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Abstract
After completing their introductory studies on thermodynamics at the university
level, typically in a second-year university course, most students show a number
of misconceptions. In this work, we identify some of those erroneous ideas
and try to explain their origins. We also give a suggestion to attack the problem
through a systematic and detailed study of various thermodynamic cycles. In
the meantime, we derive some useful relations.

1. Introduction

In university physics textbooks at the introductory level [1–3], the analysis of heat engines
and heat pumps/refrigerators is typically included in the study of the second law of
thermodynamics. Heat engines are usually used to introduce the Kelvin–Planck statement
of the second law; heat pumps/refrigerators are used to introduce the Clausius statement of
the second law. The schematic diagrams of these machines, based on the conservation of
energy (first law of thermodynamics) and the exchange of heat and work, allow us to explain,
in a satisfactory manner, the concepts of efficiency of a heat engine, coefficient of performance
(COP) of a heat pump and coefficient of performance of a refrigerator.

In particular, the Carnot cycle is discussed in detail, and the Carnot theorem, which links
this cycle with heat engines of greatest efficiency and heat pumps/refrigerators of greatest
coefficients of performance, is proved. The student also works out a number of other cycles
(Otto cycle, Diesel cycle, etc) while studying heat engines, sometimes directly in the text [1],
sometimes through proposed problems [2, 3]. Nevertheless, those cycles do not appear during
the study of heat pumps/refrigerators.

At the same time, and gradually throughout this study, the concept of entropy is introduced,
and the difference between reversible and irreversible processes is explained.

My teaching experience has shown that the student concludes the study of these topics
with some important misconceptions, namely
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• Erroneous comprehension of the idea of cycle inversion.
• Difficulty in understanding the importance of the Carnot cycle; specifically, difficulty

in understanding the true meaning of the sentence ‘Carnot cycle is reversible, while
other cycles are irreversible’. The student frequently thinks in this way: ‘If, after each
cycle, the system returns to its initial state, and the two reservoirs have the same original
temperatures, where can be the irreversibility?’ Or in this way: ‘If a cycle could be
inverted, then it is automatically reversible!’

• Erroneous belief in that the unique schematic diagrams allowed by the two laws of
thermodynamics are the diagram corresponding to a heat engine and the diagram
corresponding to a heat pump/refrigerator.

• Profound belief that it is enough to invert the cycle of any heat engine to automatically
transform it into the corresponding heat pump/refrigerator.

The first misconception has a clearly identifiable source: only the Carnot cycle is explicitly
inverted in textbooks. This difficulty is thus relatively easy to solve, by showing other examples
of inversion to the student.

The second misconception has another origin: the student rarely calculates entropy
changes while dealing with heat engines in specific cycles; the Carnot cycle is, one more time,
the only exception. So the confusion between the entropy of the system and the entropy of the
universe is very usual in this context.

The last two misconceptions directly result from the lack of various examples of inversion
of thermodynamic cycles in most texts.

This work has a primary goal to show how these misconceptions can be solved. We will
proceed to a systematic and careful analysis of various specific cycles, all well known in the
study of heat engines; naturally, we will begin with the Carnot cycle in order to show its unique
property. In all cases, we will study the cycle of the heat engine, and then we will proceed to
its inversion. Whenever possible we will get relations between the relevant parameters.

We will only consider the simplest versions of those cycles, that is, the ideal versions. Here
and there we will refer to some engineering applications, but only as secondary information.
We will also ignore all practical difficulties in the implementation of specific cycles as well as
the corresponding solutions. Finally, little historical digressions will be included as footnotes,
for the sake of completeness.

2. Theory and notation

We write the first law of thermodynamics in the form

�U = Q + W, (1)

where �U represents the change of internal energy of the system, Q is the heat absorbed by
the system and W is the work done on the system. We will focus our attention to hydrostatic
systems—systems described by thermodynamic variables V (volume), p (pressure) and T
(temperature)—following cycles, so

�U = 0, Q =
∮

T dS, W = −
∮

p dV ; (2)

here, S represents the entropy of the system.
We admit the existence of only two thermal reservoirs (hot body and cold body), at different

but constant temperatures, in contact with the system; the first law of thermodynamics assumes
the form

0 = Qcycle + Wcycle ⇐⇒ Qh + Qc + Wcycle = 0 , (3)
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Figure 1. Schematic diagram of (a) a heat engine and (b) a heat pump/refrigerator.

where Qh represents the heat absorbed by the system, during the cycle, from the reservoir at
higher temperature (labelled Th) and Qc represents the heat absorbed by the system, during
the cycle, from the reservoir at lower temperature (labelled Tc).

We will designate as a heat engine any machine working in cycles that allows us to extract
work from the two reservoirs. The schematic representation of a heat engine is shown in figure
1(a). Since in this case Wcycle < 0, Qh > 0 and Qc < 0, we have

|Qh| − |Qc| − |Wcycle| = 0 �⇒ |Wcycle| = |Qh| − |Qc| . (4)

The efficiency of the heat engine is given by

ε ≡ |Wcycle|
|Qh| = |Qh| − |Qc|

|Qh| = 1 − |Qc|
|Qh| < 1. (5)

Since Wcycle < 0 and Qcycle > 0 in a heat engine, its cycle, when represented in a volume–
pressure (V–p) diagram or in an entropy–temperature (S–T) diagram, must be performed in a
clockwise direction, on account of relations (2).

By inverting all arrows of figure 1(a), we get the traditional schematic representation of
a heat pump/refrigerator, shown in figure 1(b). Since in this case Wcycle > 0, Qh < 0 and
Qc > 0, we have

− |Qh| + |Qc| + |Wcycle| = 0 �⇒ |Wcycle| = |Qh| − |Qc|. (6)

The COPs of the heat pump (HP) and the refrigerator (R) are

COPHP ≡ |Qh|
|Wcycle| = |Qh|

|Qh| − |Qc| > 1 , (7)

COPR ≡ |Qc|
|Wcycle| = |Qc|

|Qh| − |Qc| , (8)
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Figure 2. Volume–pressure diagram of the Carnot cycle.

and it is clear that

COPHP − COPR = 1 . (9)

Since Wcycle > 0 and Qcycle < 0 in a heat pump/refrigerator, its cycle, when represented in
a (V–p) diagram or in an (S–T) diagram, must be realized in a counterclockwise direction, on
account of relations (2).

In any case, the change of the entropy of the universe after one cycle is

�Suniverse = �Ssystem + �Sreservoir at Th + �Sreservoir at Tc = 0 +
−Qh

Th
+

−Qc

Tc

= −
(

Qh

Th
+

Qc

Tc

)
. (10)

We will assume that the system (or working substance) is always an ideal gas, and that
phase changes do not occur. We will represent the number of moles by n, the gas constant
by R, the molar heat capacities at constant volume and at constant pressure by cV and cp,
respectively, and the adiabatic coefficient by γ . Some relations between these quantities are

pV = nRT , cp − cV = R , γ ≡ cp

cV

> 1 , cV = R

γ − 1
, cp = γR

γ − 1
. (11)

3. The Carnot cycle

Let us consider the Carnot cycle1 shown in figure 2, with two isothermal processes and two
adiabatic processes, where r > 1 and T1 < T2. We define �T ≡ T2 − T1 > 0.

Since each adiabatic curve satisfies the equation T V γ−1 = constant, we can write{
T2V

γ−1
2 = T1V

γ−1
1

T3V
γ−1

3 = T4V
γ−1

4

�⇒
(

V3

V2

)γ−1

=
(

V4

V1

)γ−1

�⇒ V3

V2
= V4

V1
≡ r , (12)

1 Introduced by Nicolas Léonard Sadi Carnot (1796−1832) in 1824.
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because T3 = T2 and T4 = T1. The parameter r is called compression ratio and relates the
initial and final volumes of the gas during isothermal processes.2

Let us suppose that the cycle is done in the clockwise direction. In processes 1 → 2 and
3 → 4, the gas is thermally isolated, in process 2 → 3, the gas is in contact with a thermal
reservoir at temperature Th = T2, and in process 4 → 1, the gas is in contact with a thermal
reservoir at temperature Tc = T1.

We have

Q12 = 0 ; Q23 = −W23 = nRT2 ln

(
V3

V2

)
= nRT2 ln r ;

Q34 = 0 ; Q41 = −W41 = −nRT1 ln

(
V4

V1

)
= −nRT1 ln r , so

Qh = Q23 = nRT2 ln r > 0 , Qc = Q41 = −nRT1 ln r < 0 ,

Qcycle = Qh + Qc = nR�T ln r > 0 , Wcycle = −Qcycle = −nR�T ln r < 0 .

The gas is absorbing heat from the reservoir at higher temperature, is rejecting heat to the
reservoir at lower temperature and is doing work; this behaviour defines a heat engine.

According to (5), the efficiency of the Carnot engine is given by

εCarnot cycle = 1 − |Qc|
|Qh| = 1 − nRT1 ln r

nRT2 ln r
= 1 − T1

T2
= �T

T2
(13)

and it depends only on the temperatures of the two reservoirs.
Using (10), the entropy change of the universe during a cycle of the Carnot engine is

�Suniverse
Carnot cycle,� = −Qh

Th
− Qc

Tc
= −nRT2 ln r

T2
+

nRT1 ln r

T1
= 0 , (14)

that is, the clockwise Carnot cycle is reversible. This property makes the Carnot engine a very
special engine: it is the unique reversible heat engine functioning with only two reservoirs.
(Any other cycle could be performed in a reversible way, but that would require a virtually
infinite number of thermal reservoirs.)

Let us try to transform this heat engine into a heat pump/refrigerator. In order to do so,
we invert the cycle to the counterclockwise direction. In process 1 → 4, the gas is in contact
with a reservoir at temperature T ′

c = Tc = T1, in processes 4 → 3 and 2 → 1, the gas is
thermally isolated, and in process 3 → 2, the gas is in contact with a reservoir at temperature
T ′

h = Th = T2. (The primed quantities refer to the counterclockwise cycle. We will adopt this
notation from now on.) We have

Q14 = −Q41 = nRT1 ln r ; Q43 = 0 ; Q32 = −Q23 = −nRT2 ln r ; Q21 = 0 ; so

Q′
h = Q32 = −nRT2 ln r < 0 , Q′

c = Q14 = nRT1 ln r > 0 ,

Q′
cycle = Q′

h + Q′
c = −nR�T ln r < 0 , W ′

cycle = −Q′
cycle = nR�T ln r > 0 .

Naturally, Q′
cycle = −Qcycle and W ′

cycle = −Wcycle . Now the gas is rejecting heat to the
reservoir at higher temperature, is absorbing heat from the reservoir at lower temperature, and
it is doing work on the gas; this behaviour defines a heat pump/refrigerator. In short, we see

2 Conventionally, we think of a clockwise cycle, representing the heat engine. As the name indicates, the compression
ratio relates the initial and final volumes during the isothermal compression process, namely the volumes V4 and
V1. The expansion ratio is defined as the ratio between the final and initial volumes during the isothermal expansion
process; in this case r ′ ≡ V3

V2
. We can also define the pressure ratio as the ratio between the final and initial pressures

during the isothermal compression process; here, rp ≡ p1
p4

. Since p1V1 = p4V4 and p2V2 = p3V3, we have

rp ≡ p1
p4

= V4
V1

= r and p2
p3

= V3
V2

= r ′ = r , on account of (12). Thus in the Carnot cycle, the compression ratio r, the

expansion ratio r ′ and the pressure ratio rp are the same.
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that the straightforward inversion of the cycle of a Carnot engine automatically generates a
(Carnot) heat pump/refrigerator.

According to (7) and (8), the COP of the Carnot heat pump and the Carnot refrigerator
are

COPHP
Carnot cycle = |Q′

h|
|W ′

cycle|
= nRT2 ln r

nR�T ln r
= T2

�T
, (15)

COPR
Carnot cycle = |Q′

c|
|W ′

cycle|
= nRT1 ln r

nR�T ln r
= T1

�T
. (16)

We can verify the general relation (9), and we also observe that

COPHP
Carnot cycle = 1

εCarnot cycle
. (17)

Finally, the change in the entropy of the universe during a cycle of this Carnot heat
pump/refrigerator is given by

�Suniverse
Carnot cycle,� = −Q′

h

Th
− Q′

c

Tc
= nRT2 ln r

T2
− nRT1 ln r

T1
= 0 , (18)

which shows that the counterclockwise Carnot cycle is also reversible; this property makes
the Carnot heat pump/refrigerator a very special heat pump/refrigerator.

4. Stirling cycle

Let us consider the Stirling cycle3 shown in figure 3. This cycle has a clear resemblance
to the Carnot cycle4; it has two isothermal processes and two isochoric processes (replacing
the adiabatic processes), where r > 1 and T1 < T2. We define �T ≡ T2 − T1 > 0,
as before.

Let us assume that the cycle operates in the clockwise direction. In processes 1 → 2 → 3,
the gas is in contact with a thermal reservoir at temperature Th = T2, and in processes
3 → 4 → 1, the gas is in contact with a thermal reservoir at temperature Tc = T1. We have

Q12 = ncV �T12 = n
R

γ − 1
�T ; Q23 = −W23 = nRT2 ln

(
V3

V2

)
= nRT2 ln r ;

Q34 = ncV �T34 = −n
R

γ − 1
�T ; Q41 = −W41 = −nRT1 ln

(
V4

V1

)
= −nRT1 ln r , so

Qh = Q12 + Q23 = nR

(
T2 ln r +

�T

γ − 1

)
> 0 ,

Qc = Q34 + Q41 = −nR

(
T1 ln r +

�T

γ − 1

)
< 0 ,

Qcycle = Qh + Qc = nR�T ln r > 0 , Wcycle = −Qcycle = −nR�T ln r < 0 .

Note that the values of Qcycle and Wcycle in the Stirling cycle are the same as the
corresponding values in the Carnot cycle. Since Qh > 0, Qc < 0 and Wcycle < 0, the
gas is absorbing heat from the reservoir at higher temperature, is rejecting heat to the reservoir
at lower temperature and is doing work; these properties characterize a heat engine.

3 Used by Robert Stirling (1790–1878) in 1816 in his air engine; that heat engine was improved in 1840 by Robert’s
brother, James Stirling (1800–76).
4 In this cycle the compression ratio, the expansion ratio and the pressure ratio also coincide. The equality of the
first two ratios is automatic, and the equality with the third ratio is proved as in the previous section.
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Figure 3. Volume–pressure diagram of the Stirling cycle.

The efficiency of the Stirling engine is given by

εStirling cycle = |Wcycle|
|Qh| = nR�T ln r

nR
(
T2 ln r + �T

γ−1

) = �T ln r

T2 ln r
[
1 + �T

(γ−1)T2 ln r

]
=

�T
T2

1 +
�T
T2

(γ−1) ln r

= εCarnot cycle

1 + εCarnot cycle

(γ−1) ln r

, (19)

where we have used relation (13) for the efficiency of the Carnot engine. This expression
clearly shows that εStirling cycle < εCarnot cycle and that εStirling cycle → εCarnot cycle if r → ∞. It
can also be written in the form

1

εStirling cycle
− 1

εCarnot cycle
= 1

(γ − 1) ln r
. (20)

The entropy change of the universe during a cycle of the Stirling engine is

�Suniverse
Stirling cycle, � = −Qh

Th
− Qc

Tc
= −

nR
(
T2 ln r + �T

γ−1

)
T2

+
nR

(
T1 ln r + �T

γ−1

)
T1

= nR

γ − 1
�T

(
1

T1
− 1

T2

)
= nR

γ − 1

(�T )2

T1T2
> 0 , (21)

that is, the clockwise Stirling cycle is irreversible.
Let us try to transform this heat engine into a heat pump/refrigerator, as in the previous

section. In order to do so, we invert the cycle to the counterclockwise direction. We must
be careful here when identifying the reservoirs that are in contact with the gas in the various
processes. In processes 1 → 4 and 2 → 1, the gas should be in contact with a reservoir at
temperature T ′

c = Tc = T1, and in processes 4 → 3 → 2, the gas should be in contact with a
reservoir at temperature T ′

h = Th = T2. Then we have

Q14 = −Q41 = nRT1 ln r ; Q43 = −Q34 = n
R

γ − 1
�T ;
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Figure 4. Schematic diagrams of situations (a) and (b) described in sections 4 and 5.

Q32 = −Q23 = −nRT2 ln r ; Q21 = −Q12 = −n
R

γ − 1
�T , so

Q′
h=Q43 + Q32= − nR

(
T2 ln r − �T

γ − 1

)
, Q′

c = Q14 + Q21 = nR

(
T1 ln r − �T

γ − 1

)
,

Q′
cycle = Q′

h + Q′
c = −nR�T ln r < 0, W ′

cycle = −Q′
cycle = nR�T ln r > 0 .

It is very important to compare Q′
h and Q′

c with Qh and Qc, respectively, and understand the
origin of the difference. The next observation to do is this: although work is being done on
the gas, there is no warranty that Q′

h < 0 (condition characterizing a heat pump) or Q′
c > 0

(condition characterizing a refrigerator). Actually, we have three possible situations.

(a) T2 ln r − �T
γ−1 < 0 ⇐⇒ ln r < �T

(γ−1)T2
⇐⇒ r < exp

[
�T

(γ−1)T2

]
.

In this case, Q′
h > 0 and Q′

c < 0, that is, the gas is absorbing heat from the reservoir at
higher temperature and rejects heat to the reservoir at lower temperature. This situation
is represented by the diagram shown in figure 4(a), and it does not correspond to a heat
engine, nor a heat pump/refrigerator; it is described by the relation |W ′

cycle| = |Q′
c|−|Q′

h|.

(b) T2 ln r − �T
γ−1 > 0 and T1 ln r − �T

γ−1 < 0 ⇐⇒ �T
(γ−1)T2

< ln r < �T
(γ−1)T1

⇐⇒ exp
[

�T
(γ−1)T2

]
< r < exp

[
�T

(γ−1)T1

]
.

In this case, Q′
h < 0 and Q′

c < 0, that is, the gas rejects heat to the reservoir at higher
temperature and to the reservoir at lower temperature. This situation is represented by
the diagram shown in figure 4(b), and it does not correspond to a heat engine, nor a
refrigerator; it is described by the relation |W ′

cycle| = |Q′
c| + |Q′

h|. We could say that it
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achieves the same goal as that of a heat pump because it sends heat to the reservoir at
higher temperature; nevertheless, its coefficient of performance is low because

COPHP
Stirling cycle,(b) = |Q′

h|
|W ′

cycle|
=

nR
(
T2 ln r − �T

γ−1

)
nR�T ln r

= T2

�T
− 1

(γ − 1) ln r
,

and we see that 0 < COPHP
Stirling cycle, (b) < 1.

(c) T1 ln r − �T
γ−1 > 0 ⇐⇒ ln r > �T

(γ−1)T1
⇐⇒ r > exp

[
�T

(γ−1)T1

]
.

In this case, Q′
h < 0 and Q′

c > 0, that is, the gas absorbs heat from the reservoir at lower
temperature, and rejects heat to the reservoir at higher temperature; these properties define
a heat pump/refrigerator. The corresponding coefficients of performance are

COPHP
Stirling cycle, (c) = |Q′

h|
|W ′

cycle|
=

nR
(
T2 ln r − �T

γ−1

)
nR�T ln r

= T2

�T
− 1

(γ − 1) ln r
, (22)

COPR
Stirling cycle, (c) = |Q′

c|
|W ′

cycle|
=

nR
(
T1 ln r − �T

γ−1

)
nR�T ln r

= T1

�T
− 1

(γ − 1) ln r
, (23)

with 1 < COPHP
Stirling cycle, (c) < COPHP

Carnot cycle and 0 < COPR
Stirling cycle, (c) <

COPR
Carnot cycle. These two coefficients verify the general relation (9), and using equations

(13) and (20), we obtain

COPHP
Stirling cycle, (c) = 1

εCarnot cycle
−

(
1

εStirling cycle
− 1

εCarnot cycle

)

= 2

εCarnot cycle
− 1

εStirling cycle
; (24)

a similar relation is also satisfied by the Carnot heat pump, as is easy to prove.

Thus, we can say that the inversion of the cycle of the Stirling engine does not necessarily
represent a heat pump/refrigerator; it only occurs if certain conditions are satisfied.

The change in the entropy of the universe during the inverted (counterclockwise) Stirling
cycle is

�Suniverse
Stirling cycle, � = −Q′

h

Th
− Q′

c

Tc
=

nR
(
T2 ln r − �T

γ−1

)
T2

−
nR

(
T1 ln r − �T

γ−1

)
T1

= nR

γ − 1
�T

(
1

T1
− 1

T2

)
= nR

γ − 1

(�T )2

T1T2
> 0 ; (25)

this result confirms the irreversibility of this cycle and coincides with the result obtained for
the clockwise cycle.

It is worth mentioning that conditions describing the previously referred situations (a),
(b) and (c) can be written in an alternate form; if we look at the expressions of W ′

cycle and
�Suniverse

Stirling cycle , we see that, for situation (a),

ln r <
�T

(γ − 1)T2
⇐⇒ nR�T ln r <

nR

γ − 1

(�T )2

T2
,

that is,

W ′
cycle < T1�Suniverse

Stirling cycle (situation (a)).
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Figure 6. Volume−pressure diagram of the Ericsson cycle.

In a similar way, we obtain

T1�Suniverse
Stirling cycle < W ′

cycle < T2�Suniverse
Stirling cycle (situation (b)).

T2�Suniverse
Stirling cycle < W ′

cycle (situation (c)).

Thus, we can interpret T1�Suniverse
Stirling cycle as the minimum work we have to do on the gas to

implement a Stirling heat pump, and T2�Suniverse
Stirling cycle as the minimum work we have to do on

the gas to implement a Stirling refrigerator. Figure 5 summarizes all these conclusions.

5. Ericsson cycle

Let us now consider the Ericsson cycle5, shown in figure 6. This cycle also shows strong
similarities with the Carnot cycle6, and has two isothermal processes and two isobaric processes
(which replace the adiabatic processes), where r > 1 and T1 < T2. Let �T ≡ T2 − T1 > 0.

Since isothermal processes are described by the equation pV = constant, we have{
p1V1 = p4V4 �⇒ p1

p4
= V4

V1

p2V2 = p3V3 �⇒ p2

p3
= V3

V2

�⇒ V3

V2
= V4

V1
= r (26)

5 Used by John Ericsson (1803–89) in his external combustion engine in 1852.
6 Once more, the compression ratio, the expansion ratio and the pressure ratio are equal in this cycle, as is clear
in (26).
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because p1 = p2 and p3 = p4. Let us assume that the cycle occurs in the clockwise direction.
In processes 1 → 2 → 3, the gas is in contact with a thermal reservoir at temperature Th = T2,
and in processes 3 → 4 → 1, the gas is in contact with a thermal reservoir at temperature
Tc = T1.

We have

Q12 = ncp�T12 = n
γR

γ − 1
�T ; Q23 = −W23 = nRT2 ln

(
V3

V2

)
= nRT2 ln r ;

Q34 = ncp�T34 = −n
γR

γ − 1
�T ; Q41 = −W41 = −nRT1 ln

(
V4

V1

)
= −nRT1 ln r , so

Qh = Q12 + Q23 = nR

(
T2 ln r +

γ�T

γ − 1

)
> 0 ,

Qc = Q34 + Q41 = −nR

(
T1 ln r +

γ�T

γ − 1

)
< 0 ,

Qcycle = Qh + Qc = nR�T ln r > 0 , Wcycle = −Qcycle = −nR�T ln r < 0 .

Note that the values of Qcycle and Wcycle in the Ericsson cycle are the same values calculated in
the Carnot and Stirling cycles. Since Qh > 0, Qc < 0 and Wcycle < 0, the gas is absorbing heat
from the reservoir at higher temperature, is rejecting heat to the reservoir at lower temperature,
and is doing work, so this cycle behaves as a heat engine.

The efficiency of the Ericsson engine is given by

εEricsson cycle = |Wcycle|
|Qh| = nR�T ln r

nR
(
T2 ln r + γ�T

γ−1

) = �T ln r

T2 ln r
[
1 + γ�T

(γ−1)T2 ln r

]
=

�T
T2

1 +
γ �T

T2
(γ−1) ln r

= εCarnot cycle

1 + γ εCarnot cycle

(γ−1) ln r

, (27)

where we have used relation (13) for the efficiency of the Carnot engine. Comparing this
expression with (19), we see that 0 < εEricsson cycle < εStirling cycle < εCarnot cycle < 1 and also
that εEricsson cycle → εCarnot cycle if r → ∞.

This can also be written as

1

εEricsson cycle
− 1

εCarnot cycle
= γ

(γ − 1) ln r
. (28)

The entropy change of the universe during a cycle of the Ericsson engine is

�Suniverse
Ericsson cycle, � = −Qh

Th
− Qc

Tc
= −

nR
(
T2 ln r + γ�T

γ−1

)
T2

+
nR

(
T1 ln r + γ�T

γ−1

)
T1

= nRγ

γ − 1
�T

(
1

T1
− 1

T2

)
= nRγ

γ − 1

(�T )2

T1T2
> 0 , (29)

so the clockwise Ericsson cycle is irreversible.
Let us try, once again, to transform this heat engine into a heat pump/refrigerator. In

order to do so, we invert the cycle to the counterclockwise direction and carefully identify the
reservoirs that are in contact with the gas in the various processes. In processes 1 → 4 and
2 → 1 the gas is in contact with a reservoir at temperature T ′

c = Tc = T1, and in processes
4 → 3 → 2 the gas is in contact with a reservoir at temperature T ′

h = Th = T2. So

Q14 = − Q41 = nRT1 ln r; Q43 = − Q34=n
γR

γ − 1
�T ;
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Q32 = −Q23 = −nRT2 ln r ; Q21 = −Q12 = −n
γR

γ − 1
�T , so

Q′
h = Q43 + Q32 = −nR

(
T2 ln r − γ�T

γ − 1

)
, Q′

c = Q14 + Q21 = nR

(
T1 ln r − γ�T

γ − 1

)
,

Q′
cycle = Q′

h + Q′
c = −nR�T ln r < 0 , W ′

cycle = −Qcycle = nR�T ln r > 0 .

Once more, it is instructive to compare Q′
h and Q′

c with Qh and Qc, respectively.
As in the previous section, work is done on the gas but there is no warranty that Q′

h < 0
(the main condition representing a heat pump) or Q′

c > 0 (the main condition representing a
refrigerator). We have three possible scenarios:

(a) r < exp
[

γ�T

(γ−1)T2

]
; (b) exp

[
γ�T

(γ−1)T2

]
< r < exp

[
γ�T

(γ−1)T1

]
; (c) r > exp

[
γ�T

(γ−1)T1

]
.

Scenario (a) is shown in figure 4(a) and does not correspond to a heat pump, nor to a
refrigerator. Scenario (b) is shown in figure 4(b); we can say that it behaves as a heat pump
with a low coefficient of performance, given by

COPHP
Ericsson cycle, (b) = |Q′

h|
|W ′

cycle|
=

nR
(
T2 ln r − γ�T

γ−1

)
nR�T ln r

= T2

�T
− γ

(γ − 1) ln r
,

and we can write 0 < COPHP
Ericsson cycle, (b) < COPHP

Stirling cycle, (b) < 1. Scenario (c) is unique
that corresponds to a heat pump/refrigerator, with the coefficients of performance

COPHP
Ericsson cycle, (c) = |Q′

h|
|W ′

cycle|
=

nR
(
T2 ln r − γ�T

γ−1

)
nR�T ln r

= T2

�T
− γ

(γ − 1) ln r
, (30)

COPR
Ericsson cycle, (c) = |Q′

c|
|W ′

cycle|
=

nR
(
T1 ln r − γ�T

γ−1

)
nR�T ln r

= T1

�T
− γ

(γ − 1) ln r
. (31)

These satisfy relations 1 < COPHP
Ericsson cycle, (c) < COPHP

Stirling cycle,(c) < COPHP
Carnot cycle and

0 < COPR
Ericsson cycle, (c) < COPR

Stirling cycle,(c) < COPR
Carnot cycle, and verify the general relation

(9) and still another relation similar to (24):

COPHP
Ericsson cycle, (c) = 1

εCarnot cycle
−

(
1

εEricsson cycle
− 1

εCarnot cycle

)

= 2

εCarnot cycle
− 1

εEricsson cycle
. (32)

Thus, the inversion of the cycle does not necessarily represent a heat pump/refrigerator.
The entropy change of the universe after one counterclockwise Ericsson cycle is

�Suniverse
Ericsson cycle, � = −Q′

h

Th
− Q′

c

Tc
=

nR
(
T2 ln r − γ�T

γ−1

)
T2

−
nR

(
T1 ln r − γ�T

γ−1

)
T1

= nRγ

γ − 1
�T

(
1

T1
− 1

T2

)
= nRγ

γ − 1

(�T )2

T1T2
> 0 ; (33)

this is the same result as that of the clockwise cycle.
Finally, and in a similar way as we did for the Stirling cycle, previous scenarios (a)–(c)

can be written as

W ′
cycle < T1�Suniverse

Ericsson cycle (scenario (a)),
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T1�Suniverse
Ericsson cycle < W ′

cycle < T2�Suniverse
Ericsson cycle (scenario (b)),

T2�Suniverse
Ericsson cycle < W ′

cycle (scenario (c)),

so we can interpret T1�Suniverse
Ericsson cycle as the minimum work we have to do on the gas to get an

Ericsson heat pump, and T2�Suniverse
Ericsson cycle as the minimum work we have to do on the gas to

get an Ericsson refrigerator. A diagram similar to figure 5 would show these results.
It is worth observing that Q12 + Q34 = 0 in both Stirling and Ericsson cycles, that is,

the heats exchanged by the system during the non-isothermal processes are given by opposite
numbers. This fact has been explored in engineering through the concept of regeneration:
we include in the system a device (called the regenerator) which stores the heat rejected by
the gas during process 3 → 4 and transfers it back to the gas in process 1 → 2. It is easy to
prove that the Stirling and Ericsson cycles with regeneration have the same efficiency and the
same coefficients of performance as the Carnot cycle. The reader interested in this topic could
find it in most engineering thermodynamics books [4].

In this section, and in the previous section, we have considered cycles that maintain
the two isothermal processes of the Carnot cycle and replace the two adiabatic processes by
isobaric and isochoric processes, respectively. In the following sections, we will maintain the
adiabatic processes of the Carnot cycle and replace the isothermal processes.

6. Otto cycle

Let us consider the Otto cycle7 shown in figure 7, with two adiabatic processes and two
isochoric processes (which replace the isothermal processes in the Carnot cycle), where r > 1
is the compression ratio. Observe that here the parameter r relates the extreme volumes of the
gas along the adiabatic processes instead of along the isothermal processes8. The points of the
cycle with the highest and lowest temperatures are also shown. We define �T ≡ T3 −T2 > 0.
(The reason for choosing T3 − T2 instead of T3 − T1 will be clear soon.)

Since one of the equations of adiabatic curves is T V γ−1 = constant, we can write

{
T2V

γ−1
2 = T1V

γ−1
1

T3V
γ−1

3 = T4V
γ−1

4

�⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T2

T1
=

(
V1

V2

)γ−1

= rγ−1

T3

T4
=

(
V4

V3

)γ−1

= rγ−1

�⇒ T2

T3
= T1

T4
< 1 . (34)

Let us assume that the cycle is realized in the clockwise direction. In processes 1 → 2 and
3 → 4, the gas is thermally isolated; in process 2 → 3, the gas is in contact with a thermal
reservoir at temperature Th = T3, and in process 4 → 1, the gas is in contact with a thermal
reservoir at temperature Tc = T1.

We have

Q12 = 0 ; Q23 = ncV �T23 = n
R

γ − 1
(T3 − T2) = nR�T

γ − 1
; Q34 = 0 ;

Q41 = ncV �T41 = −n
R

γ − 1
(T4 − T1) = − nRT4

γ − 1

(
1 − T1

T4

)
= − nRT4

γ − 1

(
1 − T2

T3

)
7 In honour of Nikolaus August Otto (1832–91), who designed an internal combustion engine with this cycle in 1862.
The Otto cycle is also known as the Beau de Rochas cycle because Alphonse Beau de Rochas (1815–93) actually was
the first to patent a four-cycle engine using this cycle, in 1861.
8 The same observation applies to the other parameters, r ′ and rp. In the Otto cycle the expansion ratio and the
compression ratio are automatically equal (r), but the pressure ratio rp is higher: rp ≡ p2

p1
= p3

p4
= rγ > r; this

relation is easily proved by using the equation pV γ = constant of adiabatic curves.
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Figure 7. Volume–pressure diagram of the Otto cycle.

= − nRT4

γ − 1

T3 − T2

T3
= −nR�T

γ − 1

T4

T3
= −nR�T

γ − 1

1

rγ−1
, so

Qh = Q23 = nR�T

γ − 1
> 0 , Qc = Q41 = −nR�T

γ − 1

1

rγ−1
< 0 ,

Qcycle = Qh + Qc = nR�T

γ − 1

(
1 − 1

rγ−1

)
> 0,

Wcycle = −Qcycle = −nR�T

γ − 1

(
1 − 1

rγ−1

)
< 0 .

Thus, the gas is absorbing heat from the reservoir at higher temperature, is rejecting heat to
the reservoir at lower temperature and is doing work; this defines a heat engine.

The efficiency of the Otto engine is given by

εOtto cycle = |Wcycle|
|Qh| =

nR�T
γ−1

(
1 − 1

rγ−1

)
nR�T
γ−1

= 1 − 1

rγ−1
, (35)

and it depends only on the compression ratio and on the nature of the gas. Since T1 and
T3 are the temperatures of the two reservoirs, it is clear that εOtto cycle < εCarnot cycle because
εCarnot cycle = 1 − T1

T3
, whilst εOtto cycle = 1 − T4

T3
, and T4 > T1.

The entropy change of the universe after one cycle of the Otto engine is

�Suniverse
Otto cycle, � = −Qh

Th
− Qc

Tc
= −

nR�T
γ−1

T3
+

nR�T
γ−1

T4
T3

T1
= nR�T

(γ − 1)T3

(
T4

T1
− 1

)

= nR�T

(γ − 1)T3

(
T3

T2
− 1

)
= nR

γ − 1

(�T )2

T2T3
> 0 , (36)

so the clockwise Otto cycle is also irreversible. It should be noted that, opposite to previous
cycles, �T does not represent here the temperature difference between the two reservoirs,
but the range of temperatures over which the irreversible heating process occurs. This new
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interpretation can be extended to previous cycles. Also note that �Suniverse
Otto cycle, � can be written

in the form

�Suniverse
Otto cycle, � = nR

γ − 1

(
T4 − T1

T1

)(
T3 − T2

T3

)
= nR

γ − 1

(
�Tc

Tc

) (
�Th

Th

)
, (37)

where �Tc ≡ T4 − T1 = |T1 − T4| is the range of temperatures over which the irreversible
cooling process occurs, and �Th ≡ T3 − T2 = |T3 − T2| is the range of temperatures over
which the irreversible heating process occurs.

Let us try to transform this heat engine into a heat pump/refrigerator. In order to do so,
we invert the cycle to the counterclockwise direction and carefully identify the reservoirs that
are in contact with the gas in the various processes.

In this case, we have an interesting situation: there is no need to employ the same thermal
reservoirs used in the clockwise cycle9 (temperatures T3 and T1); we can use reservoirs at
temperatures T4 and T2. Thus, in process 1 → 4, the gas is in contact with a reservoir at
temperature T4; in processes 4 → 3 and 2 → 1, the gas is thermally isolated; and in process
3 → 2, the gas is in contact with a reservoir at temperature T2. We have

Q14 = −Q41 = nR�T

γ − 1

1

rγ−1
; Q43 = 0 ; Q32 = −Q23 = −nR�T

γ − 1
; Q21 = 0 .

Since Q14 > 0 and Q32 < 0, if we want this cycle to represent a heat pump/refrigerator
we have to be sure that Q14 = Q′

c and Q32 = Q′
h, that is, T4 should be the temperature of

the reservoir at lower temperature, and T2 must be the temperature of the reservoir at higher
temperature; that is possible only if T4 < T2 (it should be noted, looking at figure 7, that this
condition is not guaranteed a priori). Thus we additionally assume that T ′

c = T4 < T2 = T ′
h

and we will have

Q′
h = Q32 = −nR�T

γ − 1
< 0, Q′

c = Q14 = nR�T

γ − 1

1

rγ−1
> 0 ,

Q′
cycle = Q′

h + Q′
c = −nR�T

γ − 1

(
1 − 1

rγ−1

)
< 0 ,

W ′
cycle = −Q′

cycle = nR�T

γ − 1

(
1 − 1

rγ−1

)
> 0.

The coefficients of performance of this inverted Otto cycle are

COPHP
Otto cycle = |Q′

h|
|W ′

cycle|
=

nR�T
γ−1

nR�T
γ−1

(
1 − 1

rγ−1

) = 1

1 − 1
rγ−1

> 1 , (38)

COPR
Otto cycle = |Q′

c|
|W ′

cycle|
=

nR�T
γ−1

1
rγ−1

nR�T
γ−1

(
1 − 1

rγ−1

) =
1

rγ−1

1 − 1
rγ−1

> 0 . (39)

These two coefficients verify the general relation (9) and

COPHP
Otto cycle = 1

εOtto cycle
. (40)

The entropy change of the universe during the counterclockwise Otto cycle is

�Suniverse
Otto cycle, � = −Q′

h

T ′
h

− Q′
c

T ′
c

=
nR�T
γ−1

T2
−

nR�T
γ−1

T4
T3

T4
= nR�T

γ − 1

(
1

T2
− 1

T3

)

= nR

γ − 1

(�T )2

T2T3
> 0 , (41)

9 Actually, if we try to use the same reservoirs we will get a situation of the type shown in figure 4(a), which does
not represent a heat engine, nor a heat pump/refrigerator. We leave the details to the reader.
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Figure 8. Volume–pressure diagram of the Joule cycle.

the same result obtained for the clockwise cycle, so we can write it in the form (37).
Finally, comparing the expressions for W ′

cycle and �Suniverse
Otto cycle, we can readily show that

condition T4 < T2 is equivalent to condition W ′
cycle > T2�Suniverse

Otto cycle; this allows us, as in
previous sections, to interpret the value of T2�Suniverse

Otto cycle as the minimum work that we have
to do on the gas to implement an Otto heat pump/refrigerator. Note that T2 represents the
temperature T ′

h of the hot reservoir used in the heat pump/refrigerator.

7. Joule cycle

Let us consider the Joule cycle shown in figure 8, with two adiabatic processes and two
isobaric processes (which substitute the isothermal processes in the Carnot cycle), where
r > 1 is the compression ratio10. Depending on the context11, this cycle is also known as
the Brayton cycle, Stoddard cycle, Rankine cycle or Bell–Coleman cycle. The points of
the cycle with the highest and lowest temperatures are also shown. We define, as before,
�T ≡ T3 − T2 > 0.

10 In the Joule cycle, as in the Otto cycle, the expansion and compression ratios have the same value (r) and the
pressure ratio rp = rγ has a higher value, as we can see in (42).
11 The designations Joule cycle and Brayton cycle have historical reason: although the cycle was used by Ericsson
in 1833, it was not successful at the time; James Prescott Joule (1818–89) proposed it in 1851 and George Brayton
(1830–92) was the first to implement it with success in 1872. In both cases, the cycle is related to a heat engine
whose working fluid is a gas, with no phase changes (e.g. gas turbine). The name Stoddard cycle is in honour of
Elliott Joseph Stoddard (1859–?), who used it in his 1919 and 1933 external combustion engines. The designation
Rankine cycle, in honour of William John Macquorn Rankine (1820–72), applies when the working fluid used in the
heat engine (typically steam) suffers a phase change during the cycle. The name Bell–Coleman cycle refers to the
counterclockwise (refrigeration) cycle used by Henry Bell (1848–1931), John Bell (1850–1929) and Joseph James
Coleman (1838–88).
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One equation for adiabatics is pV γ = constant; then, since p2 = p3 and p1 = p4, we
have

{
p2V

γ

2 = p1V
γ

1

p3V
γ

3 = p4V
γ

4
�⇒

⎧⎪⎪⎨
⎪⎪⎩

p2

p1
=

(
V1

V2

)γ

= rγ

p3

p4
=

(
V4

V3

)γ �⇒ V4

V3
= V1

V2
= r . (42)

Adiabatics are also described by T V γ−1 = constant or T γ p1−γ = constant; then⎧⎪⎪⎨
⎪⎪⎩

T2V
γ−1

2 = T1V
γ−1

1 �⇒ T2
T1

=
(

V1
V2

)γ−1
= rγ−1{

T
γ

2 p
1−γ

2 = T
γ

1 p
1−γ

1

T
γ

3 p
1−γ

3 = T
γ

4 p
1−γ

4

�⇒
(

T2
T3

)γ

=
(

T1
T4

)γ

�⇒ T2
T3

= T1
T4

�⇒ T3

T4
= T2

T1
= rγ−1 . (43)

Let us assume that the cycle operates in the clockwise direction. In processes 1 → 2 and
3 → 4, the gas is thermally isolated; in process 2 → 3, the gas is in contact with a thermal
reservoir at temperature Th = T3; and in process 4 → 1, the gas is in contact with a thermal
reservoir at temperature Tc = T1. We have

Q12 = 0 ; Q23 = ncp�T23 = n
R

γ − 1
(T3 − T2) = nR�T γ

γ − 1
; Q34 = 0 ;

Q41 = ncp�T41 = −n
γR

γ − 1
(T4 − T1) = −nRγT4

γ − 1

(
1 − T1

T4

)
= −nRγT4

γ − 1

(
1 − T2

T3

)

= −nRγT4

γ − 1

T3 − T2

T3
= −nR�T γ

γ − 1

T4

T3
= −nR�T γ

γ − 1

1

rγ−1
, so

Qh = Q23 = nR�T γ

γ − 1
> 0 , Qc = Q41 = −nR�T γ

γ − 1

1

rγ−1
< 0 ,

Qcycle = Qh + Qc = nR�T γ

γ − 1

(
1 − 1

rγ−1

)
> 0 ,

Wcycle = −Qcycle = −nR�T γ

γ − 1

(
1 − 1

rγ−1

)
< 0 .

Thus, the gas is absorbing heat from the reservoir at higher temperature, is rejecting heat
to the reservoir at lower temperature and is doing work; thus we have a heat engine.

The efficiency of the Joule engine is given by12

εJoule cycle = |Wcycle|
|Qh| =

nR�T γ

γ−1

(
1 − 1

rγ−1

)
nR�T γ

γ−1

= 1 − 1

rγ−1
, (44)

and is equal to the efficiency of the Otto engine; it depends only on the compression ratio and
on the nature of the gas.

The entropy change of the universe after one cycle of the Joule engine is

�Suniverse
Joule cycle, � = −Qh

Th
− Qc

Tc
= −

nR�T γ

γ−1

T3
+

nR�T γ

γ−1
T1
T2

T1
= nR�T γ

γ − 1

(
1

T2
− 1

T3

)

= nRγ

γ − 1

(�T )2

T2T3
> 0 , (45)

so the clockwise Joule cycle is also irreversible.

12 Sometimes this efficiency is expressed as a function of the pressure ratio rp; since r = r
1/γ
p , we can write

εJoule cycle = 1 − 1

r
(γ−1)/γ
p

.
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As in the previous section, �T does not represent the temperature difference between
the two reservoirs, but the range of temperatures over which the irreversible heating process
occurs. And it is also possible to rewrite this entropy change in the form

�Suniverse
Joule cycle, � = nRγ

γ − 1

(
�Tc

Tc

) (
�Th

Th

)
. (46)

In order to transform this heat engine into a heat pump/refrigerator, we proceed as we did in
the Otto cycle: we invert the cycle, realizing it in the counterclockwise direction, and we use
two new reservoirs at temperatures T4 and T2. In process 1 → 4, the gas is in contact with a
reservoir at temperature T4; in processes 4 → 3 and 2 → 1, the gas is thermally isolated; in
process 3 → 2, the gas is in contact with a reservoir at temperature T2. We have

Q14 = −Q41 = nR�T γ

γ − 1

1

rγ−1
; Q43 = 0 ; Q32 = −Q23 = −nR�T γ

γ − 1
; Q21 = 0 .

Imposing now the condition T ′
c = T4 < T2 = T ′

h, we will have

Q′
h = Q32 = −nR�T γ

γ − 1
< 0 , Q′

c = Q14 = nR�T γ

γ − 1

1

rγ−1
> 0 ,

Q′
cycle = Q′

h + Q′
c = −nR�T γ

γ − 1

(
1 − 1

rγ−1

)
< 0 ,

W ′
cycle = −Q′

cycle = nR�T γ

γ − 1

(
1 − 1

rγ−1

)
> 0 .

The coefficients of performance of this inverted Joule cycle are13

COPHP
Joule cycle = |Q′

h|
|W ′

cycle|
=

nR�T γ

γ−1
nR�T γ

γ−1

(
1 − 1

rγ−1

) = 1

1 − 1
rγ−1

> 1 , (47)

COPR
Joule cycle = |Q′

c|
|W ′

cycle|
=

nR�T γ

γ−1
1

rγ−1

nR�T γ

γ−1

(
1 − 1

rγ−1

) =
1

rγ−1

1 − 1
rγ−1

> 0 . (48)

These two coefficients verify the general relation (9) and

COPHP
Joule cycle = 1

εJoule cycle
. (49)

The entropy change of the universe after one counterclockwise Joule cycle is

�Suniverse
Joule cycle, � = −Q′

h

T ′
h

− Q′
c

T ′
c

=
nR�T γ

γ−1

T2
−

nR�T γ

γ−1
T4
T3

T4
= nR�T γ

γ − 1

(
1

T2
− 1

T3

)

= nRγ

γ − 1

(�T )2

T2T3
> 0 , (50)

the same result as the clockwise cycle; thus it can also be expressed in the form (46).
Finally, as in the Otto cycle, condition T4 < T2 is equivalent to W ′

cycle > T ′
h�Suniverse

Joule cycle,
so we can make the same interpretation as the previous sections.

13 These coefficients of performance can also be written as COPHP
Joule cycle = 1

1− 1

r
(γ−1)/γ
p

and COPR
Joule cycle =

1

r
(γ−1)/γ
p

1− 1

r
(γ−1)/γ
p

= 1

r
(γ−1)/γ
p −1

.
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Figure 9. Volume–pressure diagram of the Diesel cycle.

8. Diesel cycle

Let us now consider the Diesel cycle14 shown in figure 9, with two adiabatic processes, one
isobaric process and one isochoric process, where r > rc > 1. The parameter rc is called
the cut-off ratio15. Note that, in contrast to all previous cycles, this cycle contains three
different kinds of processes instead of two. The points of the cycle with the highest and lowest
temperatures are also shown.

Since p2 = p3, we can write

T2

V2
= T3

V3
�⇒ T3

T2
= V3

V2
= rc . (51)

Since adiabatics can be described by T V γ−1 = constant, we have⎧⎪⎨
⎪⎩

T2V
γ−1

2 = T1V
γ−1

1 �⇒ T2
T1

=
(

V1
V2

)γ−1
= rγ−1 �⇒ T3

T1
= T3

T2

T2
T1

= rcr
γ−1

T3V
γ−1

3 = T4V
γ−1

4 �⇒ T4
T3

=
(

V3
V4

)γ−1
= (

rc
r

)γ−1 �⇒ T4
T1

= T4
T3

T3
T1

= r
γ
c .

(52)

Thus,⎧⎨
⎩

T3 − T2 = T1

(
T3
T1

− T2
T1

)
= T1

(
rcr

γ−1 − rγ−1
) = T1 (rc − 1) rγ−1

T4 − T1 = T1

(
T4
T1

− 1
)

= T1
(
r

γ
c − 1

)
.

(53)

Let us assume that the cycle follows the clockwise direction. In processes 1 → 2 and 3 → 4,
the gas is thermally isolated; in process 2 → 3, the gas is in contact with a thermal reservoir
at temperature Th = T3, and in process 4 → 1, the gas is in contact with a thermal reservoir

14 Used by Rudolph Christian Karl Diesel (1858–1913) in 1893, in his internal combustion engine.
15 Here the compression ratio is V1

V2
= r and the expansion ratio is r ′ = V4

V3
= r

rc
< r . For this cycle we can define

two pressure ratios: rp = p2
p1

=
(

V1
V2

)γ = rγ and r ′
p = p3

p4
=

(
V4
V3

)γ =
(

r
rc

)γ = r ′γ .
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at temperature Tc = T1. We have

Q12 = 0 ; Q23 = ncp�T23 = n
γR

γ − 1
(T3 − T2) = nRT1γ

γ − 1
(rc − 1) rγ−1;

Q34 = 0 ; Q41 = ncV �T41 = −n
R

γ − 1
(T4 − T1) = − nRT1

γ − 1

(
rγ

c − 1
) ;

Qh = Q23 = nRT1γ

γ − 1
(rc − 1) rγ−1 > 0 , Qc = Q41 = − nRT1

γ − 1

(
rγ

c − 1
)

< 0 ,

Qcycle = Qh + Qc = nRT1

γ − 1

[
γ (rc − 1) rγ−1 − (

rγ
c − 1

)]
,

Wcycle = −Qcycle = − nRT1

γ − 1

[
γ (rc − 1) rγ−1 − (

rγ
c − 1

)]
.

It is not difficult to show16 that Qcycle > 0, so Wcycle < 0. Thus the gas is absorbing heat from
the reservoir at higher temperature, is rejecting heat to the reservoir at lower temperature and
is doing work; these properties characterize a heat engine.

The efficiency of a Diesel engine is given by

εDiesel cycle = |Wcycle|
|Qh| =

nRT1
γ−1

[
γ (rc − 1) rγ−1 − (

r
γ
c − 1

)]
nRT1γ

γ−1 (rc − 1) rγ−1
= 1 − r

γ
c − 1

γ (rc − 1) rγ−1
, (54)

and can be put in the form17

εDiesel cycle = 1 − 1

rγ−1

[
r

γ
c − 1

γ (rc − 1)

]
< 1 − 1

rγ−1
= εOtto cycle ;

thus, the efficiency of a Diesel engine is less than the efficiency of an Otto engine or a
Joule engine with the same compression ratio. The reason is clear: in the Diesel engine the
expansion ratio is smaller than in Otto or Joule engines.

The entropy change of the universe after one cycle of the Diesel engine is

�Suniverse
Diesel cycle, � = −Qh

Th
− Qc

Tc
= −

nRT1γ

γ−1 (rc − 1) rγ−1

T3
+

nRT1
γ−1

(
r

γ
c − 1

)
T1

= nR

γ − 1

[
rγ

c − 1 − γ
(rc − 1) rγ−1

rcrγ−1

]
= nR

γ − 1

[
rγ

c − 1 − γ

(
1 − 1

rc

)]
.

(55)

This depends only on the cut-off ratio and on the nature of the gas; it is easy to verify18

that �Suniverse
Diesel cycle, � > 0, so the clockwise Diesel cycle is also irreversible.

In order to transform this heat engine into a heat pump/refrigerator, we proceed as in Otto
and Joule cycles: we invert the cycle, following the counterclockwise direction, and we use
two new reservoirs, at temperatures T4 and T2. In process 1 → 4, the gas is in contact with a
reservoir at temperature T4; in processes 4 → 3 and 2 → 1, the gas is thermally isolated; in
process 3 → 2, the gas is in contact with a reservoir at temperature T2. We obtain

Q14 = −Q41 = nRT1

γ − 1

(
rγ

c − 1
) ;

Q43 = 0 ; Q32 = −Q23 = −nRT1γ

γ − 1
(rc − 1) rγ−1 ; Q21 = 0.

16 Since r > rc, we can write γ (rc − 1) rγ−1 − (
r
γ
c − 1

)
> γ (rc − 1) r

γ−1
c − (

r
γ
c − 1

)
. So we must study the

function f1(x) = γ (x − 1) xγ−1 − (xγ − 1) for x > 1, with γ > 1.
17 The inequality r

γ
c −1

γ (rc−1)
> 1 is proved by studying the function f2(x) = xγ − 1 − γ (x − 1) for x > 1, with γ > 1.

18 We must study the function f3(x) = xγ − 1 − γ
(
1 − 1

x

)
for x > 1, with γ > 1.



Some considerations about thermodynamic cycles 33

Imposing now the condition T ′
c = T4 < T2 = T ′

h, we will have

Q′
h = Q32 = −nRT1γ

γ − 1
(rc − 1) rγ−1 < 0 , Q′

c = Q14 = nRT1

γ − 1

(
rγ

c − 1
)

> 0 ,

Q′
cycle = Q′

h + Q′
c = − nRT1

γ − 1

[
γ (rc − 1) rγ−1 − (

rγ
c − 1

)]
< 0 ,

W ′
cycle = −Q′

cycle = nRT1

γ − 1

[
γ (rc − 1) rγ−1 − (

rγ
c − 1

)]
> 0 .

It should be noted that condition T4 < T2 is equivalent to r
γ
c < rγ−1; once we fix the values

of rc and γ , this condition establishes a minimum value for the compression ratio r.
The coefficients of performance of this inverted Diesel cycle are

COPHP
Diesel cycle = |Q′

h|
|W ′

cycle|
=

nRT1γ

γ−1 (rc − 1) rγ−1

nRT1
γ−1

[
γ (rc − 1) rγ−1 − (

r
γ
c − 1

)] = 1

1 − r
γ
c −1

γ (rc−1)rγ−1

> 1 , (56)

COPR
Diesel cycle = |Q′

c|
|W ′

cycle|
=

nRT1
γ−1

(
r

γ
c − 1

)
nRT1
γ−1

[
γ (rc − 1) rγ−1 − (

r
γ
c − 1

)] =
r
γ
c −1

γ (rc−1)rγ−1

1 − r
γ
c −1

γ (rc−1)rγ−1

> 0 . (57)

These two coefficients verify the general relation (9) and

COPHP
Diesel cycle = 1

εDiesel cycle
. (58)

The entropy change of the universe after one counterclockwise Diesel cycle is

�Suniverse
Diesel cycle, � = −Q′

h

T ′
h

− Q′
c

T ′
c

=
nRT1γ

γ−1 (rc − 1) rγ−1

T2
−

nRT1
γ−1

(
r

γ
c − 1

)
T4

= nR

γ − 1

[
γ (rc − 1) rγ−1

rγ−1
− r

γ
c − 1

r
γ
c

]
= nR

γ − 1

[
γ (rc − 1) −

(
1 − 1

r
γ
c

)]
(59)

and is not equal to the result obtained for the clockwise cycle. This non-equality could
be related to the fact, observed at the beginning of the analysis of this cycle, that the two
non-adiabatic processes are of different kinds (one isobaric, the other isochoric).

Anyway, �Suniverse
Diesel cycle, � depends only on the cut-off ratio and on the nature of the gas,

and it is easy to verify19 that �Suniverse
Diesel cycle, � > 0, so the counterclockwise Diesel cycle is also

irreversible.
Let us calculate the difference between expressions (55) and (59). We have

�Suniverse
Diesel cycle, � − �Suniverse

Diesel cycle, � = nR

γ − 1

[
rγ

c − 1 − γ +
γ

rc
− γ rc + γ + 1 − 1

r
γ
c

]

= nR

γ − 1

[
rγ

c − 1

r
γ
c

− γ

(
rc − 1

rc

)]
(60)

and it can be proved20 that this difference is always positive, so

�Suniverse
Diesel cycle, � > �Suniverse

Diesel cycle, � , (61)

that is, the clockwise cycle (representing Diesel engine) generates more entropy than the
counterclockwise cycle (representing Diesel heat pump/refrigerator).

19 Analysing the function f4(x) = γ (x − 1) − (
1 − 1

xγ

)
for x > 1, with γ > 1.

20 Studying the function f5(x) = xγ − 1
xγ − γ

(
x − 1

x

)
for x > 1, with γ > 1.
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Figure 10. Volume–pressure diagram of the Atkinson cycle.

Finally, comparing the expressions of W ′
cycle and T ′

h�Suniverse
Diesel cycle, �, we realize that

condition W ′
cycle > T ′

h�Suniverse
Diesel cycle, � is equivalent to r

γ
c < rγ−1, which, as we saw, is the

same as T4 < T2, the necessary condition to transform a Diesel engine, by inversion, into
a heat pump/refrigerator. Thus, as in all previous cycles, we can interpret the value of
T ′

h�Suniverse
Diesel cycle, � as the minimum work we have to do on the gas to obtain a Diesel heat

pump/refrigerator.

9. Atkinson cycle

Let us consider the Atkinson cycle shown in figure 10, with two adiabatic processes, one
isochoric process and one isobaric process, where r ′ > r > 1; clearly, r is the compression
ratio and r ′ is the expansion ratio21. Depending on the source22, this cycle is also known as
the Sargent cycle or Humphrey cycle. Similar to the Diesel cycle, this cycle contains three
different kinds of processes instead of two. The points of the cycle with the highest and lowest
temperatures are also shown.

Since p1 = p4, we can write

T1

V1
= T4

V4
�⇒ T4

T1
= V4

V1
= r ′

r
. (62)

21 As in the Diesel cycle, we also have here two pressure ratios: rp = p2
p1

= rγ and r ′
p = p3

p4
= r ′γ .

22 The designation Atkinson cycle [5] has a historical explanation, because the cycle was used by James Atkinson
(1846–1914) in his internal combustion engine, in 1882. The name Sargent cycle [6, 7] is in honour of Charles Elliotte
Sargent (1862–?), who used it in various gas engines he patented from 1905 on. The designation Humphrey cycle [7]
is based on a pump, patented by Herbert Albert Humphrey (1868–1951) in 1906, that implemented this cycle with a
gaseous mixture and where the work was used to pump water; this designation is also very common in the literature
concerning pulse detonation engines [8, 9].
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Since adiabatics can be described by T V γ−1 = constant, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T2V
γ−1

2 = T1V
γ−1

1 �⇒ T2

T1
=

(
V1

V2

)γ−1

= rγ−1

T3V
γ−1

3 = T4V
γ−1

4 �⇒ T3

T4
=

(
V4

V3

)γ−1

= (
r ′)γ−1 �⇒ T3

T1
= T3

T4

T4

T1
= r ′γ

r
,

(63)

so ⎧⎪⎪⎨
⎪⎪⎩

T3 − T2 = T1

(
T3

T1
− T2

T1

)
= T1

(
r ′γ

r
− rγ−1

)
= T1

r ′γ − rγ

r

T4 − T1 = T1

(
T4

T1
− 1

)
= T1

(
r ′

r
− 1

)
= T1

r ′ − r

r

. (64)

Let us assume that the cycle is performed in the clockwise direction. In processes 1 → 2 and
3 → 4, the gas is thermally isolated; in process 2 → 3, the gas is in contact with a thermal
reservoir at temperature Th = T3; and in process 4 → 1, the gas is in contact with a thermal
reservoir at temperature Tc = T1. We have

Q12 = 0 ; Q23 = ncV �T23 = n
R

γ − 1
(T3 − T2) = nRT1

γ − 1

r ′γ − rγ

r
;

Q34 = 0 ; Q41 = ncp�T41 = −n
γR

γ − 1
(T4 − T1) = −nRT1γ

γ − 1

r ′ − r

r
;

Qh = Q23 = nRT1

γ − 1

r ′γ − rγ

r
> 0 , Qc = Q41 = −nRT1γ

γ − 1

r ′ − r

r
< 0 ,

Qcycle = Qh + Qc = nRT1

γ − 1

r ′γ − rγ − γ (r ′ − r)

r
> 0 ,

Wcycle = −Qcycle = − nRT1

γ − 1

r ′γ − rγ − γ (r ′ − r)

r
< 0 .

Since the gas is absorbing heat from the reservoir at higher temperature, is rejecting heat
to the reservoir at lower temperature and is doing work, this represents a heat engine. The
efficiency of Atkinson engine is given by

εAtkinson cycle = 1 − |Qc|
|Qh| = 1 −

nRT1γ

γ−1
r ′−r

r

nRT1
γ−1

r ′γ −rγ

r

= 1 − γ (r ′ − r)

r ′γ − rγ
, (65)

and can be written in the form23

εAtkinson cycle = 1 −
γ r

(
r ′
r

− 1
)

r ′γ [
1 − (

r
r ′
)γ ] = 1 − r

r ′γ

⎡
⎣γ

(
r ′
r

− 1
)

1 − (
r
r ′
)γ

⎤
⎦ < 1 − r

r ′γ = εCarnot cycle

or in the form24

εAtkinson cycle = 1 −
γ r

(
r ′
r

− 1
)

rγ
[(

r ′
r

)γ − 1
] = 1 − 1

rγ−1

⎡
⎣γ

(
r ′
r

− 1
)

(
r ′
r

)γ − 1

⎤
⎦ > 1 − 1

rγ−1
= εOtto cycle .

23 The inequality results from
γ
(

r′
r −1

)
1−

(
r
r′

)γ > 1, easily proved through the function f4(x) of a previous footnote for

x > 1, with γ > 1.

24 The inequality results from
γ
(

r′
r −1

)
(

r′
r

)γ −1
< 1, which is proved through the function f2(x) of a previous footnote for

x > 1, with γ > 1.
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Thus, an Atkinson engine is less efficient than a Carnot engine functioning between two
reservoirs at maximum and minimum temperatures. Nevertheless, it is more efficient than a
Otto engine or a Joule engine with the same compression ratio. Why? Because the expansion
ratio is greater in Atkinson engine than in Otto or Joule engines. Combining these results with
those obtained in the previous sections, we obtain

0 < εDiesel cycle < εOtto cycle = εJoule cycle < εAtkinson cycle < εCarnot cycle < 1 .

The entropy change of the universe after one cycle of the Atkinson engine is

�Suniverse
Atkinson cycle, � = −Qh

Th
− Qc

Tc
= −

nRT1
γ−1

r ′γ −rγ

r

T3
+

nRT1γ

γ−1
r ′−r

r

T1

= nR

γ − 1

[
γ

(
r ′

r
− 1

)
−

(
1 − rγ

r ′γ

)]
, (66)

an expression that depends only on the ratio r ′
r

and on the nature of the gas; it can be shown
that �Suniverse

Atkinson cycle, � > 0, so the clockwise Atkinson cycle is also irreversible.
In order to transform this heat engine into a heat pump/refrigerator, we proceed as in

Otto, Joule and Diesel cycles: we invert the cycle to the counterclockwise direction, and we
use two new reservoirs, at temperatures T4 and T2. In process 1 → 4, the gas is in contact with
a reservoir at temperature T4; in processes 4 → 3 and 2 → 1, the gas is thermally isolated; in
process 3 → 2, the gas is in contact with a reservoir at temperature T2. We obtain

Q14 = −Q41 = nRT1γ

γ − 1

r ′ − r

r
; Q43 = 0 ; Q32 = −Q23 = − nRT1

γ − 1

r ′γ − rγ

r
; Q21 = 0 .

Imposing the condition T ′
c = T4 < T2 = T ′

h, we will obtain the following formulae:

Q′
h = Q32 = − nRT1

γ − 1

r ′γ − rγ

r
< 0 , Q′

c = Q14 = nRT1γ

γ − 1

r ′ − r

r
> 0 ,

Q′
cycle = Q′

h + Q′
c = − nRT1

γ − 1

r ′γ − rγ − γ (r ′ − r)

r
< 0 ,

W ′
cycle = −Q′

cycle = nRT1

γ − 1

r ′γ − rγ − γ (r ′ − r)

r
> 0 .

Similar to what occurred in the previous section, condition T4 < T2 is equivalent to rγ > r ′;
once we fix the values of r ′

r
and γ , this condition establishes a minimum value for the

compression ratio r.
The coefficients of performance of this inverted Atkinson cycle are

COPHP
Atkinson cycle = |Q′

h|
|W ′

cycle|
=

nRT1
γ−1

r ′γ −rγ

r

nRT1
γ−1

r ′γ −rγ −γ (r ′−r)

r

= 1

1 − γ (r ′−r)

r ′γ −rγ

> 1 , (67)

COPR
Atkinson cycle = |Q′

c|
|W ′

cycle|
=

nRT1γ

γ−1
r ′−r

r

nRT1
γ−1

r ′γ −rγ −γ (r ′−r)

r

=
γ (r ′−r)

r ′γ −rγ

1 − γ (r ′−r)

r ′γ −rγ

> 0 , (68)

verifying the general relation (9) and

COPHP
Atkinson cycle = 1

εAtkinson cycle
. (69)

Taking into account the previous comparison between the efficiencies of the various cycles,
and combining relations (17), (40), (49), (58) and (69), we would obtain the following result:

1 < COPHP
Carnot cycle < COPHP

Atkinson cycle < COPHP
Otto cycle = COPHP

Joule cycle < COPHP
Diesel cycle .
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The second inequality seems to violate the Carnot theorem: apparently, we would have
heat pumps with a coefficient of performance greater than the coefficient of performance of a
Carnot heat pump. But there is no violation at all: we should note that Atkinson, Otto, Joule
and Diesel heat pumps, appearing in the previous expression, function between reservoirs at
temperatures T ′

c = T4 < T2 = T ′
h, whereas the Carnot heat pump, with which they are being

compared, functions between reservoirs at temperatures Tc = T1 < T3 = Th.
If we compare COPHP

Diesel cycle with the coefficient of performance of a Carnot heat pump
functioning between reservoirs at temperatures T4 and T2, we verify that the latter is greater,
according to Carnot theorem, and we obtain (we leave the details to the reader)

1 < COPHP
Atkinson cycle < COPHP

Otto cycle = COPHP
Joule cycle < COPHP

Diesel cycle < COPHP
Carnot cycle .

The entropy change of the universe after one counterclockwise Atkinson cycle is

�Suniverse
Atkinson cycle, � = −Q′

h

T ′
h

− Q′
c

T ′
c

=
nRT1
γ−1

r ′γ −rγ

r

T2
−

nRT1γ

γ−1
r ′−r

r

T4

= nR

γ − 1

[
r ′γ − rγ

rγ
− γ (r ′ − r)

r ′

]
= nR

γ − 1

[
r ′γ

rγ
− 1 − γ

(
1 − r

r ′
)]

(70)

and is not equal to the result obtained for the clockwise cycle. Once again, this non-equality
should be related to the fact that the two non-adiabatic processes are of different kinds (one
isobaric, the other isochoric). Anyway, �Suniverse

Atkinson cycle, � depends only on the ratio r ′
r

and on
the nature of the gas, and it is easy to verify25 that �Suniverse

Atkinson cycle, � > 0, which shows that the
counterclockwise Atkinson cycle is also irreversible.

Let us calculate the difference between expressions (66) and (70). We have

�Suniverse
Atkinson cycle, � − �Suniverse

Atkinson cycle, � = nR

γ − 1

[
γ r ′

r
− γ − 1 +

rγ

r ′γ − r ′γ

rγ
+ 1 + γ − γ r

r ′

]

= − nR

γ − 1

[
r ′γ

rγ
− rγ

r ′γ − γ

(
r ′

r
− r

r ′

)]
(71)

and it can be shown26 that this difference is always negative, so

�Suniverse
Atkinson cycle, � < �Suniverse

Atkinson cycle, � , (72)

that is, the clockwise cycle (representing Atkinson engine) generates less entropy than the
counterclockwise cycle (representing Atkinson heat pump/refrigerator).

To conclude this section, if we compare expressions of W ′
cycle and T ′

h�Suniverse
Atkinson cycle, �, we

realize that condition W ′
cycle > T ′

h�Suniverse
Atkinson cycle, � is equivalent to rγ > r ′, which, as we saw,

is the same as T4 < T2, the necessary condition to transform an Atkinson engine, by inversion,
into a heat pump/refrigerator. Thus, as in all previous cases, we can interpret the quantity
T ′

h�Suniverse
Atkinson cycle, � as the minimum work we have to do on the gas to implement an Atkinson

heat pump/refrigerator.
In this and all previous cycles, we saw that the inversion of a heat engine cycle, made

under certain conditions, generated the cycle of a heat pump/refrigerator; conditions which
allow that transformation were always expressed in terms of one or more parameters, and it
was always possible to interpret them as the minimum work we have to bring to the system.

Thus it would seem reasonable to think that the transformation of a heat engine cycle into
a heat pump/refrigerator cycle is always possible under specified conditions. But that idea is
wrong, as we will show in the following section.

25 Analysing the function f3(x) of a previous footnote for x > 1, with γ > 1.
26 Analysing the function f5(x) of a previous footnote for x > 1, with γ > 1.
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Figure 11. Volume–pressure diagram of the rectangular cycle.

10. Rectangular cycle

Let us now consider the rectangular cycle shown in figure 11, with two isochoric processes
and two isobaric processes, where r, rp > 1 (r could be named compression or expansion
ratio, and rp could be named pressure ratio). Minimum and maximum temperatures occur at
points 1 and 3, respectively. Although this cycle shows similarities with some of the previous
cycles, we should note that it does not include any isothermal or adiabatic process.

Let us assume that the cycle follows the clockwise direction. In processes 1 → 2 → 3, the
gas is in contact with a thermal reservoir at temperature Th = T3, and in processes 3 → 4 → 1,
the gas is in contact with a thermal reservoir at temperature Tc = T1. We have

Q12 = ncV �T12 = n
R

γ − 1
(T2 − T1) = rppV − pV

γ − 1
= rp − 1

γ − 1
pV ;

Q23 = ncp�T23 = n
γR

γ − 1
(T3 − T2) = γ (rrppV − rppV )

γ − 1
= γ rp(r − 1)

γ − 1
pV ;

Q34 = ncV �T34 = n
R

γ − 1
(T4 − T3) = rpV − rrppV

γ − 1
= − r(rp − 1)

γ − 1
pV ;

Q41 = ncp�T41 = n
γR

γ − 1
(T1 − T4) = γ (pV − rpV )

γ − 1
= −γ (r − 1)

γ − 1
pV .

So

Qh = Q12 + Q23 = (rp − 1) + γ rp(r − 1)

γ − 1
pV > 0 ,

Qc = Q34 + Q41 = − r(rp − 1) + γ (r − 1)

γ − 1
pV < 0 ,

Qcycle = Qh+Qc = (r − 1)(rp − 1)pV > 0, Wcycle = −Qcycle = −(r − 1)(rp − 1)pV < 0.



Some considerations about thermodynamic cycles 39

Thus, the gas is absorbing heat from the reservoir at higher temperature, is rejecting heat to
the reservoir at lower temperature and is doing work; this clearly represents a heat engine.
The efficiency of this heat engine is given by

εrectangular cycle = |Wcycle|
|Qh| = (r − 1)(rp − 1)pV

(rp−1)+γ rp(r−1)

γ−1 pV
= (γ − 1)(r − 1)(rp − 1)

(rp − 1) + γ rp(r − 1)
(73)

and if we compare it with the efficiency of a Carnot engine functioning between the same
reservoirs,

εCarnot cycle = 1 − T1

T3
= 1 − nRT1

nRT3
= 1 − pV

rrppV
= 1 − 1

rrp
= rrp − 1

rrp
, (74)

we find that εrectangular cycle < εCarnot cycle because

εCarnot cycle − εrectangular cycle = (rp − 1)(r2rp − 1) + γ rp(r − 1)2

rrp
[
(rp − 1) + γ rp(r − 1)

] > 0 .

The entropy change of the universe after one cycle of this heat engine is

�Suniverse
rectangular cycle, � = −Qh

Th
− Qc

Tc
= −

(rp−1)+γ rp(r−1)

γ−1 pV

rrppV

nR

+

r(rp−1)+γ (r−1)

γ−1 pV

pV

nR

= nR

γ − 1

[
r(rp − 1) + γ (r − 1) − (rp − 1) + γ rp(r − 1)

rrp

]

= nR

(γ − 1)

(rp − 1)(r2rp − 1) + γ rp(r − 1)2

rrp
> 0 , (75)

showing the irreversible character of this cycle.
Let us try, as in the examples of previous sections, to transform this heat engine into a

heat pump/refrigerator. In order to do so, we invert the rectangular cycle, performing it in the
counterclockwise direction. In processes 1 → 4 → 3, the gas is in contact with a thermal
reservoir at temperature T ′

h = Th = T3, and in processes 3 → 2 → 1, the gas is in contact
with a thermal reservoir at temperature T ′

c = Tc = T1. We have

Q14 = −Q41 = γ (r − 1)

γ − 1
pV ; Q43 = −Q34 = r(rp − 1)

γ − 1
pV ;

Q32 = −Q23 = −γ rp(r − 1)

γ − 1
pV ; Q21 = −Q12 = − rp − 1

γ − 1
pV , so

Q′
h = Q14 + Q43 = r(rp − 1) + γ (r − 1)

γ − 1
pV > 0 ,

Q′
c = Q32 + Q21 = − (rp − 1) + γ rp(r − 1)

γ − 1
pV < 0 ,

Q′
cycle=Q′

h + Q′
c= − (r − 1)(rp − 1)pV < 0 , W ′

cycle= − Q′
cycle=(r − 1)(rp − 1)pV > 0 .

Thus, the gas is still absorbing heat from the reservoir at higher temperature, it is still rejecting
heat to the reservoir at lower temperature, but now work is being done on the gas; this
situation does not correspond to a heat engine, nor a heat pump/refrigerator. Its schematic
representation is shown in figure 4(a).

So it makes no sense here to calculate the efficiency or the coefficients of performance.
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Figure 12. Volume–pressure diagram of (a) ‘Sadly Cannot’ cycle [10, 11], (b) Lenoir cycle27, (c)
Miller cycle28 and (d) Trinkler cycle29.

The entropy change of the universe during this counterclockwise rectangular cycle is

�Suniverse
rectangular cycle, � = −Q′

h

Th
− Q′

c

Tc
= −

r(rp−1)+γ (r−1)

γ−1 pV

rrppV

nR

+

(rp−1)+γ rp(r−1)

γ−1 pV

pV

nR

= nR

γ − 1

[
(rp − 1) + γ rp(r − 1) − r(rp − 1) + γ (r − 1)

rrp

]

= nR

(γ − 1)

r(rp − 1)2 + γ (r − 1)(rr2
p − 1)

rrp
> 0 , (76)

so this cycle is also irreversible; additionally, it is easy to prove that

�Suniverse
rectangular cycle, � − �Suniverse

rectangular cycle, � = −nR
(r − 1)(rp − 1)(rrp + 1)

rrp
< 0 , so (77)

�Suniverse
rectangular cycle, � < �Suniverse

rectangular cycle, �, (78)

that is, the clockwise cycle (representing the rectangular heat engine) generates less entropy
than the counterclockwise cycle.

We leave to the reader, as an exercise, to verify that, independent of the values of γ ,
r or rp, the work W ′

cycle is always less than T1�Suniverse
rectangular cycle, �; since T1 is the minimum

temperature during the cycle, that work will be less than Tj�Suniverse
rectangular cycle, � (j = 1, 2, 3, 4).

In particular, W ′
cycle < T ′

h�Suniverse
rectangular cycle, �. Thus the necessary condition to implement a
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heat pump/refrigerator with this rectangular cycle does not verify in any circumstances. So
we have here an example of a heat engine whose cycle cannot be transformed, by inversion,
into a heat pump/refrigerator.

11. Some other cycles

In this work, we have restricted the study to four-process cycles; naturally, we could also
study two-process or three-process cycles, or even cycles with five or more processes. Some
interesting cycles are shown in figure 12, and we invite the reader to extend our analysis
to those cycles. In particular, the reader can calculate the efficiencies of those clockwise
cycles, compare them with the results obtained in this work, calculate and compare the
entropy changes of the universe during the clockwise and counterclockwise cycles, study the
necessary conditions for the counterclockwise cycle to represent a heat pump/refrigerator and
calculate the corresponding coefficients of performance whenever possible.

12. Conclusions

We have studied in detail some thermodynamic cycles usually referred to in textbooks. We
began studying the clockwise version of those cycles (corresponding to heat engines), and
calculated (and compared) their efficiencies. We have obtained the results

0 < εEricsson cycle < εStirling cycle < εCarnot cycle < 1

for cycles with two isothermal processes, and the results

0 < εDiesel cycle < εOtto cycle = εJoule cycle < εAtkinson cycle < εCarnot cycle < 1

for cycles with two adiabatic processes.
We can also compare the efficiencies of the first group of cycles with those of the second

group if, in expressions (19) and (27), we identify the two compression ratios (concerning
isothermal processes in the first group cycles, and adiabatic processes in the second group
cycles) and replace �T by Tmax − Tmin (that is, by T3 − T1) and T2 by Tmax (that is, by T3).
It is not difficult to show that εStirling cycle < εOtto cycle, but there is no general relation between
εEricsson cycle and εDiesel cycle, nor between εStirling cycle and εDiesel cycle, as we can see through the
following numerical examples, computed for a diatomic gas (γ = 7/5):

εDiesel cycle = 0, 25 < εEricsson cycle = 0, 27 < εStirling cycle = 0, 33 for rc = 3 and r = 4;

εEricsson cycle = 0, 32 < εDiesel cycle = 0, 36 < εStirling cycle = 0, 39 for rc = 3 and r = 6;

εEricsson cycle = 0, 35 < εStirling cycle = 0, 42 < εDiesel cycle = 0, 43 for rc = 3 and r = 8.

We have also calculated the entropy change of the universe for each heat engine; it was
clear that the unique reversible heat engine functioning between two thermal reservoirs uses
a Carnot cycle. Although we have derived some interesting expressions for these entropy
changes, e.g., (37) and (46), those formulae are only valid for certain ‘symmetric’ cycles.

Then we have proceeded to the inversion of the heat engine cycles. We have verified that,
when it is inverted, the unique cycle that automatically generates a heat pump/refrigerator
cycle in all circumstances is the Carnot cycle. For the other cycles the inversion can represent
a heat pump/refrigerator, but only under certain conditions, and sometimes it is required to
employ thermal reservoirs different from those used in the heat engines. Whenever possible,



42 M F F da Silva

we have calculated and compared the corresponding coefficients of performance. If the
appropriate condition is satisfied, we have obtained

1 < COPHP
Ericsson cycle < COPHP

Stirling cycle < COPHP
Carnot cycle

1 < COPHP
Atkinson cycle < COPHP

Otto cycle = COPHP
Joule cycle < COPHP

Diesel cycle < COPHP
Carnot cycle.

We have also computed the corresponding entropy change of the universe for each
heat pump/refrigerator, and we have established a relation between its value and the
necessary condition to obtain a heat pump/refrigerator in terms of the work we must supply:
W ′

cycle > T ′
h�Suniverse

cycle,� . Typically, this condition translates into a compression ratio large
enough. Concerning the relation between the entropy change of the universe in clockwise
and counterclockwise cycles, we have seen that the two values are equal in some cycles
(Carnot, Stirling, Ericsson, Otto and Joule); from the other cycles we have studied, we
conclude that anything can happen: for instance, �Suniverse

cycle,� > �Suniverse
cycle,� in the Diesel cycle,

and �Suniverse
cycle,� < �Suniverse

cycle,� in the Atkinson cycle.
Finally, we have shown an example of a cycle (the rectangular cycle) we could use to

implement a heat engine but not a heat pump/refrigerator, independent of the compression
ratio or the temperatures of the reservoirs.
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