-
ates a particle with energye1 and wave function associated
with u1&. The uvac& andc1

†uvac& are the ground states of the
unperturbed system within the zero-particle and one-particle
sectors, respectively. Note that the particle number is a con-
served quantity. The external electric field leads to creation
of a particle–antiparticle pair, and so on. It turns out that HT
is equivalent to QFT.

In summary, depending on what we take for theW of Eq.
~1!, we have different polarizabilities,

WQM52 1
2aQME2, WHT5WQFT52 1

2aE2. ~10!

If we treat the system as a single-particle system, we obtain
aQM that can be negative as shown in Refs. 1–3. TheaQM

corresponds toapol of Refs. 1 and 3 and toP of Ref. 2. If we
include the vacuum background, we obtaina that is related
to aQM by

a5aQM1avac8 , ~11!

whereavac8 is the EP of the vacuum in the absence of the
particle in u1&. The a and avac8 are, respectively, equal to
a11a2 and a3 of Ref. 3. Thea is positive becauseWHT

5WQFT is negative as we have discussed. As an example,
consider the hydrogen atom. The EP of the atom isa. The
avac8 is the EP of the hydrogen ion.

The notion of the EP is important in connection with the
London–van der Waals force between two neutral atoms,
e.g., two hydrogen atoms.9 The interatomic force at large
distances is proportional toa2.4,9 This a should be distin-
guished fromaQM . The London–van der Waals force acts
between two atoms, not just between two bound electrons.
The London–van der Waals force is the long-range part of
the two-photon-exchange force between atoms. Feinberg
et al.4 developed a dispersion theoretical method for the two-
photon exchange process. In this method relevant matrix el-
ements can be related to the amplitudes of Compton scatter-
ing from the atoms. The scattering is from the entire atoms

that include their vacuum background. The EP appears in the
low-energy limits of the amplitudes. This EP isa and not
aQM .9 In explicit calculations of the London–van der Waals
force, vacuum effects are often ignored. This is because the
vacuum effects are usually very small.

Finally let us mention the question raised by Sucher as to
the sign of the EP.5 He says that the EP defined in terms of
second-order perturbation theory always gives a positive
value~negative energy shift! for a system in its ground state.
The EP that he refers to is, in our notation,a and notaQM .
He discussed the general validity of this result, for an arbi-
trary elementary system, be it atom, nucleus, or fundamental
particle, within the framework of relativistic quantum theory.
By using dispersion theoretical techniques, he examined the
Compton scattering amplitude of which the low energy limit
is related toa, the EP of the target system. He argued that a
possibility of negativea may not be excluded as a conse-
quence of only the most general principles of relativistic
quantum theory. This has to do with the high energy limit of
the scattering amplitude which in turn is related to the ‘‘com-
positeness’’ of the target system. As far as we know, this
question raised by Sucher has not been clarified as yet. In
discussing the EP in the sense ofaQM . Maizeet al.3 referred
to Sucher’s question. They suggested that the negativeaQM
that they obtained was an answer to Sucher’s question. But
the EP that Sucher examined is, as we said above,a rather
thanaQM .

Note added in proof.In connection with Ref. 8, see also
F. A. B. Coutinho, Y. Nogami, and L. Tomio, ‘‘Validity of
Feynman’s prescription of disregarding the Pauli principle in
intermediate states,’’ Phys. Rev. A59, 2624–2630~1999!.
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