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Abstract. In this work we study the double photoionization of helium induced by low intensities laser
fields in the regime where only one photon absorption occurs. The method proposed here is based on a
Generalized Sturmian Functions (GSF) spectral approach which allows the imposition of outgoing bound-
ary conditions for both ejected electrons. These, in turn, construct an hyperspherical flux characteristic
of double continuum wave functions. We compare our calculated cross sections at 20 and 40 eV above
threshold with absolute and relative measurements, and with other calculations. Our results definitively
demonstrate the applicability of the GSF approach for dealing with break-up Coulomb problems.

1 Introduction

During the last few years we have been working on the
development of a spectral approach to solve n-body prob-
lems based on the use of Generalized Sturmian Functions
(GSF) [1]. With these basis functions we are able to rep-
resent a given overall character of the system, whether
bound, continuum or a mixture. This is done by impos-
ing proper boundary conditions to the basis functions in
the coordinate in which they are defined. Regularity at
the origin, for instance Kato cusp conditions, with box
boundary conditions or exponential fall off behavior at
large distances can be imposed for bound states. Standing-
wave, outgoing or incoming flux conditions, including also
coordinate-dependent Coulomb phases, can be used for
scattering problems. The well-known Coulomb Sturmian
Functions (CSF), introduced by Shull and Löwdin [2], cor-
respond to a particular case of GSF. Rotenberg [3,4] used
CSF in scattering problems and named them Sturmians
due to the similarities with the Sturm-Liouville theory.

The GSF approach has proven to be successful for cal-
culating atomic bound states [5], as well as for stationary
(time-independent) scattering states [6–8]. The advantage
of a spectral approach over grid methods resides in the
reduction of the number of elements needed to represent
the wave function. Indeed, the GSF approach is based
on the use of functions sets which diagonalize some of
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the interactions present in the Hamiltonian of the con-
sidered problem, and besides, they can be constructed to
include appropriate asymptotic conditions. This directly
implies a considerable size reduction of the matrix repre-
sentation of the Hamiltonian and also leads to a substan-
tial reduction in the amount of computational resources
needed for the calculations. It is in general not easy to
get the desired solution of the Schrödinger equation, es-
pecially when the boundary conditions are those related
to scattering processes. The GSF approach provides a nu-
merical method which was shown to be successful and ef-
ficient in evaluating differential cross sections for S-wave
models of (e, 2e) [6,7] and (e, 3e) processes [8]. However,
a solution for a full scattering problem using GSF has
not yet been presented in the literature. The main aim of
this paper is to show that the method is capable to deal
with a complete three-body scattering problem, here the
double photo-ionization of helium. Our calculated Triple
Differential Cross Sections (TDCS) will be compared with
experimental (γ, 2e) data and also with other theoretical
results.

Double photo ionization of helium by one photon ab-
sorption has been a subject of interest for a long time.
This is due to the fact that this is the simplest process
where the emission to the continuum of two electrons
can occur. Before and after the photon is absorbed we
have a pure three-body problem with no other perturba-
tion. Thus, it is the best test possible when considering
a three-body transition from bound to continuum states.
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Measurements of this and similar systems can be widely
found in the literature [9–19]. Most of them have been
possible thanks to the use of complete dynamics mea-
surement techniques such as Time of Flight spectrome-
ters [20] or COLTRIMS [21]. From the theoretical point
of view there are several approaches, such as hyperspheri-
cal partial wave calculations [9], Exterior Complex Scaling
(ECS) [22], three-Coulomb-wave approaches (C3) [23,24],
Convergent Close Coupling (CCC) calculations [16,25],
Time Dependent Close Coupling (TDCC) approaches [26],
Hyperspherical R-matrix calculations [27], as well as ex-
pansions using complex Sturmian functions in the context
of Floquet [28] and time dependent [29] approaches. The
comparison of differential cross sections with previously
published results will basically demonstrate that the GSF
method is as efficient as other techniques, in particular as
the ECS. Furthermore, we will show that our method is
very efficient in the numerical treatment of the problem;
thus it is encouraging for application to other and much
more difficult problems such as, e.g., the double ionization
of helium by two photon absorption.

This paper is organized as follows. In Section 2 we
present the driven equation for the scattering wave func-
tion after one photon absorption, and the formulas em-
ployed to evaluate the cross sections. In Section 3 we pro-
pose a partial wave GSF expansion for the three-body
bound and scattering wave functions, and specify the pa-
rameters employed to construct the linear system of equa-
tions. We also discuss the implementation and convergence
properties of the Preconditioned Conjugate Gradient
Squared Method we use to find the scattering solution.
Then, in Section 4 we present the obtained single and
triple differential cross sections and compare them with
data from experiments and other theoretical approaches.
Finally, in Section 5 a summary is provided.

Atomic units (� = e = me = 1) are assumed through-
out, unless stated otherwise.

2 Theory

In order to describe the dynamics of the double ioniza-
tion of helium by single photon impact in a time inde-
pendent scheme, we seek for the scattering wave function
Ψsc(r1, r2) containing the entangled admixture of all final
states. Let the vectors ri (i = 1, 2) locate the electrons
from the nucleus, which is considered to be at rest at the
center of mass; we shall hereafter use the spherical coordi-
nates (ri, θi, ϕi) associated to these two vectors. The scat-
tering wave function can be obtained by solving the non-
homogeneous Schrödinger equation in either velocity (V ):

[H − E] Ψ+
sc,V(r1, r2) = ε̂.(�r1 + �r2)Ψ0(r1, r2) (1a)

or length (L) forms:

[H − E] Ψ+
sc,L(r1, r2) = ω ε̂.(r1 + r2)Ψ0(r1, r2), (1b)

where H is the helium Hamiltonian, E is the energy of
the system, ω is the photon energy, ε̂ is the polarization

vector of the laser; Ψ0(r1, r2) is the initial bound state of
the atom, with energy E0, which satisfies:

HΨ0(r1, r2) = E0Ψ0(r1, r2). (2)

Energy conservation reads E0 + ω = E.
Equations (1a) and (1b) correspond to the first order

term of the Dalgarno-Lewis [30] perturbation series for
the Schrödinger equation including the electromagnetic
field [31], in the velocity and length gauges respectively.
They admit multiple solutions which can be constructed as
a linear combination of the particular one and that which
satisfies the homogeneous equation. Amongst them, to ap-
propriately describe the physical problem under consider-
ation, we need a wave function possessing an hyperspher-
ical outgoing wave behavior at large distances [32]. This
asymptotic behavior is associated to the double ionized
electrons, but is always entangled with the single contin-
uum terms. Such a scattering solution, containing all final
collision channels at the same time, is unique. The way we
solve the non-homogeneous equation (1a) or (1b) will be
explained in details in the next section.

To evaluate the physical observables and to extract
the physical information from the ionization process we
will employ the formulas used in [22]. Suppose the two
electrons are emitted into the continuum with momenta ki

(i = 1, 2), with energies denoted E1 and E2 (E = E1+E2).
The transition matrix for such process

f(k1,k2) =
〈
Φ−(k1, r1)Φ−(k2, r2)|E − T − V (r1, r2)

×|Ψ+
sc(r1, r2)

〉
, (3)

is given in terms of the scattering wave function solu-
tion of equation (1a) or (1b). The functions Φ−(ki, ri)
are Coulomb functions normalized to a Dirac δ function
in momentum space, T is the system’s kinetic energy and
V (r1, r2) = −Z/r1 − Z/r2 with Z = 2. The operator ap-
pearing in the definition of the transition amplitude (3)
is the one not solved by the approximated function used
as final channel, here a product of uncorrelated Coulomb
functions. Employing instead some correlated states would
change the matrix element structure, but not its final value
if one uses a numerical exact scattering wave function. In
this work, and for comparison purposes, we performed the
calculations as it was done within the ECS method. Alter-
native ways of extracting the scattering amplitudes have
been explored in the literature. These include for example
the use of the outgoing flux associated with the scattering
solution, as applied by [27].

The triple differential cross section (TDCS) can be de-
fined in terms of the transition matrix as follows

d3σ

dE1dΩ1dΩ2
=

4π2

ωc
k1k2 |f(k1,k2)|2 , (4)

where dΩi denote the solid angles around direction (θi, ϕi)
for each electron. Integrating over all possible directions
one obtains the single differential cross section (SDCS)

dσ

dE1
=

∫
d3σ

dE1dΩ1dΩ2
dΩ1dΩ2. (5)
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3 Expansion of the three-body wave functions
in GSF

In the present study, we use basis sets composed of two–
body radial functions Sn(r), solutions of the Sturmian
equation:

[
−1

2
d2

dr2
+ U(r) − Es

]
Sn(r) = −βnV(r)Sn(r) (6)

where βn are the eingenvalues. Here Es is an externally
fixed parameter, U(r) and V(r) are potentials which can be
appropriately chosen to optimize convergence [5]. Equa-
tion (6) is solved numerically using a finite-difference
scheme and specially adapted diagonalization procedures
to avoid numerical instabilities, in particular when com-
plex eigenvalues arise from flux boundary conditions [33].
Such GSF provide a basis and satisfy the potential
weighted orthogonality relation

∫ ∞

0

Sn′(r)V(r)Sn(r)dr ∝ δn,n′ . (7)

Three-body solutions to equations (1) and (2) are both
obtained through a Sturmian expansion of the form:

Ψ(r1, r2) =
∑

l1,l2

ASRL,M
l1,l2

(r1, r2)YL,M
l1,l2

(r̂1, r̂2), (8)

where

RL,M
l1,l2

(r1, r2) =
∑

n1,n2

aL,M
ν

Sn1(r1)

r1

Sn2(r2)

r2
, (9)

with ν = {n1, n2, l1, l2}. Here aL,M
ν are the expansion co-

efficients, YL,M
l1,l2

(r̂1, r̂2) are the bispherical harmonics [34]
and AS is the symmetry operator

ASΨ(r1, r2) =
1√
2

[
Ψ(r1, r2) + (−1)SΨ(r2, r1)

]
, (10)

for the singlet (S = 0) or triplet (S = 1) cases.
Two different radial basis sets, with different asymp-

totic behaviors, were used: one to describe Ψ0(r1, r2) and
another one for Ψ+

sc(r1, r2). In both cases we set as aux-
iliary potential U(r) = −2/r. For convenience, we have
chosen here to not include the centrifugal barriers (see
Eq. (6)), in contrast with the choice of previous publica-
tions [5,35]. As a consequence, the centrifugal terms are
not removed from the coupled equations, obtained upon
replacement of expressions (8) into equation (1) and (2).
After a projection by the left with the entire basis ele-
ments identified by ν′ (the Galerkin method [36]), one
obtains the Hamiltonian matrix elements:

[H]ν,ν′ =
(

1
2
l1(l1 + 1)[r1−2]n1,n′

1
[O]n2,n′

2
(11)

+
1
2
l2(l2 + 1)[r2−2]n2,n′

2
[O]n1,n′

1

+βn′
1
[u1]n1,n′

1
[O]n2,n′

2
+ βn′

2
[u2]n2,n′

2
[O]n1,n′

1

+2Es,1[O]n1,n′
1
[O]n2,n′

2

)
δl1,l′1δl2,l′2 + [r−1

12 ]ν,ν′

+ (1 ↔ 2),

where the symbol (1 ↔ 2) means the interchange contri-
bution, and the one dimensional integrals are defined as

[O]n,n′ =
∫ ∞

0

Sn(r)Sn′ (r)dr (12a)

[rp]n,n′ =
∫ ∞

0

Sn(r)rpSn′(r)dr (12b)

[u]n,n′ =
∫ ∞

0

Sn(r)U(r)Sn′ (r)dr. (12c)

Here, it is worth underlining two points which are char-
acteristic of the Sturmian approach [1]: the overlap ma-
trices [O]n,n′ are always well defined and no conjuga-
tion are present (this is also true for the orthogonality
property (7)).

For the repulsion matrix element [r−1
12 ]ν,ν′ a partial

wave decomposition is used [37]:

[r−1
12 ]ν,ν′ =

∑

l=0

4π

2l + 1

[
rl

<

rl+1
>

]

ν,ν′
A

L,l′1,l′2
M,l1,l2

, (13)

with the matrix elements A
L,l′1,l′2
M,l1,l2

written in terms of
Clebsch-Gordan coefficients. Compared to the rest of the
matrix elements, the angular integrals A

L,l′1,l′2
M,l1,l2

are not
necessary null when (l1, l2) �= (l′1, l

′
2), and are responsi-

ble for the appearance of non-diagonal blocks in H. The
matrix elements

[
rl

<

rl+1
>

]

ν,ν′
are two dimensional integrals

which must be evaluated numerically as the Sturmian ba-
sis is numerical. Fortunately, they can be partially un-
coupled and finally are equivalent to two one dimensional
integrals of rapid evaluation [29]. When compared to the
rest of the Hamiltonian, the numerical evaluation of such
matrix elements is still the most demanding part, since
we have to evaluate one of these integrals for each set
{l, n1, n2, n

′
1, n

′
2}. If the centrifugal barriers were included

in the radial equation (6), there would be one radial set
per partial wave included, and the number of matrix ele-
ments to be evaluated would be multiplied by the square
of the number of the employed partial wave terms.

For Ψ0(r1, r2) (L = M = S = 0), the radial basis
is obtained by setting in equation (6) the negative value
Es = −2.5 a.u., yielding a complete set of Sturmian func-
tions with a fall off behavior. The generating potential
V(r) can be chosen in several ways, for instance the so-
phisticated one given in [5], a choice which provides the
correct cusp to the basis and asymptotic conditions associ-
ated to the charge of U(r) (we would then have GSF). Al-
ternatively, by setting V(r) = −1/r, we could use a set of
s-wave Coulomb Sturmian functions (CSF). We tried with
both options and did not find differences in the calculated
cross sections. The results to be presented in Section 4
were evaluated with a properly symmetrized s-wave CSF
radial basis of 6 elements for each radial coordinate, with
L = M = 0, l1 = l2 = 0, 1, 2, 3, 4 in equation (8), mak-
ing a total of 105 orbitals. We obtained energies below
−2.903 232 a.u.: this value should be compared to the ex-
act energy −2.903 724 a.u. [34] and, for example, the one
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Fig. 1. Typical Generalized Sturmian Functions, here for
n = 1, . . . , 10, with outgoing flux conditions imposed at r =
17.5 a.u. Top: real part; bottom: imaginary part. At large dis-
tances the real and imaginary parts are shifted by π/2 as clearly
seen through the vertical dashed line.

(−2.903 198 a.u.) appearing in the ECS study [22]. The
numerical precision with which the bound state is repre-
sented is by far enough for the present purposes.

For the scattering wave function Ψ+
sc(r1, r2), only L = 1

and M = S = 0 are required. We employed expansion (8)
with outgoing flux condition Sturmian basis sets. As in
reference [6], we used a basis energy Es that equals the
double continuum energy E of the physical system. Fig-
ure 1 shows ten outgoing flux Sturmians, normalized to
have the same value at r = 17.5 a.u. where boundary con-
ditions are imposed. By construction, from r = 17.5 a.u.
onwards the basis functions have all the same behavior,
and the real and imaginary parts have a phase difference
of π/2 (as the vertical dashed line helps to visualize). We
typically employed a square well as a generating potential
V(r), and found it is a good choice for the length gauge
calculation. However, in the velocity gauge, due to the be-
havior of the right hand side of equation (1a) near the
r1 = r2 = 0 region, the convergence rate with such a basis
is not as good as for the length gauge. Improvement is
obtained by adding a Yukawa potential to V(r) in order
to concentrate the oscillations in that domain. This choice
yields accurate results in both gauges. In equation (8) we
use L = 1, M = 0 (as imposed by the right hand side
of the non-homogeneous Eq. (1)), l1 = l and l2 = l + 1
with l = 0, 1, 2, 3. Adding more partial wave terms does
not change further the values of the TDCS, precisely as
observed in reference [22]. The radial domain was chosen
to be 35 a.u. (30 a.u.) for E = 20 eV (40 eV), for which 35
(37) radial orbitals per coordinate were employed, making
a total of 4900 (5476) basis elements. This number can be
compared with 11236 as given in page 6 of reference [22].
Since the size of the hamiltonian matrix in a given repre-
sentation is the square of the basis size, it means that with
a GSF expansion one saves about 75 percent in memory
storage of the hamiltonian matrix. The reason behind it is
that using GSF provides a spectral approach in which the

Fig. 2. Block structure of the linear set of equations whose
solution gives the expansion coefficients of Ψ+

sc(r1, r2), where
al,l+1 denote a1,0

ν for a set of n1, n2 values.

basis functions are solutions of a physical two-body equa-
tion absorbing the kinetic energy, the total energy and
part of the potentials of the three-body problem under
consideration.

After application of the Galerkin method two sepa-
rate linear problems arise. For equation (2), one obtains a
generalized eigenvalue problem, whose lower energy eigen-
state is the ground state of the helium atom [5]. This
system is easily solved with routines of the linear alge-
bra package LAPACK [38]. Once normalized, the bound
state Ψ0(r1, r2) is inserted into the driven term of equa-
tion (1) to construct another linear system of equations
of the form H.a = b; a is the vector of coefficients aL,M

ν
related to Ψ+

sc(r1, r2), while the vector b contains the pro-
jection of the driven term on the basis functions. Since
only pairs (l, l + 1) are allowed, the system has the block
structure shown in Figure 2. This new system is well deter-
mined, and its solution can also be found with LAPACK,
or with its distributed memory version ScaLAPACK [39].
However we prefer to use iterative methods because they
give faster convergence rates; moreover, the matrix struc-
ture is such that it can be easily implemented in a single
processor by steps if only one sub-block of the matrix is
stored in RAM memory at each time. We are testing this
routine for the first time here and we plan to use it in the
future for larger systems of equations associated to other
scattering problems.

We have tested several methods, finding the Precon-
ditioned Conjugate Gradient Squared Method (PCGSM)
to be the most stable if an adequate precondition is used.
As is suggested in reference [40], a good choice is the so-
lution to the system obtained by replacing all the ma-
trix elements by zeros except the ones belonging to the
diagonal blocks, where the blocks are defined by the ma-
trix elements whose angular quantum numbers {l′, l} are
equal. We found for the structure of our matrix blocks
(which is intrinsically related to the basis set) that af-
ter choosing a random vector a(0) as a proposal for the
solution, the error, defined as the modulus of the vector
(H.a(m))−b, decreases by almost one order of magnitude
by step (see Fig. 3). We stop the iteration when the error
is lower than 10−10.

Typical scattering solutions can be seen in Figure 4
where we have plotted the real and imaginary parts of the

http://www.epj.org
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Fig. 3. Convergence of the PCGSM as a function of the iter-
ation step m.

two dimensional radial function R1,0
1,2(r1, r2) (see Eq. (9));

in order to observe the asymmetry, only the direct contri-
bution is illustrated, i.e., without applying the antisym-
metrization operator AS . Other pairs (l1, l2) have been an-
alyzed, and the results coincide – in both shape and mag-
nitude – with those presented in Figure 3 of reference [22].
Note that the partial wave function shown in Figure 4
presents the correct hyperspherical outgoing wave behav-
ior which is built, within our method, from a mixture of
products of single-electron outgoing Coulomb waves, each
with a given physical momentum.

Once the whole wave scattering function Ψ+
sc(r1, r2) is

constructed through expansion (8), triple and single dif-
ferential cross sections are evaluated with expressions (3)
to (5) and standard integration techniques. A more de-
tailed analysis of the formulas and the expression for each
partial wave can be found in reference [22], where it is also
explained how the volume integrals can be transformed
into surface integrals at a fixed value of the hyperadius.

Before presenting the results, we would like to under-
line that our GSF approach is very different from those
employed in references [29] and [28] where, respectively,
time dependent calculation and Floquet theory were im-
plemented through the J-matrix method and Coulomb
Sturmian Functions. The J-Matrix approach makes use
of energy eigenfunctions, obtained by diagonalizing the
three-body Hamiltonian, to represent the internal part of
the three-body scattering wave function. For the external
part it uses a product of CSF and standing wave Coulomb
wave functions. This makes the procedure completely dif-
ferent from the one we are implementing with our GSF.
Indeed, we do not need to separate the solution in regions;
besides, we generate the basis set so that it incorporates
the correct asymptotic behavior and possesses its maxi-
mum density in the region where the driven term is lo-
cated. The cited investigations presented methodologies
which explicitly avoid the imposition of boundary condi-
tions in the time dependent case. The evolution of an L2

initial state (which is not an energy eigenstate) is evalu-
ated at each time step; in the asymptotic region the ob-
servables are evaluated from the wave function by means
of projection operators. In the Floquet case, the wave

Re{R1,0
1,2(r1, r2)}

r1

r25 10 15 20 25 30 35

5
10
15

20
25

30
35

−0.06
−0.04
−0.02

0.02
0.04
0.06

Im{R1,0
1,2(r1, r2)}

r1

r25 10 15 20 25 30 35

5
10
15

20
25

30
35

−0.06
−0.04
−0.02

0.02
0.04
0.06

Fig. 4. Real and imaginary parts of the direct contribution
of R1,0

1,2(r1, r2) associated to the second (l1 = 1, l2 = 2) partial

wave term of Ψ+
sc for E = 20 eV.

function is expanded in CSF with complex parameters.
We have tested this proposal for electron hydrogen colli-
sions and did not find the smooth hyperspherical outgo-
ing wave behavior as those shown in Figure 4. Instead,
we observed noisy surfaces which can be related to an
interference between Ψ+

sc with the solution of the homo-
geneous equation associated to equation (1). Other basis
and methods were sought after, and results were summa-
rized in reference [6]. With GSF no additional manipula-
tion (i.e., complex rotation) is applied to the differential
equation in order to obtain the desired solution. In sum-
mary, the GSF approach used here is completely different
from those previously proposed.

4 Cross sections

We have evaluated double photoionization of helium
TDCS for E = 20 and E = 40 eV above threshold. These
cross sections are presented below as functions of the po-
lar angle θ2 of one ejected electron for a fixed θ1 for the
other electron, and this for equal or unequal energy shar-
ing (E1, E2).

Accurate and converged calculations should yield the
same cross sections (but not the scattering wave function)
in both gauges. Our calculated cross sections have this
property for all energies and geometries considered in this
contribution. An example of TDCS gauge invariance ob-
tained with our numerical method is shown in Figure 5
for E = 20 eV.
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Fig. 6. SDCS for E = 20 eV. Circles: experiment by Wehlitz
et al. [19]. Red dashed line: ECS calculation [22]. Black solid
line: present GSF results.

4.1 A 20 eV above threshold

Before describing in detail our TDCS results we show first,
in Figure 6, our SDCS result for E = 20 eV and compare
them with the experimental data of Wehlitz et al. [19] and
with the ECS calculations by McCurdy et al.. We see that
both theoretical sets lie within the region of experimen-
tal dispersion, and a good agreement is found between
both methods with a slight discrepancy in the equal en-
ergy regime.

Let us now look at the angular distributions of the
TDCS. We start by considering the emission of the first
electron along the polarization direction (θ1 = 0◦) with
energies equal to 10, 17 and 3 eV, as a function of the po-
lar angle θ2 of the secondary electron. In Figure 7 we com-
pare our TDCS with absolute measurements of Brauning
et al. [14]. Comparison is made also with other theoreti-
cal results: ECS of McCurdy et al. [22], time dependent
close coupling (TDCC) by Colgan et al. [26] and the hy-
perspherical R-Matrix method with semiclassical outgoing
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Fig. 7. TDCS for 20 eV energy above threshold for one of the
electrons emitted along the polarization axis (θ1 = 0◦) as a
function of the polar angle (θ2) of the secondary electron, for
various energy sharing values. Circles: absolute experimental
values by Brauning et al. [14]. Red dashed line: ECS calcula-
tion [22]. Green dotted line: HRM-SOW calculation [27]. Ma-
genta dot-dashed line: TDCC calculation [26]. Black solid line:
present GSF results.

waves (HRM-SOW) by Selles et al. [27]. Our results are
in overall good agreement with both experimental data
and with other theoretical cross sections. The agreement
is particularly noticeable with the ECS and TDCC results,
our TDCS lying in-between the two for all energy sharing
(except close to θ2 � 100◦ for E1 = 3 eV, where the GSF
results are slightly higher than the other two). The HRM-
SOW results show some more pronounced differences, in
particular close to the Wannier geometry.

The same good agreement can be observed in Figure 8,
where we compare TDCS at equal energy sharing for sev-
eral emission directions of the first electron: θ1 = 0◦, 30◦,
60◦ and 90◦. We compare with absolute measurements
of Brauning et al. [14] and ECS calculation results of
McCurdy et al. [22]. Excellent agreement is found between
the two theoretical sets. Agreement is also found with ex-
perimental data except at the θ1 = 90◦ geometry, with a
theoretical overestimation of the TDCS magnitude.

Results for θ1 = 60◦, 90◦ and unequal energy shar-
ing (E1 = 3 and 17 eV) are presented in Figure 9, where

http://www.epj.org


Eur. Phys. J. D (2015) 69: 189 Page 7 of 10

-180 -90 0 90 180
0

5

10

15

T
D

C
S 

(b
 e

V
-1

 s
r-2

)

-180 -90 0 90 180
0

10

20

30

40

-180 -90 0 90 180
θ

2
 (degrees)

0

10

20

30

40

T
D

C
S 

(b
 e

V
-1

 s
r-2

)

-180 -90 0 90 180
θ

2
 (degrees)

0

10

20

30

40

θ
1
=0

0 θ
1
=30

0

θ
1
=60

0 θ
1
=90

0
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we compare with Brauning’s data and ECS results. Again
we observe an excellent agreement between the two the-
oretical methods (our TDCS are just slightly above ECS
results); very good agreement is also found between theo-
ries and experiment.

Further detailed TDCS behavior as a function of the
energy sharing is shown in Figure 10 for a fixed direction
of the first emitted electron (θ1 = 30◦). In this figure, as
in Figures 8 and 9, the two theoretical results are virtually
indistinguishable.

4.2 A 40 eV above threshold

Let us now consider photoionization at 40 eV above
threshold, for which there exist relative measurements

from Bolognesi et al. [16] and Cvejanovic et al. [15]. Each
experimental data set shown here were scaled to match
absolute ECS TDCS results at a given geometry, as done
in reference [22], using one scaling parameter for each ex-
perimental set.

In Figures 11 and 12 we consider unequal energy shar-
ing given by E1 = 5 eV and its complementary data
E1 = 35 eV, for θ1 = 0◦, 30◦ and 60◦. Our GSF results
are compared with ECS [22] and CCC [16] calculations.
The experimental data [16] were scaled to match the ECS
cross section for θ1 = 60◦ and θ2 = 30◦. Our GSF cross
sections are in perfect agreement with ECS results, be-
ing both theories even more close to each other than in
the previous 20 eV above threshold case. Both are in an
overall good agreement with the measurements. On the
other hand, discrepancies between the CCC and GSF (or
ECS) results are more significant. This is true not only in
magnitude (see, e.g., the θ1 = 30◦ case in Fig. 11, where
differences appear in the peaks ratio), but also in shape
(see, e.g., the θ1 = 0◦ case in Fig. 12).

A similar picture is obtained when we consider the
relative experiments performed by Cvejanovic et al. [15].
In Figures 13 and 14 we compare experimental TDCS for
energy sharing set by E1 = 5 eV at larger values of θ1

varying from 130◦ to 180◦. These results were scaled to
match theoretical ECS cross section at θ1 = 130◦ and
θ2 = 250◦. We also include CCC results [41]. Again, a
beautiful coincidence is observed between the results of
the ECS and GSF methods.

5 Summary

In this work we have presented a numerical solution of the
driven Schrödinger equation describing the helium dou-
ble photo ionization by single photon absorption, in the
time independent approach. Both the initial state and the
scattering three-body wave function are proposed as a
partial wave expansion composed of two-body General-
ized Sturmian Functions with appropriate boundary con-
ditions. For the initial bound state we used, for each elec-
tron, exponentially decaying behavior corresponding to an
electron bound in the central Coulomb potential. For the
scattering wave function we used an outgoing-wave be-
havior associated to a particle escaping from the charged
nucleus. The angularly coupled expansion builds up the
outgoing hyperspherical wave behavior of the three-body
wave function describing the scattering.

From the numerical GSF solution of the scattering
wave function we have extracted triple and single differen-
tial cross sections for 20 and 40 eV total energy. For both
cases, and for all considered geometries, we found TDCS
gauge invariance. All our results were compared with ECS
calculations by McCurdy et al. [22] and excellent agree-
ment was found; it is worth recalling that we are solving
the same driven equation.

Both theoretical sets compare very well, at 20 eV, with
the experimental TDCS data of Brauning et al. [14] and
with the SDCS measured by Wehlitz et al. [19]. At very
unequal energy sharing, the HRM-SOW calculations by
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Selles et al. [27] and the TDCC by Colgan et al. [26] show
some differences with respect to our results, in particular
when the electrons are emitted in opposite directions.

For the 40 eV case, and several geometrical situations,
we have compared our TDCS with ECS calculations by
McCurdy et al. [22], and with measurements and CCC
calculations published by Bolognesi et al. [16] and Cve-
janovic et al. [15]. While some discrepancies are noticed
with the experiment, on one side, and with the CCC re-
sults, on the other side, a beautiful agreement is observed
between GSF and ECS methods.

We have verified, in all kinematical and geometrical
cases, that adding partial waves beyond l1 = 3 does not
affect the TDCS results. Thus, the differences observed
between GSF cross sections and experimental data are
not due to a lack of convergence.

Finally, we may say that the present study showed that
the GSF approach can be successfully used as an efficient
numerical tool to construct correctly a three-body scat-
tering solution, and hence to solve three-body break-up
problems. Here, we illustrated this through the detailed
analysis of (γ, 2e) processes on helium.
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Fig. 14. TDCS for 40 eV photon energy above threshold with
E1 = 5 eV and θ1 = 160◦, 170◦ and 180◦. Circles: experiments
of Cvejanovic et al. [15]. Blue dashed-double dotted line: CCC
calculation [41]. Red dashed line: ECS calculation [22]. Black
solid line: present GSF results.
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