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Abstract. In this work we present a novel implementation of the Generalized Sturmian Functions in the
time-dependent frame to numerically solve the time-dependent Schrödinger equation. We study the effect
of the confinement of H atom in a fullerene cage for the 1s → 2p resonant transition of the atom interacting
with a finite laser pulse, calculating the population of bound states and spectral density.

1 Introduction

Photoionization of endohedral atoms, atoms enclosed in
fullerene cages, has been the subject of intense theoreti-
cal scrutiny lately (see, e.g., [1,2] and references therein).
Such systems are of interest due to the many possible
applications [3–11], including drug delivery [3], quantum
computation [5,6], high harmonic generation [9,10], photo-
voltaics [7], and hydrogen storage [4]. Furthermore, these
studies offer, from a purely theoretical standpoint, the op-
portunity to investigate the effects of an external environ-
ment, the fullerene, on the behavior of the enclosed atom,
especially for the case of photoionization, which is of in-
terest because small external potentials can have dramatic
effects upon the structural and dynamic properties of the
confined atom [1–3].

An ab-initio theoretical description of the endohedral
fullerenes and their interaction with radiation demands
accurate approaches that take into account electron cor-
relations and collective modes. However, some important
properties of the atoms inside a captor fullerene can be
revealed by using simple semi-empirical model potentials
simulating the fullerene cage. The model-potential method
was a first step to study and qualitatively predict the con-
fining effects of the cage on the spectral and dynamic
properties of the atom. The external environment im-
posed by the fullerene cage can, in many instances, be
described quite well by a simple, local, spherically sym-
metric, attractive cage potential that is generally taken
to be of constant depth in the region of the fullerene.
Photoionization of atoms which are influenced by this
model potentials has been treated using a number of
methodologies, such as Hartree-Fock (HF) [1,12], random-
phase approximation (RPA) [1,13,14], time-dependent
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close-coupling (TDCC) [15,16], R-matrix [17], and matrix
iterative method [18].

In this article, we propose to use the Generalized
Sturmian Functions [19] to numerically solve the time-
dependent Schrödinger equation of a caged atom inter-
acting with a laser pulse. The idea is to solve the time-
dependent portion of the Schrödinger equation when the
atom interacts with a pulse of finite duration, and then to
effectively propagate the solution to infinite time by using
the wave packet at the end of the pulse as the source term
in a time-independent driven Schrödinger equation with
the field-free Hamiltonian. This time-independent solution
will have outgoing wave boundary conditions and all infor-
mation about ionization can be extracted from it [20]. The
adaptability of the Generalized Sturmian Functions is key
in this methodology, since we can use exponential decay-
ing (real) Sturmians to solve the time-dependent portion
of the problem, and the outgoing wave (complex) Stur-
mians for the time-independent term. To propagate the
time-dependent wave packet during the interaction with
the pulse, we use and explicit integrating scheme known
as Arnoldi [21], which is a Krylov subspace method. An
extensive study of its stability and accuracy properties can
be found in [22]. However, this is a new implementation
of the propagation method with the Generalized Sturmian
basis.

In Section 2 we present an outline of the methodol-
ogy to extract the ionization amplitude and the spectral
density for a one-electron atomic system. In Section 3 the
numerical solution using Sturmians is outlined, for both
the interaction with the pulse and the field free term.
Several results analyzing the effect of the caging poten-
tial are presented in Section 4, including the study of
avoided crossings due to the change in the depth of the
spherical well model potential used to represent the effect
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of the fullerene. We also present in this section calculations
of photoionization near an avoided crossing, to study the
mirror collapse of the bound states. The main results for
the photoionization of the caged H atom are presented
in Section 5. We compare the bare and confined H atom
in the case of a (central) photon with energy 0.375 a.u.,
which corresponds to the 1s→ 2p resonant transition of H.
The parameters of the model potential represents the C36

and C60 shells, and we refer to these two cases as endo-
fullerenes H@C36 and H@C60. The results for the 1s and
2p bound states population during the interaction with
the pulse are presented, as well as the spectral density.

Atomic units are used throughout unless otherwise
indicated.

2 Time-dependent Schrödinger equation

We write the time-dependent Schrödinger equation
(TDSE) for a two particle system interacting with an ex-
ternal field in the form

ı
∂

∂t
Ψ(r, t) = H(r, t)Ψ(r, t) (1)

where the Hamiltonian can be written as

H(r, t) = H0 +Hint (2)

with H0 the unperturbed Hamiltonian, and Hint the in-
teraction with the field. The interaction with the field of
an electromagnetic pulse of finite duration is

Hint =

{
f(r, t) for t0 ≤ t ≤ tfinal

0 for t > tfinal

(3)

with r being the electronic coordinates.
The evolution of the wave packet at t > tfinal is equiv-

alent to solve the time-independent Schrödinger equation
given by

(E −H0)Ψsc(r) = Ψ(r, tfinal) (4)

where H0 is the atomic (time-independent) Hamiltonian,
Ψsc is a scattering term with outgoing boundary condi-
tions, and Ψ(r, tfinal) is the wave packet at the end of the
pulse [20].

We consider now the case of one-electron atoms to
show how the information for the ionization amplitude
can be obtained. The atomic Hamiltonian for an atom of
charge Z is

H0 = T − Z

r
(5)

where T is the operator of the kinetic energy. At suf-
ficiently long time after the end of the pulse, the wave
packet can be written in terms of eigenstates of H0 as

Ψ(r, t) =
∑

n

C(kn)ψn(r)e−ı(k2
n/2)(t−tfinal)

+
∫
dkC(k)ψ−

k (r)e−ı(k2/2)(t−tfinal), (6)

where ψ−
k is a momentum-normalized Coulomb wave

function with incoming boundary condition and ψn is a
bound state hydrogenic function. The coefficients C(kn)
and C(k) are the excitation and ionization amplitudes,
respectively.

The differential probability for an electron having the
energy E is determined in terms of the spectral density
D(E, t):

dP = D(E, t)dE, (7)

where
D(E, t) =

√
2E

∫
|C(k)|2dΩk (8)

with Ωk denoting the solid angle under which the electron
is emitted.

To see how to extract the coefficients C(k) from equa-
tion (4), we write this equation by means of the Green’s
function

Ψsc(r) =
1

(E −H0)
Ψ(r′, tfinal) = G+(r, r′)Ψ(r′, tfinal).

(9)
Using the properties of the Coulomb Green’s function, we
can see that the asymptotic form of the scattering func-
tion is

Ψsc(r)
r→∞−−−→ −

√
2πC(kr̂)

eı[kr+(Z/k) ln 2kr]

r
(10)

for an electron ejected with momentum k =
√

2E. This
means that if the scattering function has the correct (out-
going wave) asymptotic behavior, the ionization ampli-
tude can be extracted from the function at sufficiently
large values of the radius r.

3 Numerical solution for the TDSE

3.1 Interaction with the pulse

To solve the TDSE equation (1) for t < tfinal we expand
the wave packet in spherical coordinates, and use gener-
alized Sturmian Functions (GSF) [19,23]

Ψ(r, t) =
∑
nl

anl(t)
Snl(r)
r

Y 0
l (r̂) (11)

with anl(t) the expansion coefficients that depend on time
and Y m

l the spherical harmonics. The set of GSF used to
solve the TDSE are real and with exponential decaying
behavior at large distances.

The interaction with the pulse, within the dipole ap-
proximation, is written using the velocity gauge, and we
consider here linear polarization in the ẑ axis, thus

Hint(r, t) = −ıA(t) · ∇r = −ı|A(t)| ∂
∂z

(12)

For a photon energy ω and a pulse of duration τ we write

|A(t)| = A0g(ω, t) sin(ωt) for t ∈ [0, τ ]. (13)
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Substituting the expansion (11) into the Schrödinger equa-
tion (1) and projecting onto the basis set, we obtain a
matrix equation on the form

ıB
∂

∂t
a(t) = H(t)a(t) (14)

with B the overlap matrix, H the matrix representation of
the Hamiltonian and a(t) the time-dependent coefficients
vector. Since the GSF set used has exponential decay, the
one-dimensional radial integrals involving the calculation
of the overlap and Hamiltonian matrices can be performed
up to a finite radius. For this computation we use a Gauss-
Legendre quadrature.

While the overlap and atomic Hamiltonian matrices
are diagonal with respect to the electronic angular mo-
mentum l, the term Hint couples the angular momenta
for l′ = l ± 1. The total dimension of the matrices will
depend on the number of GSF used in the expansion in
equation (11). If we call Nmax the maximum number for
the radial index n and lmax the maximum angular mo-
menta included, then the matrices in equation (14) have
dimension Ntot ×Ntot with Ntot = Nmax × lmax.

To perform the time propagation up to t = τ we use
a Krylov subspace method usually called Arnoldi algo-
rithm [21]. The choice of the propagator is not trivial,
and it was based on a previous extensive work analyz-
ing the performance of several explicit and implicit algo-
rithms [22]. The implicit scheme was a predictor-corrector
with a fully impicit four-stage Radau IIA method of or-
der 7 as a corrector, and an adapted time step. Although
highly accurate, the computer time to perform the prop-
agation of the TDSE with this algorithm is longer com-
pared with the explicit schemes. We concluded that since
we were seeking for a precision in the energy spectrum
of ≈10−8, Arnoldi propagator was the better choice for
our problem.

A detailed study of this method can be found in [22],
here we briefly recall the main features of this propagat-
ing scheme. In this case, we use Cholesky decomposition
of the overlap matrix to form an orthonormal basis, so
equation (14) now reads

∂

∂t
b(t) = −ıĤ(t)b(t), (15)

where B = U†U, the new coefficients b = Ua and Ĥ =
(U†)−1HU−1.

If we assume that the time interval is sufficiently small
that the Hamiltonian may be treated as constant in time
over a time step δt, it is trivial to demonstrate that equa-
tion (15) has a solution given by

b(t+ δt) = e−ıĤ(t)δtb(t). (16)

Instead of performing the full diagonalization of the ma-
trix Ĥ(t) to solve the exponential, we can define a subset
of linearly independent vectors

Km+1 = span{b, Ĥb, . . . , Ĥmb}. (17)

which form the Krylov subspace. Then we use Gram-
Schmidt orthogonalization successively to form an or-
thonormal basis Qm+1 = {q0, . . . ,qm} with q0 = b/|b|,
and the qk are obtained by calculating Ĥqk−1 and then
orthonormalizing each vector with respect to q0, . . . ,qk−1.
If we define Q to be a matrix formed by the m+1 column
vectors qk, we can write

ĤQ = Qh, (18)

giving
h = Q†ĤQ. (19)

We see here that h is the Krylov subspace representation
of the full Hamiltonian Ĥ, and that in this procedure, we
obtain simultaneously the Krylov vectors q0, . . . ,qm. For
non-Hermitian matrices, the method reduces the dense
matrix h to an upper Hessenberg form, and in the particu-
lar case of Hermitian matrices, to a symmetric tridiagonal
form. Once we obtain the orthonormal Krylov subspace
Q and the representation h of the Hamiltonian, it can be
easily shown that equation (16) can be written as

χ(t+ δt) = Qe−ıhδtQ†χ(t). (20)

Typical sizes of the matrix h for one-dimensional problem
go from 10 to less than 100, so the computational work
involving the diagonalization of the matrix is much less
than in the case of the full Hamiltonian. The rest of the
scheme involves only matrix-vector and scalar products,
which makes it very efficient regarding the time of the
calculations.

All the matrix operations involved in the algorithm
(such as Cholesky decomposition, matrix-vector products
and linear system equation solvers) were calculated using
LAPACK [24] subroutines.

3.2 Scattering term

Once the propagation of the wave-packet until the end of
the pulse is performed, we have to solve equation (4) to
find the scattering term. We use a similar expansion to
that of the wave packet

Ψsc(r) =
∑
nl

c+nl

S+
nl(r)
r

Y 0
l (r̂) (21)

where the + stress the fact that the GSF now have out-
going wave behavior, and are complex. Replacing this ex-
pansion in equation (4) and projecting onto the basis set
we have

(EB− H0)c+ = ã(tfinal) (22)

with B and H0 the overlap and atomic Hamiltonian ma-
trices for the outgoing GSF, c+ the coefficient vector and

ãn′l′(tfinal) =
∑
nl

anl(tfinal)
〈
S+

n′l′
∣∣ Snl〉 δl′l. (23)

The one-dimensional radial integrals involving the cal-
culation of H0 and ã(tfinal) have all finite range,
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and can be calculated easily by means of the Gauss-
Legendre quadature. For the overlap integral, however, the
GSF are defined in all radial space, and a finite quadrature
is not suitable. If we do not take into account the exter-
nal part of the overlap integrals the evaluation can be in-
terpreted as a box-based-type calculation. The complete
calculation is performed by using the asymptotic forms
of the GSF, and the inner (finite) term is solved using
a Gauss-Legendre quadrature. Details on this numerical
aspects can be found in [25].

From equation (11) then we can extract the informa-
tion on the ionization amplitude, using the asymptotic
form of the GSF

S+
nl(r)

r→∞−−−→ eı[kr+(Z/k) ln 2kr] (24)

and combining this with the expansion in equation (21)
we have

C(kr̂) = − 1√
2π

∑
nl

c+nlY
0
l (r̂), (25)

the dependence in k is in the coefficients c+nl.

4 Effects of the fullerene shell on the bound
states of H

4.1 Avoided crossing and mirror collapse

In this section we briefly analyze the effect of the confine-
ment of the H atom in a fullerene modeled by a spherical
well

Vw(r) =

{−U0 if rc ≤ r ≤ rc +Δ

0 otherwise
(26)

where rc is the inner radius of the well andΔ its thickness.
This potential was already implemented with the GSF in
a previous work to study the ‘mirror collapse’ effects in an
S-wave model of Helium [26].

The bound states of the caged atom are obtained
by solving the time-independent Schrödinger equation
(TISE)

[H0 + Vw]Ψν(r) = EνΨν(r) (27)

with H0 as in equation (5) and expanding the wave func-
tion with real, exponential decaying GSF

Ψν(r) =
∑
nlm

anl
Snl(r)
r

Y m
l (r̂). (28)

The generalized eigenvalue problem to solve is

[H0 + Vw] aν,l = Eν,lBaν,l (29)

for each angular momemtum l and m = 0. All matrices
are real and symmetric, and the overlap term is also posi-
tive definite. The size of the matrices depend on the num-
ber Nmax of GSF in the expansion (28), so the dimension
of the matrices will be Nmax × Nmax. In all the calcula-
tions shown in this section, we used a value of Nmax = 120
for each value of l.
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Fig. 1. Energies of the H atom confined in a spherical well
with rc = 5.75 a.u. and Δ = 1.89 a.u. as a function of U0.
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Fig. 2. Radial probability density for the 1s (down) and 2s
(up) states near a crossing.

For this study, we fix the values of rc and Δ and cal-
culate the eigenvalues for U0 in a range from 0 to 3 a.u.
We use the data provided by Xu et al. [27] for a fullerene
molecule C60, which is rc = 5.75 a.u. and Δ = 1.89 a.u.
In Figure 1 we show the results for the first bound states,
from 1s to 4d energy levels. We can see here how, for low
values of U0, the 1s energy remains constant, so it does
not feel the presence of the well. This is because the 1s
state is mostly confined near the origin, and far from the
inner wall of the potential. This is not the same for the 2s
state, which has a higher probability to be inside the well,
so the energy lowers as U0 increases. When the depth of
the well is approximately 0.7 the 1s and 2s energies are
very similar, there is strong interaction between the two
states and the wave functions are mixed, leading to the
avoided crossing seen in Figure 1.

In Figure 2 we can see the radial probability density∫
r2|Ψν(r)|2dΩr for the 1s and 2s states in the vicinity of

the avoided crossing. It is seen how for low values of U0

the 1s level is bound in the inner well, while the 2s is
confined mostly inside the well. For the case of U0 = 0.7,
the 2s state bound in this well has energy comparable
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Fig. 3. Ejected electron spectrum from the 1s and 2s states
of H confined in two different potential wells. The pulse has
peak intensity 1015 W/cm2, photon energy ω = 0.7 a.u. and
10 optical cycles, which gives τ ≈ 90 a.u. of pulse duration.
The inset shows photoionization of the bare H atom from 1s
and 2s states.

with the 1s state, the probability density of both levels
being very similar, with the electron bound either to the
inner well or inside the well. As the value of U0 increases,
since the lowest energy level corresponds to the 1s, the
level now bound in the outer well is the 1s, whereas the
level in the inner well is the 2s. This phenomenon, in which
the 2s ‘collapses’ into the inner well, while the 1s, formerly
in the inner well, simultaneously ‘collapses’ into the outer
well, is referred to as ‘mirror collapse’. This behavior is
repeated for the 2s and 3s energy levels close to U0 = 2.5,
and for further s levels for higher values of U0. The re-
sults obtained with the GSF are in accordance with those
calculated by Connerade et al. [28].

4.2 Photoionization near an avoided crossing

We complete the study of the ‘mirror collapse’ of the
1s and 2s bound states around U0 ≈ 0.7 by calculat-
ing the photoionization of this confined atoms, using the
methodology described in Section 3. The interaction with
the pulse is as described in equation (13) with a sine
square envelope g(ω, t) = sin

(
π
τ t

)2 with a total duration
of τ = 2πnc/ω, where nc is an integer giving the number
of optical cycles.

We consider photoionization from initial state 1s
and 2s for the H atom confined in the potential well with
depth U0 = 0.6 and U0 = 0.8, with rc and Δ fixed as in
the avoided crossing calculations.

All the calculations shown in this section were per-
formed using Nmax = 120 and lmax = 5, and the size of
the Krylov space was nKrylov = 15, with a fixed time step
of δt = 0.03.

Figure 3 shows how the spectrum reflects the ‘collapse’
of the 1s into the 2s bound state, since the photoioniza-
tion spectrum from the 1s state for U0 = 0.6 is similar
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U
0
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U
0
=0.8

0 0.2 0.4 0.6 0.8 1
0
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3

4
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Fig. 4. Ejected electron spectrum from the 2s for U0 = 0.6
and 1s for U0 = 0.8 states of H confined (same as Fig. 3) com-
pared with the photoionization of the bare well (no Coulomb
interaction) from 1s states (shown in the inset). The data for
the pulse is the same as in Figure 3.

to the one for the 2s with U0 = 0.8. Both these cases
are similar to the photoionization of the bare H atom, in
which the main process consist of the emission of p elec-
trons after absorbing a photon of ω = 0.7 from the 1s or
2s state. However, when the initial state are either the 2s
for U0 = 0.6 or the 1s for U0 = 0.8, the electron is confined
mostly inside the well (see Fig. 2), and the spectrum re-
sembles that of the bare spherical well (without Coulomb
interaction), as seen in Figure 4.

5 Study of the 1s-2p resonance

The model potential in equation (26) has been already
used in studies of confinement resonances in the photoion-
ization cross section [18,29]. In this section we study the
effects of the confinement of the H atom in a C36 or C60

cage, compared with the bare atom, for the photoioniza-
tion with an intense pulse of ω = 0.375 a.u. Since this pho-
ton energy corresponds to the 1s–2p transition frequency
in H, we expect Rabi oscillations to manifest in the evo-
lution of the population of the bound states. We want to
explore if this oscillations in the population remain once
the atom is confined in the C cage.

The interaction with the pulse is the same as previous
calculations, a sine square envelope g(ω, t) = sin

(
π
τ t

)2

with a total duration of τ = 2πnc/ω. In all the calcula-
tions presented now the peak intensity 5 × 1014 W/cm2

and 16 optical cycles, which gives τ ≈ 268 a.u. of pulse
duration. The number of cycles was chosen so the pulse
is long enough to see a few Rabi oscillations, but not ex-
tremely demanding on the computational level. For the
C60 cage, we use the parameters of the model poten-
tial found in [27,30]: U0 = 8.22 eV, rc = 5.75 a.u. and
Δ = 1.89 a.u., and for the C36 [18]: U0 = 8.68 eV,
rc = 3.75 a.u. and Δ = 1.89 a.u.

All the calculations shown in this section were per-
formed using Nmax = 300 and lmax = 15, and the size
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Table 1. Lowest energies of the bound states of the bare H
and caged H atom in atomic units.

State H H@C36 H@C60

1s −0.50000 −0.51098 −0.50038
2s −0.12500 −0.27605 −0.27605
2p −0.12500 −0.27309 −0.23103
3p −0.0555 −0.06060 −0.06176
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Fig. 5. Radial part of the ground state wave function for the
caged and bare H atom.
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Fig. 6. Ejected electron spectrum of the bare and caged H
atom for a pulse with sine square envelope, 5 × 1014 W/cm2

peak intensity, 16 optical cycles and ω = 0.375 a.u. of photon
energy.

of the Krylov space was nKrylov = 60, with a fixed time
step of δt = 0.03.

In Table 1 we show the energies of the lowest bound
states for the three endofullerenes to study and the bare
H atom. We can see in Figure 5 that while the 1s ground
state function is hardly modified by the presence of the C60

cage, the C36 cage is located closer to the main maximum,
and the electron has a higher probability of being trapped
inside the cage.

The results for the ejected electron energy spectrum
are shown in Figure 6. We can see here the splitting of
the ATI peaks corresponding to the Autler-Townes dou-
blet [31], which originates from ionization of the 2p state
resonantly coupled to the 1s state. This coupling (Rabi
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Fig. 7. Population of the 1s, 2p and 3p energy states of H
during the interaction with the pulse with 5 × 1014 W/cm2

peak intensity, 16 optical cycles and ω = 0.375 a.u. of photon
energy.
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Fig. 8. Population of the 1s, 2p and 3p energy states of H@C36

(a) and H@C60 (b) during the interaction with the pulse with
5 × 1014 W/cm2 peak intensity, 16 optical cycles and ω =
0.375 a.u. of photon energy.

oscillations) can be seen in Figure 7, where it is shown
that the 3p state is also populated during the pulse. In the
case of the caged H atom, we show in Figure 8 how the
coupling between the 1s and 2p state disappear. The pho-
ton energy is enough to excite the electron in the ground
state to the 2p state, and the 3p state is also populated
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(full line) and H (broken line) interacting with the pulse at sev-
eral stages of time. The dotted vertical line shows the location
of the C60 cage.
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Fig. 10. Ejected electron spectrum of the bare and caged H
atom for a pulse with sine square envelope, 5 × 1014 W/cm2

peak intensity, 16 optical cycles and ω = 0.27 a.u. of photon
energy.

in both confined atoms. Figure 9 shows the time evolution
of radial probability of the wave packet for the H@C60 and
H atom. Here we can see that for the endohedral atom the
electron can ‘move’ from the 1s to a p state inside the cage,
and in this case it remains in the outer wall of the well,
before being ejected to the continuum. Compared to the
evolution of the H atom at the same times, we see that the
electron performs a Rabi oscillation between the 1s and
2p states. For the H@C36 a similar process is observed,
but since the 1s ground state (see Fig. 5) can be inside
the cage, the radial probability is more evenly distributed
inside the well.

We also performed calculations for a photon energy of
ω = 0.27 a.u., which we can see form Table 1 is approx-
imately the energy required for the 1s–2p transition for
the H@C60 fullerene. In Figure 10 we show the ejected
electron energy spectrum. We see here that for the bare H
atom, the spectrum shown the ATI peaks with no split-
ting, since the photon energy is not enough to couple the
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Fig. 11. Population of the 1s, 2p and 3p energy states of
H@C36 (a) and H@C60 (b) during the interaction with the
pulse with 5 × 1014 W/cm2 peak intensity, 16 optical cycles
and ω = 0.375 a.u. of photon energy.

1s and 2p states. However, for the caged atoms, the first
peak shows no splitting, whereas the other ones do.

Figure 11 shows the population of states during the
interaction with the pulse for the caged atoms. In these
cases, the coupling between the 1s and 2p states does
not disappears completely, and one oscillation is almost
performed.

6 Conclusions

In this contribution, we develop an ab-initio methodol-
ogy to solve the time-dependent Schrödinger equation of
an atom interacting with an electromagnetic pulse of fi-
nite duration. The approach is based on the Generalized
Sturmian Functions, and their adaptability to define dif-
ferent asymptotic behaviors. We show that with this basis
set, we can solve the time-dependent Schrödinger equa-
tion, and then transform the problem in a linear equation
with a scattering term to extract the information about
the ionization process. This method presents the advan-
tage of not performing integrals to obtain the ionization
amplitude and the energy spectrum, since we can define
the GSF to have outgoing asymptotic behavior.

http://www.epj.org
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We present an application by studying the influence
of the confinement of the H atom in a fullerene cage C36

and C60. We perform a brief study of the avoided cross-
ing with a simple spherical well potential to represent
the fullerene. We observe the degeneracies in energy
around the points denoted as crossings, which become
more evident when studying the photoionization near said
points. In the particular case shown, the collapse of the 1s
and 2s bound states is reflected in the energy spectrum,
since it becomes more like the spectrum of the bare H
atom or the bare well before or after the crossing.

Finally, we calculated the ionization of the bare H and
caged atom interacting with a strong, short pulse in the
resonant 1s → 2p frequency for H and H@C60. For the
ω = 0.375 a.u. case, we observed the coupling of the 1s
and 2p in the population of the bound states during the
interaction with the pulse for the bare H atom, while in the
presence of the cages the coupling disappears. This is also
reflected in the energy spectrum, where for the H atom
there is a splitting of the peaks which is not present in the
caged atoms. For ω = 0.27 a.u., the resonant frequency for
H@C60, the population of the caged atoms shows that the
coupling does not disappear completely, and while the first
peak in the energy spectrum is not split, the subsequent
peaks present a splitting.

The methodology presented proved to be a useful ap-
proach to solve the TDSE avoiding the use of integrals to
obtain ionization amplitudes. Although for the case of the
H and caged atoms the asymptotic solution is known, this
technique can be extended to two-electron atom targets,
or different one particle problems where the asymptotic
condition is not analytical.
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PGI (24/F059) of the Universidad Nacional del Sur.
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