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For the electric polarizability of a bound system in relativistic quantum theory, there are two
definitions that have appeared in the literature. They differ depending on whether or not the vacuum
background is included in the system. A recent confusion in this connection is clarifie@®og©
American Association of Physics Teachers.

Recently three papers appeared in this j_ot_JrnaI discussinghereH,, is the Dirac Hamiltonian with a binding potential
the electric polarizability (EP) of a relativistic bound and V is the external perturbation. More explicitly/=
system'™® In Refs. 1-3 it was illustrated by model calcula- —qE.r whereq s the charge of the particle. We takk as
tions that the EP of a relativistic system can be negativgy,q unperturbed Hamiltonian and tre¥t by perturbation

when the interaction that binds the system is very strong. Th,q "t is understood that the solutions of the Dirac equa-
model used in Refs. 1-3 is a patrticle that is bound in a given; n with H- are known for all stationary states
0 1

potential in one dimension and subject to the Dirac equation.

Reference 3 presents interesting discussions on effects of the H|i)=¢|i), Ho|—j)= e_i|—i), (3)
vacuum background on the EP on the basis of Dirac’s hole
theory (HT). wherei=1,2,... and—j=—1,—2,.... Theli)’s (|—j)’s) are

The purpose of this note is to point out that the definitionpositive(negative energy statess;>0 (e_;<<0). In particu-
of the EP that was assumed in Refs. 1-3 is different from théar |1) is the lowest positive energy state. We are assuming
one that was used in earlier pap&rsThe two definitions that the eigenvalues are all discrete but it is straightforward
differ depending on whether or not the vacuum backgroundo include the continuum. Thig)'s and|—j)’s form a com-
is regarded as part of the system. We are not going to argysiete orthonormal basis set. For the unperturbed state, let us
that one is correct and the other is wrong but we have to beake|1), the state of the lowest positive enefg¥he second-

clear about the distinction between the two. Unfortunatelyorder energy shiftVoy of state|1) caused by perturbatiovi
the two definitions are apparently confused in Ref. 3; see thgy given by

remark at the end of this note. As we emphasize below, if the

vacuum background is included, the EP is positive no matter |Vi,1|2 |V—j,1|2

how strong the binding interaction is. WQM:2 +2
Consider a bound system like the hydrogen atom. When it

is perturbed by an external electric field, the system is polarwhereV; ;=(i|V|1) andV_; ;=(—j|V|1). The suffix QM

ized and its energy shifts. Assume that the electric field  refers to single-particle quantum mechanics. The summation

constant and weak. Then the energy sWftakes the form  for i (j) is for the positive(negativé energy intermediate

We — 1,E2 & states. The contributions from the negative energy interme-
20 diate states can makl/oy positive

This W is nothing but the second-order energy shift caused Let us examine the vacuum background following Ref. 3.

by the perturbation due tB. The coefficientx is the EP of  In HT the vacuum is such that all negative energy states are

the system. This is how the EP is defined but there can beccupied. We replac#/q), obtained above with

different definitions depending on how the system is inter- 5

preted. In Refs. 1-3 the bound system was regarded as a _ Vil (5)

single particle system, a particle bound in a given potential. Y ea-¢’

In quantum field theory(QFT) or equivalently in HT, in o ]

addition to the bound particle, the vacuum background ié/vh_ere the P_aul| principle excludes the negative energy states

considered. When the vacuum background is interpreted && intermediate states. On the other hand the vacuum energy

an integral part of the bound system, it is no longer a singlélS0 shifts. The vacuum energy shift is given by

particle system. This is how the bound system is treated in IV, |2

Refs. 4 and 5. Wyac= > W, W_J:E I L
Let us elaborate on the two definitions. As a way of setting i i#1 €7 €

up notation, let us start with the problem as that of the singIeA in th i i) is f itive( five
particle quantum mechanics. Let the Hamiltonian be gain the summation ovexj) is for positive(negative en-

ergy states. The intermediate stateiefl is excluded be-
H=Hy+V, (2 cause it is already occupied. If we interpret that the vacuum

: 4

i#1 €1 €j i El_E,J'

6
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background is part of the system, the total energy shift ighat include their vacuum background. The EP appears in the
given by low-energy limits of the amplitudes. This EP ésand not
.~ In explicit calculations of the London—van der Waals
— W, & _ XQm , O
Whr=WitWiec 0 force, vacuum effects are often ignored. This is because the
The W, andW,,. are both negative and hen®é,; is nega- vacuum effects are usually very small.

tive. Finally let us mention the question raised by Sucher as to
As shown in Ref. 3Wyr can be rewritten as the sign of the EP.He says that the EP defined in terms of
, second-order perturbation theory always gives a positive
Whir=Waom+ Wyac, ®) value (negative energy shiffor a system in its ground state.
|Vi'7j|2 The EP that he refers to is, in our notatieanand notagy .

9 He discussed the general validity of this result, for an arbi-
trary elementary system, be it atom, nucleus, or fundamental
The restrictioni #1 has been removed in thesummation Particle, within the framework of relativistic quantum theory.

for W’ ;. TheW,,is the vacuum energy shift the absence By using dispersion theoretical techniques, he examined the
Compton scattering amplitude of which the low energy limit

S|ps related toa, the EP of the target system. He argued that a
. . - . Y ossibility of negativea may not be excluded as a conse-
is an interesting illustration of Feynman’s tlme-honoredquence of only the most general principles of relativistic

H 8
trch:k. - i il but antinardU@ntum theory. This has to do with the high energy limit of
n QFT no negative energy particles appear but antiparg, o scattering amplitude which in turn is related to the “com-

ticles ﬁf positive QgergleTs appeHar |nsteaq. 'Lhe unpeLturbe ositeness” of the target system. As far as we know, this
state that we consider & '|vag). Herelvag is the state that question raised by Sucher has not been clarified as yet. In

contains no particles or antiparticles at all. The energy of thi%iscussing the EP in the sensemfy . Maizeet al 3 referred

unperturbed vacuum is zero. Thé is an operator that cre- to Sucher's question. They suggested that the negatiyg
ates a particle with energy, and wave function associated hat they obtained was an answer to Sucher’s question. But
with [1). The [vag andcj|vag are the ground states of the the EP that Sucher examined is, as we said abavether
unperturbed system within the zero-particle and one-particlenan aom -

sectors, respectively. Note that the particle number is a con-
served quantity. The external electric field leads to creatio

of a particle—antiparticle pair, and so on. It turns out that HTFe nman’s prescriotion of disreaarding the Pauli orinciole in
is equivalent to QFT. y p p 9 g princip

In summary, depending on what we take for Weof Eq. |ntermed|ate states,” Phys. Rev. 39, 2624—263(11?99.
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aqy that can be negative as shown in Refs. 1-3. ®ag Canada. LT thanks McMaster University for the hospitality
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include the vacuum background, we obtairthat is related
to aQM by

w;aczg W, W=

i é_j_Ei'

Note added in proofln connection with Ref. 8, see also
. A. B. Coutinho, Y. Nogami, and L. Tomio, “Validity of

IM. A. Maize and C. A. Burkholder, “Electric polarizability and the solu-
_ ’ tion of an inhomogeneous differential equation,” Am. J. PH§3. 244—
@ = aQut dyac: 1D 247190

where .. is the EP of the vacuum in the absence of the 2F. A. B. Coutinho, Y. Nogami, and F. M. Toyama, “Logarithmic pertur-
vac bation expansion for the Dirac equation in one dimension: Application to

oY , .
particle in |1). The a and ay, are, respectively, equal t0  ihe polarizability calculation,” Am. J. Phy$5, 788—794(1997.

a1t a, and a; of Ref. 3. Thea is positive becaus&Vr %M. A. Maize, S. Paulson, and A. D’Avanti, “Electric polarizability of a
:WQFT is negative as we have discussed. As an example relativistic particle,” Am. J. Phys65, 888-891(1997).

2, . " . . .
; - G. Feinberg, J. Sucher, and C.-K. Au, “The dispersion theory of disper-
consider the hydrern atom. The EP of the atorv.ighe sion forces,” Phys. Repl80, 83-157(1989; J. Sucher and G. Feinberg,

@y, IS the EP of the hydrogen ion. “Long-range electromagnetic forces in quantum theory, Liong-range
The notion of the EP is important in connection with the Casimir Forces edited by F. S. Levin and D. A. MichéPlenum, New

London-van der Waals force between two neutral atoms, York, 1993, Chap. 5, and references quoted therein.

e.g., two hydrogen atomsThe interatomic force at Iarge J. Sucher, “Sign of the static electric polarizability in relativistic quantum

. . . 2 4,9 . . theory,” Phys. Rev. D6, 1798—180011972.
distances is proportlonal ta“.™" This « should be distin- SWe can start with a negative energy bound state. If we do so, however, we

guished fromaqy . The London—van der Waals force acts will meet unnecessary, nonessential complications in the contexts of QFT.
between two atoms, not just between two bound electrons’This rearrangement of the terms is essentially the same as what was done
The London-van der Waals force is the long-range part of in relating Egs(5) and(10) in Ref. 3. §

the two-photon-exchange force between atoms. Feinberg?l-gié '?r‘;’ynar;‘t?c"ljla:he?g‘seory of positrons,” Phys. RE6, 749-759

et al” developed a dispersion theoretlcal method for the FWO-gF. Lor’1d0np, “Zur Thpeorie und Systematik der Molekulaiftea(On the
photon exchange process. In this r_nethOd relevant matrix el'theory and systematics of the molecular fojce&. Phys. 63, 245-279
ements can be related to the amplitudes of Compton scatter1939; H. G. B. Casimir and D. Polder, “The influence of retardation on

ing from the atoms. The scattering is from the entire atoms the London—van der Waals forces,” Phys. R&8, 360—372(1947.
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