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Band-structure effects in photoelectron-emission spectra from metal surfaces
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Photoelectron emission from the valence band of a metal surface due to the grazing incidence of ultrashort
laser pulses is studied in the framework of a distorted-wave formulation. We propose a model, named the
band-structure-based–Volkov (BSB-V) approximation, which takes into account the contribution of the band
structure of the solid. The BSB-V approach is applied to calculate differential electron-emission probabilities for
Al(111) and Be(0001) surfaces. A noticeable influence of the electronic band structure was observed in the case
of beryllium, while for aluminum such effects were found to play a minor role.
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I. INTRODUCTION

The fast development of new technologies has made it
possible to generate shorter and more intense laser pulses,
enabling the investigation of electrons in condensed matter in
their natural temporal domain [1]. Experimentally, ultrashort
pump-probe spectroscopy is one of the tools used to study the
dynamic behavior of electrons in the bulk and the near surface
of solids [1–6]. The application of such a method requires the
primary determination of electron-emission spectra produced
by incidence of laser pulses with high frequencies and
time durations in the subfemtosecond range [1,4,7–10]. This
article deals precisely with double-differential (energy- and
angle-resolved) distributions of electrons emitted from the
valence band of metal surfaces by interaction with few-cycle
electromagnetic pulses with high carrier frequencies. Our aim
is to investigate the role played by band structure effects,
focusing special attention on the contribution coming from
the partly occupied surface electronic states (SESs) which are
present on many metal surfaces [11–13].

To describe photoinduced electron emission from a metal
surface we introduce a time-dependent distorted-wave ap-
proach, named band-structured-based–Volkov (BSB-V) ap-
proximation. This method includes a realistic description of the
electron-surface interaction given by the band-structure-based
(BSB) model [14], while the action of the laser field on
the emitted electron is represented by means of the Volkov
phase [15]. The BSB model is based on the one-dimensional
pseudopotential proposed by Chulkov et al. [14,16], which
incorporates information about the band structure of the solid,
reproducing the width and position of the projected bulk energy
gap and the energies of the surface and first image-potential
states [17–21]. This kind of potential has been successfully
applied in different branches of investigation [21–33]. On the
other hand, the use of the well-known Volkov phase within one-

active-electron theories, like the one proposed here, has shown
to provide reasonable predictions for different laser-induced
electron-emission processes from metal surfaces [34–37].
The BSB-V approximation represents a reliable alternative
approach to the numerical solution of the time-dependent
Schrödinger equation (TDSE) [38], with the advantage that
it allows us to extract easily information about the different
mechanisms.

In this article, the BSB-V method is applied to evaluate
electron-emission spectra from Al(111) and Be(0001). Both
surfaces present partly occupied SESs with energies in the
vicinity of the Fermi level. In particular, the Be(0001)
surface shows a strong corrugation of the potential inside
the material, which affects the electronic density, giving
rise to a SES with an exceptionally high electron density
localization near the surface atomic layer [39]. This fact will
be used to study the relative importance of the contribution
of SESs in photoinduced electron-emission spectra. Indeed,
it has recently been found that this kind of partly occupied
SES can dramatically modify the dielectric properties of
metal surfaces [40–42] and originate noticeable structures
in electron distributions produced by projectile impact [43].
For monochromatic electromagnetic radiation, photoemission
from the SESs of Al(111) and Be(0001) surfaces was studied
within a one-step model in Refs. [44,45].

To corroborate the validity of the BSB-V approximation,
results are compared with the numerical solution of the TDSE
derived under the same conditions, that is, by using the BSB
model to represent the surface interaction. In addition, in
order to estimate the relevance of the proper description of
the surface potential, electron spectra derived with a simpler
model, the impulsive jellium-Volkov (IJV) approximation,
are also presented [34]. The IJV approach involves a plain
representation of the surface interaction given by the jellium
model.
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The work is organized as follows. In Sec. II we derive
the BSB-V approximation from the time-dependent distorted-
wave formalism. In Sec. III, results are presented and dis-
cussed, and the conclusions are summarized in Sec. IV. Atomic
units are used unless otherwise stated.

II. THEORY

Let us consider a laser pulse, characterized by a time-
dependent electric field F(t), impinging grazingly on a metal
surface S. As a consequence of this interaction, an electron e of
the valence band of the solid, initially in the state �i , is ejected
above the vacuum level, ending in the final state �f . In the
presence of the external electric field, the temporal evolution
of the electronic state is governed by the Hamiltonian

H (t) = H0 + r · F(t) + Vind(r,t), (1)

where H0 = −∇2/2 + VS(r) is the unperturbed Hamiltonian,
with r being the position vector of the active electron e

and VS being the electron-surface interaction. The second
term of Eq. (1) represents the interaction potential with
the laser, expressed in the length gauge, while Vind denotes
the surface-induced potential that is produced by electronic
density fluctuations originated by the external laser field. The
frame of reference is placed at the surface border, which is
shifted with respect to the position of the topmost atomic
layer by half of the interplanar distance. The ẑ axis is oriented
perpendicular to the surface, pointing toward the vacuum
region.

In this work we employ the BSB model to represent the
electron interaction with the metal surface. Within this model,
translational invariance in the plane parallel to the surface is
assumed, with VS being defined as a one-dimensional potential
depending on the component of r perpendicular to the surface
z. Then, the eigenfunctions of H0 are expressed as

�ks ,n(r,t) = 1

2π
exp (iks · rs) φn(z)e−iEt , (2)

where ks (rs) is the component of the electron momentum
(position vector) parallel to the surface plane and E = k2

s /2 +
εn is the electron energy. The one-dimensional function φn(z)
and its corresponding eigenenergies εn are obtained by solving
the one-dimensional Schrödinger equation associated with the
realistic pseudopotential of Ref. [14], which takes into account
the influence of the band structure of the material. Using slab
geometry, the functions φn are expressed as

φn(z) = 1√
L

N∑
j=−N

an(j ) exp

[
i
2πj

L
(z + ds)

]
(3)

for |z + ds | < L/2 and 0 elsewhere, where L is a normalization
length, 2N + 1 is the number of basis functions, and ds is the
distance between the center of the slab and the surface edge.
In Eq. (3) the coefficients an(j ) are numerically evaluated by
employing a supercell technique.

Taking into account the grazing incidence condition to-
gether with the translational invariance of VS in the direction
parallel to the surface, we consider a linear polarized laser
pulse with F (t) oriented perpendicular to the surface plane,
i.e., along the ẑ axis. The temporal profile of the pulse is

defined as

F (t) = F0 sin(ωt + ϕ) sin2(πt/τ ) (4)

for 0 < t < τ and 0 elsewhere, where F0 is the maximum field
strength, ω is the carrier frequency, ϕ represents the carrier
envelope phase, and τ determines the duration of the pulse. The
phase ϕ is chosen as ϕ = −ωτ/2 + π/2 to obtain a symmetric
pulse that verifies F (t) = F (τ − t). For pulses containing an
integer number of cycles inside the envelope, the duration of
the pulse is τ = n 2π/ω, with n being the number of cycles.

A. BSB-V transition amplitude

Making use of the time-dependent distorted-wave for-
malism, the BSB-V amplitude for the electronic transition
�i → �f can be expressed as

Aif = −i

∫ +∞

−∞
dt 〈χf |V(t)|�i〉, (5)

where �i ≡ �kis ,ni
(r,t) is the initial unperturbed state, given

by Eq. (2), V(t) = r · F(t) + Vind(r,t) is the corresponding
perturbative potential, and χf is the final distorted-wave
function derived within the BSB-V model. The function χf

is obtained from the momentum distribution of the final state
�

f
≡ �kf s ,nf

(r,t) by including the action of the laser field
through the phase of the Volkov function. It reads [46]

χf (r,t) = (2π )−3/2
∫

dq eiq·r �̃kf s ,nf
(q,t) exp[iD−

L (q,r,t)]

= �kf s ,nf
(r − α−(t),t) exp[iD−

L (0,r,t)], (6)

where the tilde denotes the Fourier transformation in momen-
tum space. The Volkov phase originated by the laser electric
field is expressed as [15]

D−
L (q,r,t) = A−(t) · r − β−(t) − q · α−(t), (7)

where

A−(t) = −
∫ t

+∞
dt ′F(t ′),

β−(t) = 2−1
∫ t

+∞
dt ′[A−(t ′)]2, (8)

α−(t) =
∫ t

+∞
dt ′A−(t ′)

are related to the vector potential, the ponderomotive energy,
and the quiver amplitude, respectively, and the minus sign
accounts for the asymptotic conditions.

For frequencies higher than the surface-plasmon frequency
ωs , the induced surface potential associated with the response
of the surface to the external field is much smaller than the
laser interaction. Consequently, its effect on the perturbative
potential V(t) can be neglected [47]. We also neglect the
time-dependent induced potential originated by the emitted
electron [48], whose contribution is reduced by transient dy-
namic effects [49,50]. Under these assumptions the transition
amplitude reduces to

Aif = δ(kf s − kis) a
if

, (9)
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where the Dirac delta function imposes the momentum
conservation in the direction parallel to the surface and

aif = −i

∫ τ

0
dt exp[iεt + β−(t)]F (t) Rif (t) (10)

is the one-dimensional transition amplitude, with ε = εnf
−

εni
being the energy gained by the electron during the process.

The function Rif (t) represents the one-dimensional form factor
given by

Rif (t)=
∫ +∞

−∞
dz z φ∗

nf
(z− α−(t))φni

(z)gf (z) exp[−iA−(t)z],

(11)

where the function gf (z) = ez�(−z)/(2λf ) has been introduced
to incorporate the stopping of the ionized electron inside the
material [36], with λf = λ

(
Ef

)
being the energy-dependent

electron mean free path, Ef = k2
f s /2 + εnf

being the final
electron energy, and � being the unitary Heaviside function.
By replacing the one-dimensional wave functions of Eq. (3)
in Eq. (11), Rif (t) displays a closed form in terms of the field
functions A−(t) and α−(t).

B. BSB-V differential probability

The double-differential probability of electron emission
from the surface can be expressed in terms of the transition
amplitude given by Eq. (9) as

d2P

dEf d�f

= kf

∑
i

2|Aif |2, (12)

where �f = (θf ,ϕf ) is the solid angle determined by the final
electron momentum kf , with θf and ϕf being the polar and
azimuthal angles, respectively, and kf = ∣∣kf

∣∣. In Eq. (12) the
sum indicates the addition over all possible initial states, with
the factor 2 taking into account the spin states.

Since the final electronic state �kf s ,nf
displays a well-

defined momentum only in the direction parallel to the surface,
the final momentum vector kf = (kf s,kf z) is obtained by
defining an effective electron momentum perpendicular to
the surface as kf z = √

2εnf
. Note that as a result of the

translational invariance parallel to the surface of the problem,
the double-differential probability given by Eq. (12) does
not vary with the azimuthal angle ϕf , depending only on
the elevation angle θf = sin−1(kf z/kf ) that is measured with
respect to the surface plane.

After some steps of algebra that involve the standard
treatment for the square of the δ function [51], the differential
probability reads

d2P

dEf d�f

= 2kf ρ(kf z)
∑
ni

|aif |2�(−εni
− EW )�(̃kni

− kf s), (13)

where ρ(kf z) is the density of final states φnf
with perpendic-

ular momentum kf z. In Eq. (13), the first unitary Heaviside
function �(−εni

− EW ) restricts the initial states to those
contained within the Fermi surface, with EW being the work
function, while the second one, �(̃kni

− kf s), is originated

by the momentum conservation parallel to the surface, with
k̃ni

= √−2(εni
+ EW ).

III. RESULTS

In this article the BSB-V approximation is employed to
evaluate photoelectron-emission spectra from Al(111) and
Be(0001) surfaces. Taking into account that the carrier fre-
quency represents a key parameter for photoinduced electron-
emission processes, electron distributions are analyzed in
terms of ω, considering ω values larger than the surface-
plasmon frequency. In all the cases we kept the number of
cycles of the laser electric field inside the envelope as a
constant. In particular, we chose six-cycle laser pulses (with
n = 6) [8,36]. The field strength was fixed at F0 = 0.001 a.u.,
which corresponds to the intensity I � 3.5 × 1010 W/cm2,
which belongs to the perturbative regime, far from the
saturation region and the damage threshold [3,5,52].

BSB-V energy- and angle-resolved electron distributions
were evaluated from Eq. (13). In the calculation of aif , the
numerical integration on time involved in Eq. (10) was done
with a relative error lower than 0.1%. In addition, since the
one-dimensional wave functions given by Eq. (3) do not
allow us to distinguish electrons emitted inside the solid from
those ejected toward the vacuum region, as a first estimation
we averaged the contributions from the two different wave
functions φnf

(z) associated with the same positive energy εnf

by considering that ionized electrons emitted to the vacuum
region represent approximately 50% of the total ionized
electrons from the conduction band [53].

A. Electron emission from Al(111)

Our first goal is to study the performance of the BSB-V
approximation for aluminum, which is a typical metal surface
that can be used as a benchmark for the theory. The Al(111)
surface is characterized by a Fermi energy EF = 0.414 a.u.,
a work function EW = 0.156 a.u., an interplanar distance of
4.388 a.u., and a surface-plasmon frequency ωs = 0.4 a.u. For
Al, the BSB wave functions given by Eq. (3) were obtained by
using a basis of plane waves with N = 170, a unit cell of width
L = 394.92 a.u., and a distance between the crystal border and
the center of the slab ds = 155.77 a.u. The energy-dependent
electron mean free path in the aluminum bulk was extracted
from Ref. [54].

In Fig. 1 we show BSB-V differential electron-emission
probabilities from the Al(111) surface as a function of the final
electron energy for the ejection angles θf = 30◦, 45◦, 60◦, and
90◦. Three different carrier frequencies in the range ω > ωs are
considered: ω = 0.5 a.u. [Fig. 1(a)], ω = 1.0 a.u. [Fig. 1(b)],
and ω = 2.0 a.u. [Fig. 1(c)]. In the direction perpendicular to
the surface, photoelectron spectra present a broad maximum
that is associated with the above-threshold ionization (ATI)
process by absorption of one photon. Keeping the number
of cycles as a constant (six cycles in our case), the width of
this peak increases with the frequency; that is, the peak width
depends on the pulse duration, increasing as τ diminishes [47],
which happens for atomic targets as well [55].

In relation to the angular dependence, the electron emission
for ω = 0.5 a.u. [Fig. 1(a)] is almost isotropic, being similar for
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FIG. 1. (Color online) Double-differential photoelectron-
emission probability from the valence band of Al(111) as a function
of the electron energy for six-cycle laser pulses with carrier
frequencies of (a) ω = 0.5 a.u., (b) ω = 1.0 a.u., and (c) ω = 2.0 a.u.
The peak laser electric field is F0 = 0.001 a.u. The solid red line
shows the BSB-V results for the ejection angle θf = 90◦, the dashed
blue line shows results for θf = 60◦, the dot-dashed green line shows
results for θf = 45◦, and the double-dot-dashed black line shows
results for θf = 30◦.

the different ejection angles. But when ω increases, electrons
are mainly emitted in the direction perpendicular to the surface,
which corresponds to the polarization direction of the external
laser field. Furthermore, the range of final energies reached
by the ejected electrons shrinks as θf decreases, as observed
in Figs. 1(b) and 1(c). This fact is due to the momentum
conservation in the direction parallel to the surface that
confines the kf s values within the Fermi surface, as determined
by the last Heaviside function in Eq. (13). Then, the final
electron energies are limited to the range Ef � EF /(cos θf )2,
causing the effect that only slow electrons, with energies lower
than the Fermi one, can be ejected parallel to the surface plane.

In order to determine the validity of the proposed approx-
imation, electron distributions obtained within the BSB-V
approach are compared with the numerical solution of the
TDSE associated with the Hamiltonian of Eq. (1). Due to
the parallel invariance of the surface and laser interactions, the
TDSE problem is reduced to a one-dimensional Schrödinger
equation which is solved in a numerical lattice. In such an
equation the contribution of Vind was again neglected because
we are dealing with high carrier frequencies [47]. The time
evolution from a given initial state φni

(rz) was performed
by using an explicit “leapfrog” time propagator [56]. This
method involves only one Hamiltonian matrix multiplication
per time step, and it is easily implemented on massively
parallel computers. Unitarity is fulfilled, providing a time step
smaller than the inverse of the largest Hamiltonian eigenvalue.

FIG. 2. (Color online) Similar to Fig. 1, but for the ejection angle
θf = 90◦. The solid red line shows the BSB-V results, and gray circles
present the data from the numerical TDSE calculations.

After a time tf slightly longer than the pulse duration, i.e.,
tf > τ , the evolved wave function is used to calculate the
one-dimensional ionization amplitude aif by projecting it on
every particular final continuum state φnf

(rz). In Fig. 2, BSB-V
results for emission perpendicular to the surface, for which
the maximum contribution to the probability at the higher
frequencies is obtained, are plotted together with numerical
TDSE solutions, considering the same frequencies as in Fig. 1.
A good accord between BSB-V and TDSE calculations is
observed throughout the whole electron energy range. Notice
that this agreement holds even at high electron velocities, in the
region where the emission probability has decreased several
orders of magnitude, indicating the reliability of the proposed
approach. On the other hand, the broad spread of TDSE values
is a consequence of the defined parity of the one-dimensional
wave functions that introduces spurious oscillations in the
transitions amplitudes, as discussed in Ref. [57]. A solution
for such a problem can be obtained by imposing the proper
asymptotic conditions, and its application for our particular
case is currently under development.

With the aim of investigating the effects introduced by
the band structure of aluminum, in Fig. 3 BSB-V double-
differential probabilities in the perpendicular direction are
compared with values derived from the IJV approximation
for the frequencies ω = 0.7 and 2.0 a.u. The IJV approach
includes a simple representation of the surface interaction that
is obtained by considering that conduction electrons are bound
to the surface by a finite step potential (a jellium model).
Details of this calculation can be found in Ref. [34]. In the case
of Al, electron spectra obtained with the BSB-V approximation
are very similar to those provided by the IJV approach,
displaying only a small energy shift in the position of the
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FIG. 3. (Color online) Similar to Fig. 1, but for the ejection angle
θf = 90◦ and two different frequencies of the pulse: (a) ω = 0.7 a.u.
and (b) ω = 2.0 a.u. The solid red (dot-dashed black) line presents
the BSB-V results including (without) SES contributions; the dashed
blue line shows the IJV results.

maximum. We also analyze the importance of the presence of a
partly occupied SES by evaluating its contribution to electron-
emission spectra. We found that the electron distributions
obtained within the BSB-V approximation including and
without the SES contribution are hardly distinguishable. This
fact is an additional indication of the weak influence of the
realistic band structure of Al(111) in photoinduced electron-
emission processes. This can be explained by a narrow bulk
energy gap and a very small localization of the SES wave
function on the surface [14]. Note that similar slight effects of
the Al(111) band structure were also observed in ionization by
proton impact [58].

B. Electron emission from Be(0001)

The Be(0001) surface is characterized by a Fermi energy
EF = 0.506 a.u., a work function EW = 0.197 a.u., an inter-
planar distance of 3.387 a.u., and a surface-plasmon frequency
ωs = 0.47 a.u. The BSB one-dimensional wave functions
of beryllium, as given by Eq. (3), were derived by using a
basis of plane waves with N = 210, a unit cell of width L =
338.73 a.u., and a distance between the crystal border
and the center of the slab ds = 137.17 a.u. For Be, the
energy-dependent electron mean free path was obtained from
Ref. [59].

BSB-V differential probabilities for electron emission from
Be(0001) are shown in Fig. 4 as a function of the final electron
energy for the carrier frequencies ω = 0.7 and 3 a.u., which are
higher than the beryllium surface-plasmon frequency. Again,
electron distributions for different ejection angles (θf = 30◦,
45◦, 60◦, and 90◦) are displayed in Fig. 4. As also observed for
aluminum, for the lowest frequency d2P/dEf d�f presents a
smooth variation with θf . The oscillatory structures of the per-
pendicular electron distribution corresponding to ω = 0.7 a.u.

FIG. 4. (Color online) Double-differential photoelectron-
emission probability from the valence band of Be(0001) as a
function of the electron energy for six-cycle laser pulses with carrier
frequencies of (a) ω = 0.7 a.u. and (b) ω = 3.0 a.u. The peak laser
electric field is F0 = 0.001 a.u. The solid red line presents the
BSB-V results for the ejection angle θf = 90◦, the dashed blue line
shows the results for θf = 60◦, the dot-dashed green line shows
the results for θf = 45◦, and the double-dot-dashed black line shows
the results for θf = 30◦.

FIG. 5. (Color online) Similar to Fig. 3, but for ejection angle
θf = 90◦. The solid red line presents the BSB-V results, and the
dashed blue line shows the IJV data.
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FIG. 6. (Color online) Similar to Fig. 3, but for ejection angle
θf = 90◦ and three different frequencies of the pulse: (a) ω =
0.7 a.u., (b) ω = 2.0 a.u., and (c) ω = 3.0 a.u. The solid red (dot-
dashed black) line presents the BSB-V results including (without)
SES contributions. The dotted line shows the SES contribution only.

are gradually washed out as the ejection angle decreases.
But when the frequency increases, the main contribution to
the probability comes from θf = 90◦, while the emission for
θf � 45◦ becomes almost negligible, except at the energy
threshold. Note that in both cases, final electron velocities
reached by the emitted electrons diminish with the emission
angle, although this effect is particularly visible for high ω

values [Fig. 4(b)].
To study the influence of the band structure of Be, in

Fig. 5 BSB-V double-differential probabilities for θf = 90◦
are compared with values derived from the IJV theory,
which includes a plain representation of the surface potential.
Contrary to the aluminum case, here we observe large
differences between BSB-V and IJV curves, especially at low
electron velocities. In this energy region the BSB-V probability
displays a pronounced maximum that is not present in the IJV
distribution. To understand the origin of these band-structure
effects, in Fig. 6 we investigate the contribution of the partly
occupied SES by plotting results derived from the BSB-V
approach with and without the inclusion of the SES in the sum
of Eq. (13). Three different frequencies of the laser electric
field (ω = 0.7, 2.0, and 3.0 a.u.) are considered in Fig. 6.
We found that the maximum at the energy threshold does
not relate to the SES, being produced by the corrugation of
the surface potential which affects particularly slow electrons.
However, the SES contribution not only originates structures
at low electron energies but also modifies the spectrum for
energies higher than that corresponding to the ATI maximum.
This remarkable influence of the SES in the case of Be(0001)
is due to the fact that this state presents a particularly high
electron density near the surface border [39].
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FIG. 7. (Color online) Surface potential VS as a function of the z

coordinate for (a) Al(111) and (b) Be(0001) surfaces. A comparison
between the electronic wave functions (in arbitrary units) of the SES
(red solid line) and a reference state φR with a close energy (blue
dashed line) is shown. The crystal border is located at z = 0. VSO

denotes an average potential inside the crystal.

In order to understand the differences between Al(111) and
Be(0001) photoemission spectra, we plot the corresponding
surface potentials in Fig. 7. Even though the deep of the
potential well, defined as VS0 = EF + EW , is similar for the
two materials, the corrugation of the beryllium potential is
more than a factor 20 larger than the one corresponding to
the aluminum case, and therefore, a larger number of basis
plane waves is required to reach convergence in the results.
One of the consequences of this stronger corrugation of
the Be potential is a stronger localization of the SES close
to the surface edge. For both surfaces the electronic wave
function of the SES is also displayed in Fig. 7, comparing
it to the one associated with a different initially occupied
state with a close energy value φR , which will be used as
a reference. We observe that in the subsurface region, near
the crystal border, the electronic density of the SES is higher
than the one corresponding to φR and to any other bound
state. However, while for Al(111) the difference between the
electronic densities of the SES and φR at the surface is less
than a factor of 2, for Be(0001) it rises more than one order
of magnitude. Then, this highly peaked electron density of the
Be SES at the surface border introduces visible effects in the
double-differential electron distributions.

IV. CONCLUSIONS

We have introduced the BSB-V approximation to investi-
gate photoinduced electron emission from the valence band
of metallic surfaces. The approach includes a realistic repre-
sentation of the surface interaction, incorporating information
on the surface band structure of the metal. The BSB-V
model was applied to evaluate double-differential electron
distributions produced by grazing incidence of high-frequency
laser pulses on Al(111) and Be(0001) surfaces. The reliability
of the proposed method was verified by comparing BSB-V
results with values derived from the numerical solution of
the corresponding TDSE, finding a very good agreement. By
contrasting BSB-V predictions with photoemission spectra
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obtained from a simple description of the surface given by
the jellium model, we conclude that band-structure effects are
negligible for aluminum targets, but they become extremely
important for beryllium surfaces. In particular, the BSB-V
approach allowed us to analyze the contribution of partly
occupied SESs separately, leading to the finding that these
states produce noticeable signatures in electron-emission

spectra from the Be(0001) surface, something also observed
for projectile impact [43].
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