
PHYSICAL REVIEW A 111, 032808 (2025)

d-electron contribution to the stopping power of transition metals
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We present a nonperturbative model to describe the stopping power by ionization of the d electrons of
transition metals. These metals are characterized by the filling of the d subshell and the promotion of some
of the electrons to the conduction band. The contribution of d electrons at low-impact energies has been noted
experimentally in the past as a break of the linear dependence of the stopping power with the ion velocity.
In this paper we describe the response of these electrons considering the atomic inhomogeneous momentum
distribution. We focus on the transition metals of groups 10 and 11 in the Periodic Table: Ni, Pd, Pt, Cu, Ag, and
Au. Results are shown to describe the low-energy stopping power, with good agreement with the experimental
data and available time-dependent density-functional theory results. By combining the present nonperturbative
model for the d-subshell contribution with other approaches for the valence electrons and for the inner shells, we
provide a coherent theoretical method capable of describing the stopping power of these transition metals from
the very-low- to the high-energy region.
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I. INTRODUCTION

Following the IUPAC principles of chemical nomenclature
[1], a transition metal is any element of groups 3–12 of the
Periodic Table, also known as the d-block elements. Their
electronic configuration is nsk− j + (n − 1)d j , with n the main
quantum number, k the group number, and j the number of
d electrons. In the literature (see, e.g., [1] and references
therein), there is a discussion about whether group 12 (Zn, Cd,
and Hg) is a transition metal because of its filled d subshell,
i.e., s2d10, and the related chemical characteristics. For ex-
ample, for the solids of group 12, the experimental d binding
energy has been measured (being Ed ∼ 10 eV in all the cases
[2]); however, for solids of groups 3–11, this value is still
under discussion. The binding energy is an important quantity
of the partially filled d metals, which strongly impacts the
electronic energy loss.

For the earlier transition metals (k = 3–7), the maximum
oxidation state is k [1], i.e., all the d and s electrons may be
valence electrons. In a solid, all these k electrons belong to the
conduction band and are well described by the free-electron
gas (FEG) model [3]. The Seitz radius rS of these elements
also have experimental and theoretical values agreeing within
5%, which makes them canonical metals [4]. For the later
transition metals (k = 8–11), the oxidation number is much
smaller than k [1]. As solid metals, the number of electrons in
the FEG is not k either: d electrons are partially promoted to
the FEG and the rest remain bound. The number of d electrons
in the conduction band, the number of bound electrons, and
the value of the binding energy Ed are very relevant and still
open subjects.

*Contact author: jpperalta@iafe.uba.ar

The energy loss in the later transition metals has been
the subject of multiple experimental [5–18] and theoretical
studies [19–26]. These works were guided not only by their
well-known properties and applications but also by some
specific findings about low-energy stopping power and the
response of d electrons. At very low energies, the FEG ap-
proximations suggest a linear dependence of the electronic
stopping power with the ion velocity. For Cu, Ag, and Au
(group 11), the experimental values showed an unexpected
break of this linear behavior [5–14]. This has been attributed
to the contribution of d electrons, as a drastic change in the rS

above a specific critical impact velocity [7]. Surprisingly, the
low-energy stopping power of Ni, Pd, and Pt (group 10) does
not show the mentioned change in slope [13–17].

Perhaps the most detailed ab initio theory for stopping
power calculations is the time-dependent density-functional
theory (TDDFT) [27]. This theory accurately describes the
low-energy stopping power, being more suitable for chan-
neling or monocrystalline targets than for polycrystalline or
amorphous ones (off-channeling). However, including all (or
most of) the target electrons to extend the stopping power
to intermediate and high impact energies represents a heavy
task. Recent TDDFT results for stopping power in Fe, Ni, Cu,
Pt, and Au [21–26] show a soft nonlinearity rather than the
mentioned broken line and change in slope.

In this work we present a nonperturbative model for cal-
culating the d-electron contribution to the electronic stopping
power in the later transition metals. The goal of this contri-
bution is to describe the experimental values at low impact
energies but also the total electronic stopping power in an
extended energy range. We focus on groups 10 and 11, i.e.,
Ni, Pd, Pt, Cu, Ag, and Au, due to the different low-energy
behaviors experimentally found. We aim to understand and
describe the physics involved in the response of these weakly
bound d electrons to the ion passage. The present results are
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compared with the experimental compilation in the IAEA
electronic stopping power database [28,29], highlighting the
most recent low-energy experimental data [6–18]. We also
collate our curves with the available TDDFT (off-channeling)
results [22–25]. By means of the independent shell approx-
imation, we are able to predict the total electronic stopping
power by combining our model results for the d-electron
contribution with those corresponding to nonperturbative [4]
and perturbative FEG models [30] and the shellwise local
plasma approximation with Levine-Mermin dielectric func-
tion (SLPA-LM) for the deeply bound shells [31,32]. The
present results focus on the low-energy region and the depen-
dence of the stopping power on the impact velocity and also
cover the extended energy range up to 100 MeV.

The theoretical proposal is introduced in Sec. II. The
present results and the comparison with the available exper-
imental measurements are displayed and analyzed in Sec. III.
A summary and discussion of our conclusions are given in
Sec. IV. Atomic units are used throughout this work unless
specified otherwise.

II. THEORETICAL MODEL

Let us consider a point charge moving with velocity v in a
cloud of d electrons with an inhomogeneous velocity profile
and a momentum distribution function f (p). The electronic
stopping cross section S(v) is given by [33,34]

S(v) = 2

(2π )3

∫
d �p f (p)vr

�vr · �v
v

σtr (vr ), (1)

where �vr = �v − �p is the relative velocity, �p is the electron
momentum, which is equivalent to the electron velocity in
atomic units, σtr(vr ) is the transport cross section

σtr(k) = 4π

k2

∞∑
l=0

(l + 1) sin2[δl (k) − δl+1(k)], (2)

and δl (k) are the phase shifts generated by a central po-
tential V (r) of the projectile screened by the d electrons.
In the present proposal, we consider the velocity-dependent
screened potential introduced in Ref. [4], which verifies the
cusp condition for the induced density around the charged
projectile. This characteristic proved decisive for low-energy
antiproton stopping power [4].

By writing vr = (v2 + p2 − 2vp cos ϕ)1/2, invoking d �p =
2π p2d p sin ϕ dϕ, and changing the integration variable from
ϕ to vr , Eq. (1) can be expressed as

S(v) = 1

(2πv)2

∫ ∞

0
d p p f (p)I (p), (3)

with

I (p) =
∫ |v+p|

|v−p|
dvrv

2
r

(
v2

r + v2 − p2)σtr(vr ). (4)

A change of the order of the integrals in Eqs. (3) and (4) gives

S(v) = 1

(2πv)2

∫ ∞

0
dvrv

2
r σtr(vr )I ′(vr ), (5)

with

I ′(vr ) =
∫ |vr+v|

|vr−v|

(
v2

r + v2 − p2)p f (p)d p. (6)

This change locates the distribution function in the inner inte-
gral and the transport cross section in the outer one, improving
the performance of the numerical calculations of the stopping
cross sections.

In the present model we propose to describe the response
of d electrons through an inhomogeneous momentum distri-
bution function given by

fnl (p) = (2π )3

2
|�nl ( �p )|2, (7)

with �nl ( �p ) the Fourier transform of the wave functions
φnl (�r ), normalized to the number of electrons Ne in the nl
subshell. With this definition, the distribution function fnl (p)
verifies ∫

fnl (p)d �p = (2π )3

2
Ne. (8)

In the homogeneous FEG model [33], the momentum dis-
tribution function is given by a step function within the Fermi
sphere, fFEG(p) = �(p − pF ), where pF is the Fermi momen-
tum and ∫

�(p − pF )d �p = (2π )3

2
ne, (9)

with ne the density of electrons, ne = NFEGnat, NFEG is the
number of electron in the FEG, and nat is the atomic density.
The difference between Eqs. (8) and (9) is the difference
between stopping cross section and energy loss per unit path
length.

Within this model, given by Eqs. (5)–(7), we analyze the
contribution to the stopping power of the 3d , 4d , and 5d
subshells of Ni, Cu, Pd, Ag, Pt, and Au, as applicable. The
transport cross section in Eq. (5) was calculated by numeri-
cally solving the Schrödinger radial equation for the free states
of the electrons in a central potential V (r) [35]. We used the
potential proposed in [4], with a screening density Nenat.

The wave functions in Eq. (7) for Ni and Cu are the non-
relativistic Hartree-Fock results by Bunge et al. [36], while
for Pd, Ag, Pt, and Au we solved the fully relativistic atomic
structure using the HULLAC code package [37,38] (for more
details, see Ref. [39]). As expected, the binding energies for
the lowest charged Ni and Cu obtained from the nonrelativis-
tic Hartree-Fock method are in complete agreement with the
relativistic HULLAC results.

The momentum distribution functions fnl (p) given by
Eq. (7) were obtained analytically by expanding the wave
functions φnl (r) in a Slater function. Considering this expan-
sion, the Fourier transform of the Slater functions is analytical
using Flannery-Levy integrals [40]. Then the integration in
Eq. (6) is also analytical (see the Appendix for details).

III. RESULTS

In Table I we tabulated the details about the transition met-
als studied here. These metals have loosely bound d electrons.
Some of them are promoted to the conduction band, while

032808-2



d-ELECTRON CONTRIBUTION TO THE STOPPING … PHYSICAL REVIEW A 111, 032808 (2025)

TABLE I. Atomic structure, valence, and d electrons of Ni, Cu, Pd, Ag, Pt, and Au. The outer electrons of the electronic configuration
are shared, NFEG electrons are in the FEG, and Nd electrons remain in the d subshell. Here rS is the Wigner-Seitz radii, ωp is the plasmon
frequency, and EF is the Fermi energy. Also included are the experimental values for the plasmon peak ωexpt

p and the dump value γ expt
p obtained

from [41]. In addition, Ed , vd , and 〈rd〉 are the theoretical binding energy, mean velocity, and mean ratio of the atomic d subshell, respectively,
from Hartree-Fock [36] (Ni and Cu) and full relativistic calculations [39] (Pd, Pt, Ag, and Au). Atomic units are used.

Atomic FEG d bound

Element Z configuration NFEG rS ωp ωexpt
p γ expt

p EF Nd Ed 〈vd〉 〈rd 〉
Group 10

Ni 28 [Ar] 3d84s2 3 1.80 0.714 0.716 0.27 0.564 7 0.707 3.72 0.965
Pd 46 [Kr] 4d10 7 1.50 0.942 0.937 0.21 0.815 3 0.216 2.60 1.61
Pt 78 [Xe] 5d96s1 7 1.51 0.929 0.919 0.17 0.801 3 0.250 2.45 1.71

Group 11

Cu 29 [Ar] 3d104s1 3 1.85 0.689 0.707 0.29 0.537 8 0.491 3.73 0.991
Ag 47 [Kr] 4d105s1 3 2.09 0.572 0.625 0.20 0.420 8 0.641 2.88 1.37
Au 79 [Xe] 5d106s1 7 1.57 0.877 0.864 0.53 0.742 4 0.309 2.67 1.58

others remain bound to the target nucleus. Knowing how many
d electrons are part of the FEG and how many remain bound
is crucial to the energy-loss description. To this end, we ana-
lyzed data from reflection electron energy-loss spectroscopy
in solids by Werner et al. [41]. The experimental plasmon
frequency ω

expt
p and dump γ

expt
p in Table I were obtained from

the first significant peak and width of the energy-loss function
in Ref. [41]. From ω

expt
p , the number of electrons in the FEG

can be inferred. In the present calculations, we consider NFEG

as the integer number that is closest to that value. The plasmon
frequency ωp, the Wigner-Seitz radii rS , and the Fermi energy
EF in Table I are obtained from these NFEG values.

The atomic configuration and characteristics of the d
bound electrons in the columns on the right in Table I are the
result of the Hartree-Fock (Ni and Cu) and the fully relativistic
atomic structure calculations (Pd, Ag, Pt, and Au) [37–39].
It is important to note that these values correspond to the
atoms, not to the solid targets. This distinction is evident when
comparing the values of EF and Ed (the atomic binding energy
of the d electrons) displayed in Table I. Assuming that some of
the d electrons are promoted to the FEG, the remaining ones
must have Ed > EF . According to the values shown in Table I,
Ed � EF for Pd, Pt, and Au, which suggests that for these
targets, most of the loosely bound d electrons are transferred
to the FEG. Instead, in Ni, Cu, and Ag, only one or two d elec-
trons are promoted to the conduction band. For solid Cu, Ag,
and Au, density of states calculations with density-functional
theory [42] are such that 0.05 � Ed − EF � 0.15. For Ni and
Pt, the difference in energy between the d electrons and the
Fermi energy is even more minor.

In Fig. 1 we display the inhomogeneous momentum dis-
tribution functions fnd (p) given by Eq. (7) for the six targets
studied here. We also include in this figure the homogeneous
FEG distribution fFEG(p). To compare them equivalently, we
plotted fnd (p)nat. The Heaviside function in fFEG is constant
and equal to 1, cutting off at pF . Conversely, the fnd (p)
distribution has a lower amplitude than the FEG one but
extends far away from the Fermi sphere of the FEG and falls
drastically within the Fermi region. For Pd, Pt, and Au, the
value of vd is smaller than for the others, which explains

the maximum of their fnd (p) being shifted to lower values
of p.

The total stopping cross section is obtained by adding all
electronic contributions. At low impact energies, they are the
FEG and the d-electron contributions. To extend the results
to higher energies, even the deep shells should be added. In
Sec. III A we present our low-energy results for Ni, Cu, Pd,
Ag, Pt, and Au and in Sec. III B we extend the calculation to
the high-energy region. For proton impact energies around the
maximum and below, the experimental stopping power cross
sections present considerable dispersion [29], and this spread
is more notorious for the historically most measured targets
(Au, Ag, Cu, and Ni). We consider all the experimental data
available in Ref. [28]; however, we pay special attention to
the most recent measurements at low energies, namely, those
conducted from 1990 onward with v � 1. These values are
highlighted in Figs. 2–13 with colors and closed symbols. The
other low-energy experimental data, which were measured 35
or more years ago, are displayed altogether with half-closed
circles, while the rest of the data in the database [28], i.e., the
experiments at intermediate and high energies, are illustrated
with open circles.

A. Low-energy stopping cross sections

In Figs. 2–7 we display the present theoretical stopping
cross sections of the six targets studied here as a function
of the impact velocity v, with 0 � v � 1, and we compare
them with the available experimental data compiled in [28].
The stopping due to the FEG is calculated as in Ref. [4]. It
is worth noting that both the FEG and the d-electron models
are nonperturbative. The FEG and d-electron contributions are
shown separately, and the total stopping cross section results
from adding both. The influence of the d-electron contribution
to the stopping power is evident in all these figures.

The stopping power cross sections of H in Ni are shown
in Fig. 2. The importance of the d contribution is remarkable
above v = 0.5. The present results allow describing the ex-
perimental values in this energy region. The agreement with
data in Refs. [15,16] is very good. We also include in Fig. 2 the
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FIG. 1. Distribution functions of the d electrons, fnd (p), for the six targets considered here (red solid curve) and the FEG (light gray area
from 0 to Fermi momentum).

TDDFT results by Quashie and Correa [23] for off-channeling
Ni, with ten active electrons. The agreement between the
present results and the TDDFT ones is excellent. We consider

FIG. 2. Low-energy stopping cross section of Ni for H as a func-
tion of the impact velocity. Curves show the total stopping (red solid
line), the present model for d-electron contributions (red dash-dotted
line), the FEG stopping (blue dashed line), and the TDDFT results
by Quashie et al. [23] (black dash–double-dotted line). Symbols,
available experimental data: �, [15]; �, [16]; and , low-energy data
in [28] before 1990.

that the comparison of our results with the experimental data
and a state-of-the-art model supports the present model.

In Fig. 3 we illustrate the case of H in Cu. The spread of
experimental data in this region is significant. At very low
impact velocities, there are two tendencies of the experimental
values, where the backscattering measurements from Ref. [6]

FIG. 3. Low-energy stopping cross section of Cu for H as a
function of the impact velocity. Curves are the same as in Fig. 2,
including the TDDFT results by Quashie and Correa [22]. Symbols,
available experimental data: �, [6]; �, [7]; �, [8]; and , data in
[28] before 1990.
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FIG. 4. Low-energy stopping cross section of Pd for H as a
function of the impact velocity. Curves are the same as in Fig. 2.
Symbols, available experimental data: �, [13]; and �, [17].

are much lower than the transmission measurements from
Refs. [7,8]. It can be noted that these two groups of data
are supported separately by older measurements, specifically
[43,44], respectively. Our total stopping cross sections, which
add the FEG and the 3d contribution, agree with Ref. [7]
at the lowest impact velocities and lie between both exper-
imental data groups for v > 0.3. As in Fig. 2, we include
the TDDFT values by Quashie and Correa [22]. Our results
are close but above these values, which only agree with the
measurements from Ref. [6] for v < 0.3. Our model for the
d-electron contribution to the stopping power does not include
an explicit threshold energy; it solely relies on the information
of the inhomogeneous momentum distribution function. This
missing feature may introduce some degree of overestimation
at very low velocities.

The present results for H in Pd are displayed in Fig. 4.
Only two data sets are available at low velocities, those in [13]
and [17], which agree pretty well with each other and show
an almost perfect linear dependence of the stopping power
with the impact velocity. Our results describe these values
quite well; the total stopping power is slightly higher than the
experimental data, with differences that are less than 5%.

In Fig. 5 we display the case of H in Ag. Similarly to the Cu
case, the experimental data are separated into two groups: The
lower-lying data are backscattering measurements by Goebl
et al. [12] and the higher-lying data are transmission measure-
ments by Cantero et al. [7] and Valdés et al. [11]. The present
total stopping results are closer to the higher experimental
values from Ref. [7] for v < 0.4 and to the data from Ref. [12]
for 0.4 < v � 0.6. Our results show the importance of the d-
subshell contribution above v = 0.3. As in the other cases, the
present model does not describe the inclusion of d electrons
in the total stopping power as a sharp change of slope in the
linear velocity dependence but as a smooth difference between
the FEG contribution and the total stopping values.

The present results for H in Pt are displayed in Fig. 6,
together with the available data [12,14,18] and recent TDDFT
values by Li et al. [24,25]. Our total values, considering the

FIG. 5. Low-energy stopping cross section of Ag for H as a
function of the impact velocity. Curves are the same as in Fig. 2.
Symbols, available experimental data: �, [7]; �, [12]; �, [11]; and

, data in [28] before 1990.

FEG and the 5d contributions, are slightly above these state-
of-the-art values, but they are very close in amplitude. It is
worth noting that the two experimental data sets for very low
velocities [12,14] agree pretty well between with each other
and neither of them indicates a break of the linear response at
low energies. We also show in Fig. 6 our previous theoretical
results, where we considered NFEG = 10, i.e., all d electrons
are included in the FEG [32]. The difference is not significant,
but it shows better overall agreement with the available exper-
imental data. Nevertheless, we consider the present model to
describe this group of targets more properly and in a more
general way.

Finally, our results for H in Au are displayed in Fig. 7.
This system features the most significant number of stopping
power measurements with the broadest dispersion [28,29].
The present results agree with one group of data sets [11,17],

FIG. 6. Low-energy stopping cross section of Pt for H as a func-
tion of the impact velocity. Curves are the same as in Fig. 2, with
the TDDFT results by Li et al. [25]; the dark gray solid line shows
total values with all the d electrons in the FEG by Peralta et al. [32].
Symbols, available experimental data: �, [12]; �, [14]; and �, [18].
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FIG. 7. Low-energy stopping cross section of Au for H as a
function of the impact velocity. Curves are the same as in Fig. 4.
Symbols, available experimental data: ◦, [15]; �, [6]; �, [17]; �,
[11]; �, [18]; �, [9]; �, [45]; and , data in [28] before 1990.

while they overestimate other groups of measurements [6,9].
The low-energy measurements in these last measurements
[6,9] are very close to channeling stopping values in Au 〈100〉
by Valdés et al. [5] and to the TDDFT results in Au 〈100〉
by Zeb et al. [21]. Time-dependent density-functional theory
calculations for polycrystalline Au could bring some clarity to
this case.

Considering the results in Figs. 2–7, we can say that there
is a clear difference between the transition metals of groups
10 and 11. The change in the linear behavior with the impact
velocity is not necessarily the most critical difference found
in the cases examined here but rather the dispersion of exper-
imental data, which is very important in group 11 and almost
negligible in group 10. Our results agree with the measure-
ments in metals from group 10 and somewhere in the middle
of the data cloud of the metals from group 11. As already
mentioned, we do not rule out a small overestimation at the
lowest velocities shown here related to the energy threshold.
This topic is a subject for future developments.

We thoroughly analyzed the values of NFEG and Nd in the
six cases studied here; nevertheless, we acknowledge they
may be the subject of discussion. To further examine the
present model along with the choice of these electron num-
bers, we extend the present results to intermediate to high
energies and compare them with all the available data.

B. Stopping cross sections in an extended energy range

The energy loss in an extended energy range is displayed
in Figs. 8–13. In these figures we present total and fully
theoretical calculations, including SLPA-LM [32] values for
inner-shell contributions. Above a certain impact velocity
vP, plasmon excitations of the FEG are relevant [46], where
vP 
 vF (1 + √

3πvF ), with vF the Fermi velocity. We model
the FEG contribution over a wide energy range using the non-
perturbative model [4] for v < vP and the Mermin-Lindhard
[30] results for the FEG for energies above that of plasmon
excitation [3,4,32,47]. Then the present approach provides a

FIG. 8. Stopping cross section of Ni for H as a function of the
impact energy. Curves show the total stopping (red solid line), the
present model for d-electron contributions (red dash-dotted line),
the FEG stopping (blue dashed line), the SLPA-LM values [32] for
the inner shells (orange dotted line), and the TDDFT results by
Quashie and Correa [23] (black dash–double-dotted line). Symbols
are the same as in Fig. 2, as well as © denoting the medium- to
high-energy experimental data in [28].

coherent theoretical method capable of describing the stop-
ping power from the very low (0.1 keV) to the high but
not relativistic energy region (100 MeV). The whole picture
given by Figs. 8–13 is promising. As already mentioned, the
spread of experimental data around the stopping maximum
characterizes the six targets, with Au, Ag, Cu, and Ni being
the most striking cases.

For H in Ni, we display in Fig. 8 the extended energy ver-
sion of the present calculations. In this figure the contribution
of the 3d electrons and the 1s to 3p electrons is shown in the
extended energy range. It can be noted that the 3d curve has a
maximum at 350 keV/amu, where the ion velocity is close to
the mean velocity of the 3d electrons, i.e., v 
 vd . Although
there is a striking disparity of values, the stopping maximum
of H in Ni has not been measured since 1986 [48]. Our total
stopping cross section agrees very well with Ref. [15] and
the data around the stopping maximum from Ref. [48]. The
comparison with the TDDFT results by Quashie and Correa
[23] (off-channeling and 16 active electrons) is very good.
It is worth noting that the present model includes all target
electrons (up to the K shell) by means of the SLPA-LM [32],
allowing the description in the extended energy range shown
in this figure.

The stopping cross sections for H in Cu as a function of
the impact energy are displayed in Fig. 9. As mentioned for
the case of Ni, the 3d contribution is maximum for v 
 vd .
The present total stopping values are higher but in relatively
good agreement with TDDFT results reported in Ref. [22]. For
energies above 500 keV, the TDDFT curve underestimates the
measurements due to the partial number of electrons consid-
ered. Again, the present agreement with the high-energy data
is due to the inclusion of the 1s to 3p electrons contribution
using the SLPA-LM.
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FIG. 9. Stopping cross section of Cu for H as a function of the
impact energy. Curves are the same as in Fig. 8, with the TDDFT
results by Quashie and Correa [22]. Symbols are the same as in
Fig. 3, as well as © denoting the experimental data in [28].

The results for H in Pd are presented in Fig. 10. This case
differs from the previous ones: For impact energies above
100 keV, the stopping power due to the 1s to 4p subshells is
higher than the 4d-subshell contribution. The 4d electrons of
Pd have lower mean velocities vd than Ni and Cu (see Table I).
This is consistent with a maximum of the d curve at lower
energies (E ∼ 160 keV). Our total values agree very well with
the data at low and high energies, with the stopping maximum
being close to the data [49]. The most recent measurements

FIG. 10. Stopping cross section of Pd for H as a function of the
impact energy. Curves show the total stopping (red solid line),
the present model for d-electron contributions (red dashed line),
the FEG stopping (blue dashed line), the SLPA-LM values [32]
for the inner shells (orange dotted line), and the Mermin energy-loss
function–generalized oscillator strength (MELF-GOS) results [51]
(green dash–double-dotted line). Curves are the same as in Fig. 4;
the dark gray solid curve is the SLPA-LM values [32] for the inner
shells. Symbols are the same as in Fig. 4, as well as © denoting the
experimental data in [28].

FIG. 11. Stopping cross section of Ag for H as a function of
the impact energy. Curves show the total stopping (red solid line),
the present model for d-electron contributions (red dash-dotted line),
the FEG stopping (blue dashed line), and the SLPA-LM values [32]
for the inner shells (orange dotted line). The symbols are the same as
in Fig. 5, as well as © denoting the experimental data in [28].

by Moro et al. [50] obtained a stopping maximum which
is 15% below our result. Very recent perturbative results
by Cheng et al. [51] based on the experimental energy-loss
function and the MELF-GOS theory are also displayed in
Fig. 10. These values describe the measurements above 70
keV and converge to our curve at high energies. In Fig. 11
we display the present stopping values of H in Ag. The
agreement with the experimental data is good, considering
the large dispersion of values. The present description of the
d-electron contribution is crucial to the reported total stopping
curve. The stopping power of H in Ag has more than 40
different sets of measurements. However, the maximum is not
experimentally well defined, as shown in Fig. 11. The latest
measurements around the maximum were reported by Semrad
and co-workers [48,52] more than 30 years ago. It is worth
mentioning that the present total stopping values agree very
well with this group of measurements.

In Figs. 12 and 13 we display the present results for the
stopping power of Pt and Au for H as a function of the
impact energy, from 0.1 keV to 100 MeV. For Pt in Fig. 12,
our total stopping agrees well with the data at low and high
energies. The stopping maximum is very sensitive in both
theoretical models and experimental setups. In this case, the
present results around the maximum are close to the recent
data from Refs. [18,51,53], with a slight overestimation on our
model. We also include here our previous results [32], which
contain ten valence electrons in the FEG. We consider the
present proposal of an inhomogeneous distribution function
for d electrons to be more physically sound than the previous
one. As in all the targets studied here, the maximum of the d
curve corresponds to v 
 vd . Similarly to Pd, Pt has a small
mean velocity of the d subshell. Concomitantly, the d curve
in Fig. 12 has a maximum at E ∼ 100 keV, and for higher
impact energies, the curve is lower than the contribution of
the deepest 1s to 4 f subshell. It is worth mentioning that the
SLPA-LM results for these deep shells support the excellent
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FIG. 12. Stopping cross section of Pt for H as a function of the
impact energy. Curves are the same as in Fig. 8, with the TDDFT
curve from [25]. Symbols are the same as in Fig. 6, as well as ©
denoting the experimental data in [28].

agreement at high energies. Unfortunately, for Pt, TDDFT
[25] is available only at low energies. Recent TDDFT Penn
results [54] for H in Si manage to cover a wide energy range.
The extension of this model to the present targets would be
interesting.

The case of H in Au is rather singular. This system has the
most significant number of stopping power measurements: 72
data sets and 1163 data points [28,29]. This amount of data
also implies having the largest experimental dispersion, as
clearly noted in Fig. 13. As in the other cases, the present
results have overall good agreement with the experimental
values in a very extensive energy range. It is fair to say that
Au, with 79 electrons, is the most complex case considered
here, and the response of all the 79 electrons has been con-
sidered. The agreement at high energies is very good and the
agreement at low and intermediate energies is good only with

FIG. 13. Stopping cross section of Au for H as a function of the
impact energy. Curves are the same as in Fig. 10, with the MELF-
GOS curve from [20]. Symbols are the same as in Fig. 7, as well as
© denoting the experimental data in [28].

some data sets. The present total stopping overestimates the
most recent data at low energies [9] and around the maxi-
mum [18], being closer to previous measurements [45]. The
MELF-GOS values by de Vera et al. [20] are also displayed in
Fig. 13. These calculations show very good agreement around
the stopping maximum and above and converge to the present
results for impact energies higher than 200 keV.

IV. CONCLUSION

In this work we introduced a nonperturbative theoretical
model to deal with the contribution of the d electrons to the
stopping power. The present proposal is based on the inhomo-
geneous momentum distribution function of the d subshell.
We found it especially suitable for the later transition met-
als whose d electrons have minimal binding energies. This
feature allows a partial promotion to the conduction band,
which causes the remaining bound electrons to contribute to
the energy loss at very low impact velocities.

We systematically studied the stopping power for the tran-
sition metals of groups 10 and 11: Ni, Cu, Pd, Ag, Pt, and
Au. We examined the low-energy dependence with the ion
velocity of the energy loss and the total stopping power in
an extended energy region. In the former, we obtained that
the d contribution is relevant at very low impact velocities.
The sharp change of slope mentioned in experimental works
is not found; instead, a soft nonlinearity coherent with an
inhomogeneous momentum distribution function is obtained.
The extension to higher energies allowed us to show that
the present model has a maximum contribution at an impact
velocity similar to the mean velocity of the d electrons.

The agreement between our total stopping power and the
experimental data at low energies is very good for group 10
transition metals. For the group 11 targets, the spread of data
at low energies is large. Our results agree with some of the
experimental values. We do not rule out certain overestima-
tions at very low impact velocities due to possible missing
features, such as minimum energy of the remaining bound
d electrons. The comparison with available TDDFT at low
energies is good and has allowed us to validate and critically
evaluate the present results.

We extended the description of the total stopping in a
large energy region by including all the electronic contribu-
tions, from the FEG up to the deepest 1s electrons. To that
end, we combined the present nonperturbative model for the
d-subshell contribution with other approaches for the FEG
and for the inner shells. In this way, we provided a coherent
theoretical method capable of describing the stopping power
of the later transition metals from the very-low- to the high-,
yet not relativistic, energy region. The whole picture given by
the six cases analyzed here is promising.
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APPENDIX: MOMENTUM DISTRIBUTION
CALCULATIONS

In the present model, we propose an inhomogeneous mo-
mentum distribution function f (p) for the d electrons given
by

fnl (p) = (2π )3

2
|�nl ( �p )|2, (A1)

where �nl (p) is the Fourier transform of the radial wave
function φnl (r) [or φnl±(�r ) for the relativistic wave functions],
with nl the quantum numbers and in this case l = 2. We
express the radial wave function in terms of Slater functions
to have an analytical expression for �nl (p).

The radial wave function can be expanded in a Slater func-
tion as

φnl (r) =
∑

j

CjRnj l (r), (A2)

where

Rnj l (r) = Njr
(n j−1)e−ζ j r, (A3)

with Nj given by

Nj = (2ζ j )
n j+1/2/[(2n j )!]

1/2 (A4)

The parameters ζ j , Cj , and n j are the coefficients of the Slater
expansion and the main quantum number, respectively.

The Fourier transform of the wave function expressed in
Eqs. (A2)–(A4) is

�nl ( p̄) = 1

(2π )3/2

∫
φnl (r)ei �p·�rdr̄

=
∑

j

A j

∫
r (n j−1)e−ζn j l r−i �p·�rdr̄, (A5)

where Aj = NjCj/(2π )3/2. We make use of the Flannery-
Levy [40] solution of this integral given by∫ ∞

0
rβe−αr+i �p·�rdr̄ = 4π il (β − l + 1)!Fl (p), (A6)

where

Fl (p) =
qmax∑
q=1

bqα
s−l−q pl

(α2 + p2)s
, (A7)

with s = β + 3 − q, qmax = (β − l + 2)/2 or (β − l + 3)/2
for β − l even or odd, and

bq = (−1)q−1 (s − 1)!

(q − 1)!

2s−q

(s − l − q)!
.

For the case of d subshells studied here, by substituting
(A6) in (A5), we obtain

�nd (p) =
∑

j

(−4π )Aj (n − 2)!F2(p). (A8)

Substituting Eq. (A8) in Eq. (7) and carrying out some alge-
braic calculations, the distribution function for the case of 3d
electrons is

f3d (p) = (2π )3

2
|�32(p)|2 = (2π )3

2

Ne

4π

32 × 29

π

×
5∑

i=1

5∑
j=1

AiAjζ jζ j p4

(
ζ 2

i + p2
)4(

ζ 2
j + p2

)4 , (A9)

where Ne/4π comes from the normalization of the wave func-
tion to the number of 3d electrons. Substituting (A9) in the
integral I (vr ) of Eq. (6), we obtain

I (vr ) = (2π )3

2

Ne

4π

32 × 29

π

5∑
i=1

5∑
j=1

AiAjζiζ jG(vr ), (A10)

where

G(vr ) = (vr + v2)g5(ζi, ζ j, vr ) − g7(ζi, ζ j, vr ), (A11)

with

g5(ζi, ζ j, vr ) =
∫ vr+v

|vr−v|

p5d p(
ζ 2

i + p2
)4(

ζ 2
j + p2

)4 (A12)

and

g7(ζi, ζ j, p) =
∫ vr+v

|vr−v|

p7d p(
ζ 2

i + p2
)4(

ζ 2
j + p2

)4 . (A13)

The integrals in Eqs. (A12) and (A13) are analytical, so Eq. (6)
can be included in Eq. (5). Numerical integration is also pos-
sible, and in fact we have checked both.

Analogously, the distributions f4d (p) and f5d (p) were ob-
tained. The algebra follows the same steps, although the
calculation is heavier in these cases due to the number of
terms to consider. The expression of f3d (p) given by Eq. (A9)
can be generalized for all and we obtain fnd (p) as a linear
combination of the functions h(a, b, i, j) of the type

h(a, b, i, j, p) = p4

(a2 + p2)i(b2 + p2) j
, (A14)

with i = j = 4 for the 3d subshell, i = 4 − 5 and j = 4 −
5 for the 4d , and i = 4 − 6 and j = 4 − 6 for the 5d
subshell. The integrals I (vr ) of Eq. (6) could be calcu-
lated analytically, but in the two latter cases, it was done
numerically.
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