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Abstract

A fully connected neural network was trained to model the K-shell ionization cross sections
based on two input features: the atomic number and the incoming electron overvoltage.
The training utilized a recent, updated compilation of experimental data covering elements
from H to U, and incident electron energies ranging from the threshold to relativistic values.
The neural network demonstrated excellent predictive performance, compared with the
experimental data, when available, and with full theoretical predictions. The developed
model is provided in the IKEBANA code, which is openly available and requires only the
user-selected atomic number and electron energy range as inputs.

Keywords: ionization; K-shell; machine learning; electron impact; neural networks

1. Introduction
Electron-impact (EI) ionization has been a central topic in atomic and molecular

physics since the advent of quantum mechanics. Its relevance spans a wide range of appli-
cations, including plasma diagnostics, astrophysical modeling, material characterization,
mass spectrometry, and the fragmentation of complex biological molecules in radiotherapy
and other medical treatments. Among the various parameters governing electron–matter in-
teractions, the K-shell ionization cross section, σK, plays a pivotal role. Accurate knowledge
of σK is essential for interpreting X-ray emission spectra, understanding energy depo-
sition processes in matter, and developing predictive models in both fundamental and
applied physics. Despite nearly a century of theoretical and experimental work, precise
and comprehensive datasets covering all elements and the full range of incident energies
remain incomplete. Even for cases with abundant measurements, it remains challenging to
determine a precise σK value due to discrepancies and dispersion among the experimental
results. Theoretical approaches, such as distorted-wave and close-coupling calculations,
yield accurate predictions in many cases, yet gaps persist in both experimental coverage
and the availability of fully consistent datasets across the periodic table.

A recent and updated 2024 compilation of experimental σK data [1,2], covering ele-
ments from hydrogen to uranium, reveals that the majority of the available measurements
are concentrated on just eight elements: H, He, Ar, Cr, Fe, Ni, Cu, and Ag. In contrast,
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most other elements have only sparse data, typically limited to narrow energy intervals,
and for approximately 30% of the elements within the considered atomic number range,
no experimental data are available at all. This comprehensive dataset highlights both
the scarcity of measurements for many elements and the significant variability among
the existing data, underscoring the need for reliable predictive models across the entire
periodic table.

Finding a universal prediction to accurately describe the EI ionization cross-sections
of distinct target materials along an extended energy range is a formidable challenge. In
this work, we developed a machine learning (ML) method based on a deep neural network,
which could fulfill this task. When dealing with large volumes of data or seeking trends and
patterns in complex datasets, machine learning approaches become a valuable tool [3,4]. In
particular, ML has proven to be useful in atomic physics research; for instance, a neural
network trained with a complete set of experimental results has been applied to predicting
accurate electronic stopping power cross sections for any ion and target combination in a
wide range of incident energies [5].

This work is organized as follows: in Section 2 we describe the neural network model
employed; in Section 3 the present results are displayed and discussed; and in Section 4 we
summarize the findings of the model and the conclusions arrived at.

2. Neural Network Models
A fully connected neural network was implemented to model the K-shell ionization

cross-sections, σK, based on two input features: the atomic number Z and the incoming
electron overvoltage

Ui ≡
Ei
Ik

, (1)

where Ei is the incoming electron energy and Ik is the K-shell ionization energy. The global
structure of the neural network and the general training procedure applied follow the
lineaments detailed in reference [5], although no data cleansing was implemented in the
present work. Since the involved values spanned wide ranges, the input features and the
target variable were scaled before training. First, both U and the ionization cross-sections
σK were transformed to a logarithmic scale (the atomic number Z was kept at its original
linear scale, as its logarithmic transformation did not improve the performance). Then,
all the variables (input and output) were scaled using the StandardScaler function. In
physical terms, Z sets the overall magnitude of the cross section, while Ui controls its
energy dependence. The network architecture was composed of four layers: three hidden
layers using tanh activation functions (as justified later), with L2 regularization (λ = 10−5),
batch normalization, and a small dropout rate (10−4), followed by a final output layer with
linear activation to regress the target variable. The architecture was as follows:

• Input: two neurons (Z, log(U));
• Dense (32 units) → BatchNorm → Dropout;
• Dense (16 units) → BatchNorm → Dropout;
• Dense (32 units) → BatchNorm → Dropout;
• Output: one neuron (linear).

Our model separates 20% of the available data as a test set, which is not used during
training. From the remaining data, 20% is allocated to the validation set. The network was
trained using the adaptive moment estimation (ADAM) optimizer with an initial learning
rate of 3 × 10−3, minimizing the mean squared error (MSE) and tracking the mean absolute
error (MAE) as an auxiliary metric. Training was performed over 350 epochs with a batch
size of 64, employing early stopping (patience = 60) and learning rate reduction at the
plateau (factor = 0.8, patience = 45), both based on the validation loss.
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After evaluating several configurations, we selected the final architecture that defined
the model used in our computational framework IKEBANA (Ionization of K-shell Electrons
By A Neural-network Approach). Initially, ReLU activation functions were used, yielding
highly accurate predictions. However, the resulting curves showed discontinuities and
unphysical sharp features. Since electron-impact ionization cross-sections are expected
to vary smoothly with energy, we first attempted to correct these artifacts by applying
a Savitzky–Golay smoothing filter [6] to the output. While this post-processing step
successfully removed irregularities, it felt artificial, as smoothness was imposed externally
rather than emerging from the model itself. To address this in a more principled way, we
tested a physics-informed variant of the network by introducing a penalty on the second
derivative of the output with respect to U, aiming to encourage smoothness through the
loss function. However, this approach did not improve the performance and often resulted
in worse outcomes. A two-phase strategy, involving initial training followed by fine-tuning
with a smoothness penalty, was also tested but proved similarly ineffective. Ultimately,
replacing the activation functions with tanh resolved the issue. This change naturally led
to continuous, physically realistic predictions without the need for external smoothing or
additional loss terms.

While it is difficult to illustrate the motivations behind our architectural and training
decisions with a single example, Figure 1 presents representative predictions obtained
with different network variants for the case of σK for calcium. Among the models tested,
we selected three examples that enabled a direct comparison across architectures with
differing activation functions, regularization parameters, and training strategies. The
MODEL3-RELU differs from the final IKEBANA model only in its use of ReLU activations.
As shown, this model provides highly accurate predictions but produces jagged, non-
smooth curves that fail to reproduce the physical behavior of the process. The second
variant, MODEL-3DROP01, shares the same architecture and hyperparameters as our final
model, except for a significantly increased dropout rate (from 10−4 to 0.1). This version
improves the predictions at high (relativistic) energies but overestimates the cross-sections
at low energies. While the position of the peak is closer to the experimental values in
this specific case, the overall deviation is larger. The final example, MODEL5-RELU, adds
two more hidden layers and alters the architecture to 64-32-32-64-32-1, again using ReLU
activations. This configuration yields overfitted predictions that consistently overshoot the
experimental values across the entire energy range.

These comparisons highlight how seemingly minor architectural decisions, such as
the selection of the activation functions or regularization strategies, can significantly impact
the continuity and physical realism of the predictions. This comparative analysis played a
key role in determining the optimal hyperparameter configuration for the final model.
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Figure 1. Predicted values of σK for calcium using different neural network models, compared to the
results from the final model IKEBANA. The differences among the models are discussed in the text.
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The training and validation loss curves of our final IKEBANA model (Figure 2) exhibit
a consistent decrease and stabilization, with the validation loss consistently being lower
than the training loss. This is likely a result of regularization techniques, such as dropout
and batch normalization, which slightly underfit the training data while improving gener-
alization. Early stopping also contributed to this behavior by preserving the model with
the lowest validation loss.

0 50 100 150 200 250 300 350

0.1

1

 

 
Lo

ss

Epochs

 Training
 Validation

Figure 2. The evolution of the training and validation loss over epochs.

3. Results and Discussion
The updated database used in this study [1,2] contains over 2500 experimental data

points, compiled from approximately one hundred publications spanning from 1930 to
2024 (although no new experimental results were published after 2020). The reported cross
sections cover a wide range of energies, although most measurements are concentrated
between the ionization threshold and U = 4. A few experiments extend into the relativistic
regime, with data reaching up to a few GeV. For some elements, only one or two data points
are available. A notable aspect of the dataset is the presence of significant discrepancies
among results reported by different authors under the same conditions. At this stage, we
chose not to filter out these inconsistencies, as was performed in Ref. [5], to avoid making
arbitrary decisions and to minimize the risk of overfitting during training.

The present neural network code IKEBANA demonstrates an excellent predictive
performance, and its results are compared in Figure 3 with the experimental values for
the training and test datasets. The coefficient of determination reached R2 = 0.998 in
the training set and R2 = 0.997 in the test set, indicating a strong generalization and
minimal overfitting.
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Figure 3. Predicted vs. experimental ionization cross-sections. (a) Training dataset; (b) test dataset.
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The goodness of the IKEBANA model developed can also be assessed in terms of the
relative deviation in the predicted values from the experimental ones. Different analyses
can be performed in this regard, using either training or test datasets to study the values
of σK or log σK. In addition, it is possible to take into account all of the data or to exclude
the values that deviate the most from the general trend. In Table 1, the relevant statistical
parameters of this analysis are shown.

Table 1. The statistical parameters of the distribution of residuals of IKEBANA for σK and log σK . All
values are expressed as percentage deviations with respect to the experimental values.

Training Set Test Set

Full Data w/o Outliers Full Data w/o Outliers

σK

Mean value 5 3 9 5
Std. deviation 39 19 56 23

Min. value −52 −36 −41 −31
Max. value 1144 109 910 174

log σK

Mean value −0.04 −0.03 −0.08 −0.06
Std. deviation 0.44 0.36 0.52 0.38

Min. value −4.71 −1.57 −4.49 −2.05
Max. value 1.40 1.01 1.12 0.86

It can be observed that the standard deviation in the values of log σK, which are the
data used to train the neural network, is always within 0.5%, reflecting narrow distributions
around the mean value. On the other hand, for the values of σK, a standard deviation
around 20% is achieved when outliers are not considered, which is consistent with the
critical dispersion of the experimental data. The 1% of the data lying at each end of the
distribution are considered outliers and ignored in the analysis shown in the fourth and
sixth columns. As can be seen, excluding a few departed data points results in a drastic
decrease in the standard deviation in all cases.

Figure 4 shows residual histograms, where symmetric distributions centered around
zero can be observed, which confirms the unbiased behavior of the model. The histograms
plotted in Figure 4a,b show the distribution of log σK residuals in the training and test
datasets, respectively. As can be seen, the distribution of residuals obtained with the
test dataset is very similar to that achieved with the training dataset, which supports
the reliability of the IKEBANA model. The histogram of Figure 4c corresponds to the
distribution of residuals for σK values of the test dataset and shows the quality of the
ionization cross-section predictions, which is in line with the dispersion of the available
experimental data.
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Figure 4. Histograms of residuals corresponding to the dataset without 1% of the data from each end
of the distribution. (a) Residuals of log σK in the training dataset; (b) residuals of log σK in the test
dataset; (c) residuals of σK in the test dataset.
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Figures 5–10 show the σK predictions as a function of the electron impact energy
obtained with the present IKEBANA code for targets ranging from H to U. These values
are compared with the updated experimental data compilation in [2]. In addition, the
theoretical predictions given by Bote et al. [7] are also displayed for comparison, where
the distorted-wave Born approximation (DWBA) is used for the lower energies and the
plane-wave Born approximation (PWBA) for higher values. It is interesting to note that,
although only the experimental data were used to train the network, the results obtained
with the neural network show a behavior similar to that of the theoretical approach. A
selection of targets was made to illustrate and discuss the different behaviors observed
between model predictions and experimental data. Additionally, Figure 11 presents the
current predictions, along with the values reported by Bote, for four representative targets
that were not included in the training of the neural network model due to the absence of
available experimental data.

Figure 5 presents the IKEBANA results for hydrogen, helium, carbon, and oxygen,
which are among the most frequently measured targets over time. The upper-left panel
shows the predictions for hydrogen. In our database, we have identified six studies that
report measurements of K-shell ionization cross sections for hydrogen. These results can
be grouped into three categories. The first group is represented by the measurements by
Schram et al. [8,9] and Shyn [10], which overestimate the rest of the experimental cross-
section values, particularly at high energies. Unlike the other datasets, the experimental
values in this group show significant deviations from the theoretical predictions of the
PWBA [7]. The remaining measurements of K-shell ionization of H are consistent at both
low and high energies, showing a clear peak in σK around 60 eV. However, discrepancies
remain in the magnitude of this peak. The studies by Shah et al. [11] and Rothe et al. [12]
report a maximum value of 6 × 10−17 cm2, while Fite et al. [13] report a higher peak of
7 × 10−17 cm2. The predictions obtained with our neural network agree with the exper-
imental data across the whole energy range. In particular, they closely reproduce the
peak reported by Fite et al. [13]. This overall agreement suggests that the neural network
approach provides a reliable description of K-shell ionization for hydrogen. In contrast,
the theoretical calculations by Bote et al. [7] show significant discrepancies with all exper-
imental values from the ionization threshold up to the peak, which this approximation
places at 40 eV. Agreement with the majority of experimental data only begins to emerge
above 100 eV.

The helium case, shown in the next panel of Figure 5, is particularly significant due
to the wide availability of experimental results. In contrast to hydrogen, the experimental
data for helium show much less dispersion. The predictions from our neural network lie
in very good agreement with the average values of the experimental results across the
entire energy range. Once again, the theoretical calculations by Bote et al. [7] match the
experimental data at high energies but overestimate the cross sections at low energies, even
beyond the maximum.

The lower panels of Figure 5 display the σK values for carbon (left) and oxygen (right).
For these two elements, we observe that our predictions are in good agreement with the
experimental data at both low and high energies. However, discrepancies arise in both the
position and magnitude of the peak. It is also worth noting that the approximation results
provided by Bote et al. [7] fail to reproduce the experimental data, yielding a curve that
resembles our neural network predictions, especially in the case of oxygen, but without
matching the experimental values.
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Figure 5. K-shell ionization cross sections as a function of the electron impact-energy for H, He, C,
and O. A thick solid line is used for the values predicted by the neural-network code, whereas the
dotted line represents the calculations performed by Bote et al. [7]. The experimental results com-
piled in [1] are shown as circles.

Figure 6 displays the IKEBANA results for aluminum, chlorine, argon, and titanium.
These four cases span a wide energy range, from ionization thresholds of a few keV up
to the relativistic GeV region. All curves exhibit a similar general trend, with very good
agreement between the predictions of our neural network and the theoretical calculations
by Bote et al. [7]. There is also an overall consistency between the two methods in both the
position and magnitude of the cross-section maxima. In the case of aluminum (Z = 13),
the agreement between our IKEBANA predictions and the experimental data is remarkable
across the entire energy range. This is not the case for chlorine (Z = 17), where the
experimental results reported by Wu et al. [14] are approximately 25% lower than the
theoretical values. For argon (Z = 18), our IKEBANA results show very good agreement
with the experimental data near the ionization threshold, around the peak, and at high
energies. In contrast, the data published by Aydinol [15] deviate noticeably from the
general trend near the maximum of σK. In the case of titanium (Z = 22), both our IKEBANA

predictions and the theoretical results by Bote et al. [7] provide a good description of a
specific group of data points near the peak and at low energies. However, they disagree
with the lower-energy measurements reported by He et al. [16], which show a systematic
deviation from the rest of the dataset.

The results for chromium (Z = 24), nickel (Z = 28), copper (Z = 29), and germanium
(Z = 32), shown in Figure 7, reinforce the trends observed in previous cases and confirm the
consistency of our predictions across a broad energy range, from threshold up to the GeV
region. A logarithmic scale is used in these plots to better visualize the agreement near the
ionization threshold, where fine details tend to be lost in linear representations. The level
of agreement between our IKEBANA predictions and the experimental data is comparable
to the intrinsic dispersion observed among the measurements themselves. The agreement
with the theoretical calculations by Bote et al. [7] is also satisfactory throughout most of
the energy range. However, some discrepancies appear in the high-energy asymptotic
behavior. These deviations might be attributed to the limited availability of experimental
data in that region, which poses a challenge for the predictive power of data-driven models
such as IKEBANA. Overall, we hope that the present study, along with comparisons against
independent theoretical approaches, can contribute to a clearer understanding of the
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existing experimental landscape and emphasize the pressing need for new measurements,
particularly at high energies, across a broader range of elements.

Figure 6. K-shell ionization cross sections as a function of the electron impact-energy for Al, Cl, Ar,
and Ti. Curves and symbols are like those in Figure 5.

Figure 7. K-shell ionization cross sections as a function of the electron impact-energy for Cr, Ni, Cu,
and Ge. Curves and symbols are like those in Figure 5.

The upper-right panel of Figure 8 shows the K-shell ionization cross sections for
silver (Z = 47), a particularly valuable case due to the abundance of experimental mea-
surements spanning a broad energy range, from the ionization threshold near 20 eV up
to approximately 2 GeV. The predictions from our IKEBANA model closely reproduce
the experimental data across this entire range, except for a few isolated points around
40 MeV. Although the experimental trend follows the asymptotic behavior predicted by
the theoretical calculations of Bote et al. [7], it also aligns well with our predictions over
a broad intermediate energy region where IKEBANA and Bote slightly diverge. Figure 8
also displays the predicted σK values for molybdenum (Z = 42), xenon (Z = 54), and
barium (Z = 56), elements for which only limited experimental data are available. In
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the case of molybdenum, measurements exist both near the ionization threshold and in
the high-energy range between 105 and 106 keV. At low energies, our predictions show
excellent agreement with both experimental data and the theoretical values from Bote et
al. However, the predicted maxima differ significantly from the experimental trend, and
the precise location of the peak remains uncertain. Notably, the IKEBANA and Bote curves
coincide in both the position and value of the peak, despite the fundamental differences
between the two approaches. For xenon, only five experimental data points are available,
all of which are in the relativistic energy regime. These points match remarkably well with
our neural network predictions. In contrast, they deviate considerably from the results of
Bote et al. Finally, in the case of barium, our IKEBANA model reproduces the two available
data points at 0.1 and 2 MeV, but underestimates the values reported by Ishii et al. [17]
around 100 MeV.

Figure 8. K-shell ionization cross sections as a function of the electron impact-energy for Mo, Ag, Xe,
and Ba. Curves and symbols are like those in Figure 5.

The case of rare earth elements, also known as lanthanides, has gained increasing atten-
tion in recent years due to their diverse range of technological applications [18]. However,
experimental data for K-shell ionization cross sections remain extremely scarce. Figure 9
displays four representative examples: praseodymium (Z = 59), samarium (Z = 62),
gadolinium (Z = 64), and ytterbium (Z = 70). Despite the limited number of available data
points, our IKEBANA predictions show good agreement with the measurements, offering
a valuable alternative for estimating missing values in this poorly explored region of the
periodic table.

Figure 10 presents the K-shell ionization cross sections for some of the heaviest targets
in our study: tantalum (Z = 73), tungsten (Z = 74), gold (Z = 79), and uranium (Z = 92).
The IKEBANA predictions for tantalum show excellent agreement with the experimental
data near the ionization threshold and in the high-energy region. Tungsten has attracted
considerable attention in recent decades, particularly due to its selection as the first-wall
material for the International Thermonuclear Experimental Reactor (ITER) [19]. However,
this interest has not extended to K-shell ionization studies, and the available data are both
limited in energy coverage and highly scattered. All measurements for W stem from the
work of Hansen et al. [20,21] in the 1960s. Gold, as expected, has received more sustained
experimental focus. Measurements span a wide energy range, and our IKEBANA predictions
show strong agreement with these data, remaining within their reported experimental
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uncertainties. However, the predictions of Bote et al. [7] appear to provide a slightly better
description of the experimental trend across the full range. Finally, for uranium, only a
single experimental point is available, reported by Ishii et al. in 1977 [17]. Our IKEBANA

model accurately reproduces this value. Nevertheless, we emphasize the importance of the
behavior at lower energies, predicted by both our model and that of Bote et al. , in a regime
where no experimental data currently exist.

Figure 9. K-shell ionization cross sections as a function of the electron impact-energy for the
lanthanides Pr, Sm, Gd, and Yb. Curves and symbols are like those in Figure 5.

Figure 10. K-shell ionization cross sections as a function of the electron impact-energy for the heavy
elements Ta, W, Au, and U. Curves and symbols are like those in Figure 5.

As noted throughout this discussion, experimental data remain unavailable for a
significant number of targets. Specifically, there are 27 elements between hydrogen and
uranium for which no K-shell ionization cross-section measurements exist, and 13 addi-
tional elements with at most two reported data points. Despite this scarcity, our IKEBANA

model provides continuous predictions for all elements across the periodic table. Figure 11
illustrates examples for four such unmeasured elements: lithium (Z = 3), fluorine (Z = 9),
phosphorus (Z = 15), and rhenium (Z = 75). The ability of the neural network to interpo-
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late and generalize from the training data corresponding to adjacent elements enhances
the credibility of these predictions. Experimental measurements for these targets would
be highly valuable, both to validate existing predictions and to further refine the accuracy
of data-driven models such as IKEBANA. In this context, the predictions of IKEBANA are
most reliable within the range of elements and energies represented in the training dataset.
Extrapolations far beyond this range should be interpreted with caution. As new measure-
ments become available, they can be readily incorporated to extend the validated domain
of the tool.

Figure 11. K-shell ionization cross sections as a function of the electron impact-energy for Li, F, P, and
Re, with no measurements. Curves and symbols are like those in Figure 5.

4. Conclusions
We present IKEBANA, a machine learning model trained on a recent and comprehensive

compilation of experimental K-shell ionization cross sections [1,2]. The network reproduces
the available data with high accuracy across the periodic table and over a broad energy
range, from the threshold to the relativistic domain, and it provides consistent predictions
in regions where measurements are missing. In many cases, the results show closer
agreement with experimental values than existing theoretical approaches, such as those of
Bote et al. [7], particularly near threshold energies and around the cross-section maxima.
IKEBANA complements theoretical calculations and can guide future experimental studies
by highlighting elements and energy ranges where new measurements would be most
valuable. Its architecture allows new data to be incorporated with minimal effort, ensuring
that the predictions remain up to date and continue to improve as additional data become
available. Beyond reproducing known data, the tool offers immediate utility in contexts
where reliable cross sections are required but measurements are incomplete or show large
dispersion. It can support Monte Carlo particle-transport simulations, the modeling of X-
ray production in electron–matter interactions, the benchmarking of theoretical calculations,
and the planning of experiments. By identifying general trends and flagging the most
reliable measurements, it offers a practical means to reconcile conflicting datasets. As
an open and extensible tool, IKEBANA can be integrated into existing workflows in both
fundamental and applied research, and its methodology can be readily adapted to other
atomic processes where experimental information is scarce or inconsistent.
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