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Abstract. The time-independentR-matrix pseudo-state (RMPS) method is used to calculate the
total electron-impact ionization cross section for C3+. In order to handle the large pseudo-state
expansions included within the RMPS calculations, the (N + 1)-electron Hamiltonian for each
LSπ symmetry is partitioned over the many processors of a distributed-memory parallel computer.
A series of RMPS calculations were performed in order to study convergence as a function of
the angular momentum of the pseudo-states. The RMPS cross sections were found to converge
rapidly with angular momentum but are slightly lower than the cross sections obtained from a time-
dependent close-coupling calculation and a time-independent distorted-wave calculation. However,
all our non-perturbative and perturbative theoretical cross sections, as well as previous converged
close-coupling cross sections, are significantly higher than cross sections obtained from crossed-
beams experimental measurements.

An accurate description of electron collisions with atoms and their ions remains a long-standing
problem in many-body physics. One of the most powerful theoretical approaches is based on
theR-matrix solution for an antisymmetrized product of anN -electron target wavefunction and
a free-electron scattering wavefunction [1]. For electron-impact excitation of atoms and their
ions at energies near threshold, theR-matrix method can be extremely accurate. Recently,
efforts have been made to extend theR-matrix method to the electron-impact excitation of
atoms and ions at intermediate energies and to the ionization of atoms and ions. This extension
is based on the inclusion of large numbers of pseudo-orbitals to better describe the bound states
and to include the continuum within theN -electron target wavefunction [2, 3]. TheR-matrix
pseudo-state (RMPS) method has been used to calculate the electron-impact total ionization
of H [4], He [5], Li+ [6], Be+ [7, 8], B [9], B2+ [10, 11], and the Na-like ions of Mg, Al and
Si [12]. In general, the RMPS method for electron-impact ionization compares well with
other non-perturbative close-coupling methods; such as the converged close-coupling [13],
the hyperspherical close-coupling [14], the time-dependent close-coupling [15, 16], and the
complex coordinate close-coupling [17] methods. Although all the close-coupling calculations
to date are in excellent agreement with experiment for the electron-impact ionization of neutral
H and He, serious discrepancies between theory and experiment have been uncovered for some
of the atomic ions, such as Be+ and Al2+. In the case of Al2+, the most recent experimental
results of Thomason and Peart [18] now support the theoretical close-coupling predictions.

In this letter we attempt to make accurateR-matrix pseudo-state calculations for the
electron-impact ionization of C3+. The computational problem of handling large pseudo-state
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expansions is helped substantially by rewriting part of the standardR-matrix codes so as to
partition the Hamiltonian for eachLSπ symmetry over the many processors of a distributed-
memory parallel computer. Thus, we are able to examine several important questions. What
is the rate of convergence of the RMPS method for a three-times ionized atom? How well
do the largest RMPS calculations compare with the results of the converged close-coupling
[19] and time-dependent close-coupling methods? How accurate is first-order distorted-wave
perturbation theory for a three-times ionized atom? How well do the close-coupling predictions
for the electron-impact ionization of C3+ agree with crossed-beams experimental measurements
[20, 21]?

The R-matrix pseudo-state calculations begin by constructing an orthogonal set of
bound and continuum radial orbitals. The bound spectroscopic orbitals are generated using
Froese Fischer’s multi-configuration Hartree–Fock (MCHF) atomic structure package [22]. A
set of non-orthogonal Laguerre orbitals of the form

Pn`(r) = Nn`(λ`Zr)`+1e−λ`Zr/2L2`+1
n+` (λ`Zr) (1)

are generated using the program AUTOSTRUCTURE [23]. HereL2`+1
n+` (λ`Zr) denotes the

associated Laguerre polynomial,Nn` is a normalization constant andZ = z+ 1, wherez is the
residual charge on the ion. The scaling parametersλ` allow one to adjust the energy and radial
extent of the pseudo-orbitals. An orthogonal set of Sturmian functions [24] would result if one
used Laguerre orbitals alone and then applied a Gram–Schmidt orthonormalization. However,
we first orthogonalize the Laguerre orbitals to the spectroscopic Hartree–Fock orbitals, and
then with each other. Therefore, our pseudo-state basis is different from the Sturmian basis,
but has similar general properties. Finally, the continuum box orbitals are generated using the
RMATRX I atomic scattering package [25]. The continuum orbitals are made orthogonal to
the pseudo-state orbitals using a method described by Gorczyca and Badnell [3]†.

For the present application to ionization, we make use of four of the modules or stages
in the RMATRX I package. The first stage (STG1) calculates all radial integrals inside the
R-matrix box. The second stage (STG2) calculates the bound and scatteringLS-coupling
algebra, and diagonalizes theN -electron Hamiltonian. The third stage (STG3) diagonalizes
the (N + 1)-electron Hamiltonian and constructs theR-matrix surface amplitudes. The final
stage (STGF) solves the coupled equations in the external region and matches wavefunctions
on the internal region boundary to produce collisional observables.

Finally, following a method developed by Gallaher [28], we determine our ionization cross
sections from the equation

σion =
∑
n̄

[
1−

∑
n

|〈n|n̄〉|2
]
σn̄ (2)

where|n̄〉 denotes a positive- or negative-energy pseudo-eigenstate,σn̄ is the excitation cross
section to|n̄〉 and〈n| denotes a physical discrete eigenstate. The|n̄〉 and〈n| are themselves
configuration-mixed states of the original target basis resulting from diagonalization of the
N -electron Hamiltonian. In practice, the term within the square brackets of equation (2) is
nearly equal to zero for all negative-energy pseudo-states except those just below the ionization
limit and is nearly equal to one for all positive-energy pseudo-states except those just above the
ionization limit. Thus, by distributing the pseudo-states equally about the ionization limit, this

† We note that the question which has been raised by Plummer and Noble [26] pertains only to the application of the
method of Gorczyca and Badnell [3] to the case of variable logarithmic derivatives. The orthogonalization procedure
of Gorczyca and Badnell [3] for use with a constant logarithmic derivative is completely stable—it has been tested
with up to 80 continuum orbitals per` and with 15 pseudo-states per` [27].
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equation produces a relatively small correction to the common practice of simply summing
over the positive-energy pseudo-states.

The most time-consuming part of these calculations resides in STG3. The diagonalization
of the (N + 1)-electron Hamiltonian is anN3

r process, whereNr is the rank of the matrix. For
example, for the largestLSπ symmetry (or partial wave) of our 62-state calculation, we used
194 coupled channels, 34 continuum box orbitals and 506 (N+1)-electron bound configurations
(included to ensure completeness of the total wavefunction). The resultant Hamiltonian in this
basis is a dense matrix ofNr = 7000. The repeated diagonalization of dense matrices of such
size, keeping all eigenvalues and eigenvectors, is a daunting computational task. Therefore,
we rewrote the STG3 program, adapting it for use on distributed-memory parallel computers.
First, using calls to the standard message-passing interface (MPI) library [29], the Hamiltonian
matrix is directly partitioned over the many processors. ScaLAPACK routines [30] are then
used for obtaining all eigenvalues and eigenvectors. ScaLAPACK routines are based on
block-partitioned algorithms in order to minimize the frequency of data movement between
different processors, thereby reducing the fixed startup cost incurred each time a message is
communicated. Among the different layouts for data distribution, it has been shown [31]
that the two-dimensional block-cyclic distribution is the most efficient scheme, having good
load balance, and taking into account the memory hierarchy on each processor. An additional
advantage of partitioning the Hamiltonian matrix is that the memory requirements per processor
are minimized. The global Hamiltonian matrix is never constructed; only a local portion resides
on each processor. Secondly, the partitioned eigenvectors are used to calculate theR-matrix
surface amplitudes in parallel. Thus global eigenvectors are never constructed. Finally, since
theLSπ symmetries are completely independent, they may also be run in parallel for ultimate
wall clock minimization.

The scalability of the partitioned Hamiltonian matrix and partitioned surface amplitude
calculations found in our new STG3 was tested on a Cray T3E-900 computer. For our 41-state
calculation, involving 18LSπ symmetries, the new code scaled linearly up to 32 processors.
The slower than linear scaling observed above 32 processors is a consequence of the time used
in broadcasting and receiving information between nodes; i.e. the distribution of the input data
from the master node to all the other slave nodes. A future integration of the first three stages
to eliminate all pass files would help with this particular scalability problem. To give a specific
timing example, the 41-state calculation using the old STG3 on one processor of the Cray
J-90 computer took 37 h and 35 min, while using the new STG3 on 16 processors of the Cray
T3E-900 took 35 min. The faster than linear scaling observed in this specific example is due
to a combination of the different single processor speeds of the two computers and changes in
the codes. Note, that running each of the 18LSπ symmetries on its own 16 processors, giving
a total of 288 processors, could cut the wall clock time to approximately 2 min.

To check the convergence of theR-matrix pseudo-state method, we carried out calculations
for the electron-impact ionization of C3+ using both time-dependent close-coupling (TDCC)
and time-independent distorted-wave (DW) theory. The time-dependent Schrödinger equation
for electron scattering from an atomic ion involving one valence electron outside of closed
shells is solved as a coupled set of partial differential equations for eachLSπ symmetry
[8, 11, 12]. The two-dimensional radial wavefunctions are represented on a numerical lattice
which is partitioned over the many processors on a distributed-memory parallel computer.
Following the collision, excitation and ionization cross sections are obtained by projecting
the time-evolved radial wavefunctions onto a complete set of single-particle states for the
atomic ion. The time-independent DW method is based on a triple partial-wave expansion of
the first-order perturbation theory scattering amplitude, including both direct and exchange
terms. For the electron ionization of C3+, the incident and scattered electrons are calculated
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in aV N distorting potential, while the bound and ejected electrons are calculated in aV N−1

potential [32].
In studying the ionization of C3+, we performed four RMPS calculations. They all

employed single-configuration Hartree–Fock wavefunctions for the 1s, 2s, 2p, 3s, 3p, 3d,
4s, 4p, 4d and 4f physical orbitals. In our first calculation, we added pseudo-orbitals (n̄`) up
to 12s, 12p, 12d and 12f, giving rise to a 41-term close-coupling expansion. In our second
calculation, we added pseudo-orbitals up to 15s, 14p and 13d, resulting in a 47-term close-
coupling expansion. The RMPS ionization cross sections generated from these two calculations
were close in magnitude; however, the pseudo-resonances in the higher-energy range were less
pronounced in the 47-state calculation, because of the more complete finite basis. For that
reason, we will not consider the 41-state calculation any further. We then began to study
convergence as a function of the angular momentum of the pseudo-states. In our previous
work [8, 11, 12] we aimed for convergence in the total cross section, with`, to better than
10% and this was achieved by considering pseudo-orbitals up to` = 4 only. We first added
pseudo-orbitals for g electrons fromn = 5 to 12 to our 47-state basis; this resulted in a 55-term
close-coupling expansion. Finally, we added, pseudo-orbitals for h electrons fromn = 6 to
12 to our 55-state basis, resulting in a 62-term close-coupling expansion.

For all of these calculations, the scaling parametersλ` were adjusted so that the ionization
limit is roughly midway between two term energies of the same symmetry. This is done for each
symmetry present in the calculation and tends to minimize the effects of the approximate form of
the projections used in equation (2) to determine the ionization cross sections. For the 47-term
calculation, the values of the scaling parameters were:λns = 1.14,λnp = 1.04,λnd = 0.99
andλnf = 0.95. For the other two calculations, we employed the same scaling parameters
for the s, p, d and f pseudo-orbitals; while for both the 55- and the 62-term calculations we
usedλng = 1.04; and for the 62-term calculation we letλnh = 1.20. With these scaling
factors, nine s-terms, eight p-terms, seven d-terms, six f-terms, six g-terms and six h-terms
lie above the ionization limit. For our 47-, 55- and 62-state calculations, our target basis set
required anR-matrix box of radiusR = 19.7 au. In addition, 34 continuum basis orbitals per
angular momentum were used in order to allow for cross sections up to 250 eV. All required
LSπ symmetries up toL = 8 were included, and they were topped-up by using the method
described in [12]. We checked the convergence withL by making a single run up toL = 15,
followed by the same top-up procedure; we found that at the highest energy theL = 15 result
was different by less than 4%.

Total electron-impact ionization cross sections calculated from our 47-, 55- and 62-state
RMPS calculations are compared in figure 1. The increase in the cross section due to the
addition of the g-terms in the 55-state calculation is of the order of 5%, while the introduction
of the h-terms in the 62-state calculation has a negligible effect on the total cross section.
It is clear that the calculation is converged with respect to the angular momentum of the
N -electron continuum oncè= 4. In all three calculations, we notice the presence of pseudo-
resonances due to the use of a finite basis to represent theN -electron continuum. These are
well pronounced, even though the cross sections have been convolved with an 8.0 eV Gaussian
to smooth out the narrow resonances. The effect of the extra pseudo-states included in the
55-state and 62-state calculations on the size of the pseudo-resonances in the higher-energy
region is quite clear.

One of the problems with the Laguerre basis representation of the target continuum within
anR-matrix formalism arises from the energy distribution of the pseudo-states. For example,
the 1s27s pseudo-state, with an energy of 68.8 eV, is just above the ionization threshold of
64.49 eV. However, the 1s212s, 1s213s, 1s214s and 1s215s pseudo-states have energies of 279,
505, 1115 and 4867 eV, respectively. These are well above the energy range of interest in
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Figure 1. RMPS calculations of the total electron-impact ionization cross section for C3+. Broken
curve, 47-state calculation; dotted curve, 55-state calculation and full curve, 62-state calculation.

these calculations—although, of course, resonances attached to them are not. One can lower
the energies of these pseudo-states by decreasing the size of theλ` values. Even though the
number of states above the ionization threshold will then decrease, it is possible to obtain a
higher density of states in the energy range of interest. However, another problem then arises.
For a Sturmian basis, the expectation value ofr is given by

〈r〉 = 2n + 1

λ`Z
. (3)

As pointed out above, we are not using a Sturmian basis since we orthogonalize our non-
orthogonal Laguerre basis to the HF orbitals as well as to each other. However, as one might
expect, our basis set has this same general property: as the value ofλ` is decreased in order
to lower the energy of the pseudo-states, the pseudo-orbitals spread out and the size of the
R-matrix box must be increased. This then requires a larger continuum basis to represent the
scattered electron, and the calculation quickly becomes intractable. We continue to explore
this problem in order to try to determine a way to obtain a more complete finite basis set for
theN -electron continuum within theR-matrix formalism.

In figure 2, we compare our 62-state RMPS calculation of the ionization cross section with
cross sections from our TDCC calculations, our DW calculation, the CCC calculation of Bray
[19] and the experimental measurements of Crandallet al [20, 21]. The smooth RMPS curve
shown in figure 2, which provides our best estimate of the 62-state cross section, was obtained
by fitting a fourth-degree polynomial to the 62-state cross section shown in figure 1. Clearly
all the theoretical calculations are well above the experimental measurements. However, there
are also some clear discrepancies between the non-perturbative calculations. The converged
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Figure 2. Total electron-impact ionization of C3+. Full curve, from 62-state RMPS calculation
smoothed with a fourth-degree polynomial fit (this work); open circles, TDCC calculation
(this work); broken curve, DW calculation (this work); open squares, CCC results from Bray
[19]; triangles, experimental measurements of Crandallet al [20] and full circles, experimental
measurements of Crandallet al [21].

close-coupling cross section of Bray is the highest and it is even above the DW cross section
in this energy region. Our TDCC cross section is in the middle and the RMPS cross section is
the lowest. This is the same general trend that is seen in B2+ [11] and Si3+ [12]. Clearly more
work is needed, not only to compare these advanced methods with experiment, but also to try
to resolve the differences that do exist between these methods, especially for higher stages of
ionization. The new parallel version of STG3 will be important to this effort, and also other
electron–ion scattering problems that involve a large Hamiltonian basis set.

The computational work was carried out at the National Energy Research Supercomputer
Center (NERSC) in Berkeley, California. We would like to acknowledge the consulting staff
of NERSC for their assistance. This work was partially supported by a US DoE grant (DE-
FG05-96-ER54348) with Auburn University, a US DoE grant (DE-FC02-91-ER75678) with
Alabama EPSCOR and a US DoE grant (DE-FG02-96-ER54367) with Rollins College.
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