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The energy-flux density associated with EZ"_dg and Bff_dg is
given by the Poynting vector,
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Substituting Egs. (18) into (20) we get
S._={1+(g/e)’}S,, 21)

where S, = (c/4m)EP*xB™ is the Poynting vector associ-
ated with the radiation fields of the electric charge. In the
particular case of a nonrelativistic accelerated charge (the
terms involving B are negligible) the vector S, is given by®
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where now
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Ee _C R (23)
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Using Eq. (22) into (21) we obtain
c
S._g={1+(g/e)’} 7— |EZ’n, (24)
4a
and thus the power radiated per unit solid angle is

dP,_ c
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4mc

I n makes angle ¢ with ﬁ, then the power radiated can be
written as

dP,_, (e*+g?)

dQ ~ 4mc?
The total instantaneous pdwer radiated is found by integrat-
ing Eq. (26) over all solid angle. Thus we obtain the Larmor

formula for a nonrelativistic, accelerated dual-charged par-
ticle:

|¥|2 sin? 9. (26)

2 (e2+g2)

Pesm3 0~

|v]2. (27)
We challenge the reader to derive the Larmor formula for a
relativistic, accelerated dual-charged particle.
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In this paper, we are going to illustrate the effectiveness of the method of the inhomogeneous
differential equation in obtaining the energy shift of a quantum level in second order perturbation
theory. The energy shift will be used to calculate the electric polarizability due to the interaction
between a static electric field and a charged particle moving under the influence of a
one-dimensional delta potential. Both relativistic and nonrelativistic problems will be
treated. © 1995 American Association of Physics Teachers.

L INTRODUCTION

Perturbation theory is one of the most important tools in
solving a large variety of physics problems. Second order
perturbation is used to calculate some basic quantities such
as the electric polarizability and the magnetic susceptibility
of a quantum system. The electric polarization of a system
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due to an interaction with some external electric field is an
important application at both the introductory physics level
and in advanced physics research. In our general physics
courses, we study the electric polarization of a dielectric in
relation to induced charges, dielectric constants and indices
of refraction. At the advanced level, electric polarizability
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has been studied and used extensively to test the validity of
physics models and different regions of a system of energy
levels. For example, Schafer, Muller, Vasak, and Greiner!
calculated the electric and magnetic polarizability of the
nucleon in the M.LT. bag model. Another example is. the
study of the contribution of the quark sea to the electric
polarizability of the 7~ and & mesons.”

In this paper, we are going to concentrate on the beautiful
method of replacing the conventional algorithm used to cal-
culate the energy shift in second order perturbation theory
with the solution of an inhomogeneous differential equation
devised by Dalgamo and Lewis® and discussed by
Schwartz.* As is known, the conventional method involves
an infinite sum or an integral that contains all possible states
allowed by the transition. Some of these states, for example,
scattering states, can be very difficult or impossible to obtain
in a large number of problems. The knowledge of the unper-
turbed state will be all that we need for calculating the exact
energy of that particular state to second order when we apply
the technique of the inhomogeneous differential equation.>*

A number of articles published more than 20 years ago
recognized the effectiveness of such a technique in dealing
with a variety of interesting problems. Among these prob-
lems is the calculation of the long range forces between a
proton and a hydrogen atom.> Another one is the study of
nuclear quadrupole coupling in polar molecules done by Fo-
ley and Tycko.” Sternheimer used the method of the inhomo-
geneous differential equation in studying the electronic po-
larizability of a number of ions® and alkali atoms.”

As indicated in Ref. 8, the method that we cited in Refs. 3
and 4 did not receive sufficient attention in recent-years in
solving for the energy shift in second or higher order pertur-
bation theory. For this reason, we present the solution of a
simple problem using the method of the inhomogeneous dif-
ferential equation. The reader who has knowledge of basic
calculus courses, in addition to a standard modern physics
course, can reproduce without difficulty the results of our
work. In addition, our simple model will allow us to extend
the use of the same technique to solve for the electric polar-
izability of a relativistic system.

In the next section, we give a brief summary of the
method of the inhomogeneous differential equation. This will
be followed by a presentation of the model we adopt as il-
lustration of the electric polarizability, both relativistic and
nonrelativistic. Finally, we close with some concluding re-
marks.

IL. THE METHOD OF THE INHOMOGENEOUS
DIFFERENTIAL EQUATION

In this section, we give a brief summary of the method.
Interested readers can find the details in Refs. 3 and 4,
Schiff’ and Merzbacher.!” The ground state energy shift to
the second order AE is given by

2
/{EO—En}' @

i is the ground state and is occupied by a charged particle
as we assume in our problem. E is the ground state energy.
The functions #;,’s represent all states allowed by the transi-
tion due to the interaction H'. The summation in Eq. (1)
excludes the state ¢y,.

AEOZE,’,

j l//:H"//o dr
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The first step in producing the alternative expression for
AE, is accomplished by the introduction of an operator F
satisfying the following equation:

[f Y H' ¢y dT} /{Eo—En}zj YpFgpdr.  (2)

With some simple manipulations and the use of the com-
pleteness relation, AE, can be rewritten as

f ‘ﬁgF'//o dr
(3

To obtain a differential equation that eliminates the need of
performing the infinite summation in Eq. (1), we use the
following property:

AE0=f l,bgH’F(/IO dT— J !ﬁ;H’(J/O dT

[ vitr s ar=E0-E) [ wiFwodr. @

Now with the use of Eq. (4), Eq. (2) can be written as’

(EO—H0>¢=H'¢0—[ f WH Yo drly, ()
where

Hoyo=Egto, (6)
and

¢=Fiy. @

If ¢ is taken to be orthogonal to y,>**® Eq. (3) can be
written as

AE0=j YEH' b dr. ®)

At this point we have to concentrate on Egs. (5) and (8).
When we start the problem, we have the knowledge of H,
ty, and E . We solve Eq. (5) for ¢ as a first step. The second
and final step is to use ¢ in Eq. (8) to find AE. It is clear
then that the only stationary state needed for such a calcula-
tion is the ground state ¢4,. The infinite summation in Eq. (1)
is completely avoided.

1. ELECTRIC POLARIZABILITY OF A
NONRELATIVISTIC PARTICLE

As stated before, the model we are presenting in this ar-
ticle is a simple one. It consists of a particle bound by an
attractive potential V(x) for which we choose the simple
form

V(x)=—gd(x). 9)

The strength of the potential is represented by g and &x) is
the usual Dirac delta function. The Schrodinger equation in
one dimension can then be written as

32
[— (ﬁz/zm)(;,;f) ~88(x) [y=Ey, (10

where m is the mass of the particle in our problem. Equation
(10) produces a bound state in addition to a continuum of
states. The normalized wave function is easily found to be,

do={(mg)/h*}"? exp(—klx|), (11)

where ky=(mg)/#>. The bound state energy E, which fol-
lows from Eq. (10) is given by
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Eo=—(mg?)/(2h%)=—(h%3)/(2m). - (12)

When we use the method of the inhomogeneous differential
equation, we do not have to have an explicit expression for
the continuum.

Now let us assume the interaction H' is due to the pres-
ence of a static electric field which is applied in the vicinity
of the particle. To simplify the geometry of the problem
without any loss of generality, we take the electric field & to
be parallel to the x axis. When the electric field is applied,
the particle, which is assumed to have an electric charge g, is
in the state ¢ . The electric dipole Hamiltonian which repre-
sents the interaction of the electric field and the charge of the
particle is given by

H'=—q&x. (13)

The final result for the electric polarizability is, of course,
independent of the 'sign of the charge. This happens because
the electric polarizability is proportional to the energy shift
AE. Tt is clear from Eq. (1) that AE, is a second order
correction which will include only the square of the electric
charge. Now we are in a position to calculate the energy shift
AE. The first step is to find ¢. This can be done by the aid
of Eq. (5) and the available expression of E, Hy, and .
Equation (5) in our problem can then be written as
2

Ey+(h /2m)( +g6(x)|p=—q&xiy. (14)

The second term on the right-hand side of Eq. (5) vanishes
because the Hamiltonian, H', has odd parity. With the use of
the properties of the delta function and substituting by Eqs.
(11) and (12) in Eq. (14), we obtain the following expression
for the region where x>0

(92
[ —(h%k3/2m)+ (h2/2m)( 5;7) J $(x>0)

= — g &x{(mg/h*)}'* exp(—kox). (15)
For the region x <0, Eq. (14) becomes

82
[ —(h%k;/2m) +(h2/2m)( 5572) } $(x<0)

=—q&x{(mg)/h*}''? exp(kx), (16)

where @(x>0) and (x<0) refer to the expressions of ¢ in
the regions x>0 and x <0, respectively.

Equations (15) and (16) are very simple and can be solved
essentially by inspection. The expressions for ¢ are given by

H(x>0)=[(mq&/2H2kq)x2+ (mq&/2h2k5)x]
X (ko) exp(—kox), 17)
and
H(x<0)=[~(mq&/2h%)x*+ (mq&/25%k])x]
X (ko) ''* exp(kox). (18)

These expressions of ¢(x>0) and ¢(x<<0) can easily be
checked by substituting them in Egs. (15) and (16).

At this point we can calculate the energy shift AE, by
performing the integration given in Eq. (8). The integration
is very simple and leads to the following result for AE,:

AE,=—5/8[(g*m?g)/(A*k3)1& *. (19)
The electric polarizability a, is defined by
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AEy=—~(1/2)apu& 2. (20)

With the use of the Egs. (19) and (20), we obtain the familiar
expression for a,, which is given by

ape=5/41(q*m)/(h%kg)]. (21)

IV. ELECTRIC POLARIZABILITY OF A
RELATIVISTIC PARTICLE

In this problem, our potential V(z) is given by
V(z)=g,B6(z), (22)

where g, assumes a negative value and represents the
strength of the scalar potential V(z). B is given by!!

I 0
B=ly _il- (23)
The Dirac equation in this case can be reduced to'?
[ca,P,+Bmc’+ Bg,8(z)1Y(2) =EY(2), (24)
where a, is given by
0 o,
aZ= o O ? (25)

and o, is the z part of the Pauli matrices.
The expressmn for the ground state of a positive energy
particle is given by'?

to(2)=6(2) Y5 (0)expl — koz]+ 6(—2)¢g (0)exp[koz],

(26)
where
Wy (0)=[(ko(Eo+mc?))/(2mc?) /D)
1
X( (iﬁckoaz)/(E0+mc2))’ 27
and
U5 (0)=[(ko(Eo+mc?))/(2mc?)] )
1
X((—ihckoaz)/(E0+ mcz))’ (28)

Az) is 0, 1 or 1/2 for z<<0, z>0, and z=0, respectively.
5 (0) and 55 (0) are the values of (z) just above and be-
Jow the xy plane.!? E, is the energy of the bound particle and
it is related to kg by the following expression:'

A2cki=m?c*—E}, (29)

where m is the mass of the particle.
Now, our first step is to solve the inhomogeneous differ-
ential equation which is given by

Egtifica, 5~ fme?=Bg,5(2) | #(2)

=—qZzy(2)- (30)
The general solution can be written as
B(z) =[(ko(Eg+mc?))/(2mc?) ][ 6(2)G 1(2)exp(—koz)
+6(—2)G2(2)exp(koz) ], @31
where G(z) and G,(z) are given by
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2
12 +Bll+D1
Gi(2)= (A 2+ Byz+D,)’ (32)
_[A1Z2+Biz+D; 3
Gy(2)= Az’ +Biz+D; ) (33)

Now substituting Eqs. (31) in Eq. (30) and considering sepa-
rately the regions z2>0, z<<0, and z=0, we can determine the
coefficients A, A,, B, B,, Dy, D,, A{, A;, B;, B},
D;, D;. Ay, A,, By, B, D, D, are given by

A1=(Eoq&)/(2c*h%k,). (34)
A,=(i0,E0q&)/(2ch(Eg+mc?)), (35)
B,=(mq®)/(2h2k}), (36)
B,=(—iomcq&)|(2hko(Ey+mc?)), 37

=(—mc2q&)/(4E oko(Eq+mc?)), (38)
D,=(—io,mcq&)/(4RKIE,). (39)

¢ should have an opposite parity to ¢, for the integration
in Eq. (8) to survive. Due to this, the following relationships
exist:

Ai=_A1, Aé=A2, B{=Bl, Béz—B,Z’
Di=-D,, D;=D,. (40)

Now substituting by ¢4, and ¢ in Eq. (8), we find the follow-
ing expression for AE:

AEo=(—RE)[((6E()/8)—((m*c*)/(8Ey))],  (41)

where R=g%/(c®£%kP). Using the definition in Eq. (20), we
ﬁnally arrive at the expression of electric polarizability. a,;,
in this case given by

ap=R[(6E)/4—(m*c*)/(4E,)]. (42)

By taking the nonrelativistic limit in Eq. (42) (E,—mc?) we
get the expression appearing in Eq. (21).

The relativistic problem has many significant results. One
of them is the existence of negative electrlc polanzablhty
This phenomenon occurs when Eg<mc?//6. It is very clear
that Eq. (29) implies that E, will always be less than mc>.
The range of the values E can assume and the correspond-
ing explanation is given in Ref. 12. A separate paper will be

devoted to define, discuss, and demonstrate the physics of -

the electric polarizability of a relativistic particle.

V. CONCLUSION

We calculated the relativistic and nonrelativistic electric
polarizabilities of a particle under the influence of a one-
dimensional delta potential. Instead of using.the conven-
tional method in calculating the energy shift in the second
order perturbation, we applied a method based on the solu-
tion of an inhomogeneous differential equation. 34 We hope
that we have illustrated the advantage of using such a
method in avoiding a number of mathematical difficulties.
More important is our goal of emphasizing the efficiency of
this technique which can be applied to a variety of problems.
We believe the simplicity of the model that we presented. in
this paper is helpful in accomplishing our goal. The inter-
ested reader can find more apphcatlons of this technique in
the work published by Mavromatis.®
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