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A collective model for inner shell ionization of very heavy targets
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We present a theoretical study of the ionization of inner shells, such as L and M shells of Au, Pb and Bi
or K-shell of Sb. The ionization is described using a collective response model, the shellwise local plasma
approximation (SLPA). This model deals with each sub-shell of target electrons as an inhomogeneous
electron gas with an ionization threshold. No parameters are included, just the theoretical wave functions
of the ground state and the binding energies. The validity range is that of the perturbative approximation,
high energies and asymmetric projectile target relation. In the case of Sb, known Hartree–Fock wave
functions and energies are used. Instead, for Au, Pb and Bi, they were obtained in fully relativistic way
by solving numerically the Dirac equation. The SLPA describes well the experimental data for K-shell
ionization of Sb by O and F positive ions. However, it underestimates the data for C or lighter ions. Good
results are obtained for M-shell ionization of Au and Bi above 2 MeV/amu, and for L-shell ionization of
Au and Pb above 10 MeV/amu. For L- and M-shells, the SLPA tends to underestimate the data for energies
below the range of validity of the model but approaches the experimental data for higher energies.
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1. Introduction

Ionization of different shells has attracted great attention over recent decades, especially regard-
ing the characteristic radiation from inner shells and the characterization of materials. For K-
and L-shell ionization, important compilations of data are available (1, 2) and are in continuous
revision (3–5), together with fittings and suggested reference cross-sections (6, 7). Reliable ion-
ization cross-sections are sensitive and critical inputs for particle-induced X-ray emission (PIXE)
analysis (8). One of the most employed theories is the ECPSSR of Brandt and Lapicki (9) and its
evolutions (10) of probed efficacy, which covers an extended energy range and is the usual input
in PIXE codes.

On the other hand, the choice of atomic parameters (multiple ionization probabilities, fluores-
cence yields) for the conversion of the experimental X-ray production cross-sections to sub-shell
ionization cross-sections is still a subject of discussion (4, 5, 11). This is not a minor problem, and
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shows that the question about reliable values of ionization cross-sections of different sub-shells
is still an open subject.

From a theoretical point of view, the inner-shell ionization is an important challenge with which
to test the capability of a theory to describe wave functions and interaction potentials. Different
approaches have been employed over the years, most of them within the independent electron
model (from the distorted wave methods up to the numerical solution of the Schrödinger equation).
However, ionization of deep shells represents a task for first principle models, especially for very
heavy targets which include N- or O-shells.

The goal of this work is to present calculations for these deep shells using a collective descrip-
tion known as shellwise local plasma approximation (SLPA) (12). It works within the dielectric
formalism (not the independent electron model or hydrogenic potentials). Instead, each sub-shell
is described as a whole, including screening and correlation among electrons. The SLPA starting
points are the atomic density of electrons of a certain sub-shell and the corresponding binding
energy. We have a particular interest in testing the SLPA description for the ionization of Au,
Pb and Bi in relation to recent stopping power calculations (13), where we found a systematic
overestimation in the high-energy region (2–10 MeV/amu) (14).

The present contribution involves the calculation of ionization cross-sections in the energy
region of a few MeV/amu up to some tens of MeV/amu, depending on the shell. We first test
the model for Sb, which implies the calculation with tabulated Hartree–Fock wave functions and
binding energies. Then we apply the same formalism for Au, Pb and Bi, using fully relativistic
wave functions and binding energies calculated in a recent paper (13). Results for K-, L- or M-
shell ionization for these targets and different ions are presented and compared with experimental
ionization cross-sections and the ECPSSR results, when available.

2. Theoretical calculations

2.1. The relativistic binding energies and densities

The fully relativistic wave functions were generated by using the GRASP code (15, 16). The
theoretical framework of this code is the first-order perturbation theory with a central field. The
zero-order wave functions are solutions of the Dirac equation. The Hamiltonian is diagonalized on
the basis of these wave functions (configuration interaction). The first-order perturbation theory
contribution from the Breit interaction energies is also included in the calculations, as well as QED
corrections. The binding energies are calculated using the fully relativistic multi-configurational
RELAC code (17), based on the parametric potential model (18). A more detailed explanation of
these calculations can be found in (13).

We display the theoretical results for the K, L and M binding energies in Table 1, together with
experimental binding energies in solids. The agreement between the theoretical results and the
experimental data is good, with a difference of around 1% for the L-shell and 2% for the M-shell.
In all the cases, the theoretical results are above the experimental values.

2.2. The SLPA

The SLPA is a general method with which to calculate the contribution of the ionization of target-
bound electrons to the different moments of the energy loss (cross-sections (20–22), stopping
power (23, 24), straggling (25)). It considers explicitly the ionization gap and only describes
together the electrons with the same binding energy. It is based on the local plasma approxima-
tion by Lindhard and Scharff (26) and has been extensively used since then in stopping power
calculations (27). However, the present formulation has important differences, as explained below.
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Table 1. Binding energies for K-, L- and M-shells of neutral Au, Pb and Bi.

Au Pb Bi

nlj Eexp Eth Eexp Eth Eexp Eth

K
1s 2966 2988 3234 3258 3327 3352

L
2s 527.5 532.4 582.9 588.2 602.3 607.8
2p1/2 504.7 509.3 558.6 563.5 577.4 582.5
2p3/2 438.0 441.7 479.0 482.9 493.2 497.1

M
3s 125.9 128.1 141.5 143.8 147.0 149.4
3p1/2 115.7 117.8 130.6 132.8 135.8 138.1
3p3/2 100.8 102.7 112.7 114.6 116.8 118.7
3d3/2 84.20 85.95 95.03 96.81 98.79 100.6
3d5/2 81.07 82.74 91.29 92.97 94.82 96.55

Notes: Eexp are the experimental values as compiled by Williams (19). Eth are the fully relativistic binding energies,
calculated by using the GRASP code (18). Atomic units are used.

The ionization cross-section of the nl-subshell electrons due to the interaction with an ion
of impact velocity v, nuclear charge ZP, N bound electrons and charge state q = ZP − N is
expressed as:

Snl
q = 2

πv2

∫ ∞

0

dk

k
[Zq(k)]2

∫ kv

0
dω

∫
d�r Im

[ −1

εnl(k, ω, δnl(r), Enl)

]
, (1)

with Zq(k) being the effective ion charge considering bound electrons as frozen (just screening
the nucleus). Using Flannery integrals (28), it has a simple closed form if a Slater-type expansion
is used to represent the wave functions (see Appendix).

As expected, Zq(k) tends to the nuclear charge ZP for close collisions (large k) and to q =
ZP − N for long distance collisions (k → 0).

The ionization gap or binding energy of each sub-shell, Enl , is introduced explicitly in
Equation (1) by using the Levine–Louie dielectric response (29). This dielectric function keeps
the f -sum rules and properties of the Lindhard one (30) (electron–electron correlation, screening
among electrons of the same shell and collective response, if any). It is a linear response (first
order in the projectile charge), so this SLPA works within the perturbative limit.

We employ Equation (1) to calculate ionization cross-sections of Sb with local densities of
electrons, δnl(r), and binding energies, Enl , from known Hartree–Fock calculations (31). Instead,
for Au, Pb and Bi, we use the relativistic solutions of the Dirac equation mentioned in the previous
section, with the theoretical binding energies, Eth, displayed in Table 1.

3. Results

The SLPA has the advantage of describing deep shells with the same difficulty as the outer shell.
We first test the model for K-shell ionization of Sb (Z = 51) by C+q, O+q and F+q ions with
different charge states. In Figure 1, we show the results in the energy range of a few MeV/amu. In
fact, the SLPA is expected to describe the data for much higher energies (E >20 MeV/amu), but
the comparison of the present results with the ECPSSR and with the experimental data is quite
good, especially for O and F ions. However, it underestimates the data for C ions by a factor of 2.
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Figure 1. K-shell ionization of Sb by C+4, O+q and F+q ions. Solid lines, present SLPA calculations; dotted lines,
ECPSSR results. Experimental data by Tribedi and collaborators for C and O ions (32) and F ions (33).

Though theoretical calculations were performed for different ion charge states using the
screened ion charge Zq(k) given by Equation (A3), we obtain similar results for F+9 or F0. In
fact, both experimental and theoretical values show no dependence on the number of bound
electrons in the ion. This result is not surprising; the K-shell of Sb has a mean radius of
〈rK〉 ≈ 0.03 a.u. (31), while the radius of the K-shell of F0 is 0.18 a.u., six times larger. Regardless
of the number of electrons carrying the fluorine projectile, the ionization of the K-shell of Sb is
governed by the interaction with the ion nucleus. In the perturbative region, this means a Z2

P
dependence.

In Figure 2, we plot the scaling of the ionization cross-sections with Z2
P, including data for

H+ and He+2. We can observe that the data for the O+q and F+q ions follow a certain tendency,
while the results for H+, He+2 and C+4 ions seem to follow a different one. The SLPA is a single
curve (the same for protons or F+q), which surprisingly describes the heaviest ions better than
the lightest ions. These unexpected results open two fronts. From a theoretical point of view, the
SLPA for K-shell ionization by different ions needs further research. In experimental terms, we
should return to the discussion about the parameters for the conversion from measured X-ray
cross-sections to ionization cross-sections.

In Figures 3 and 4, we present the main results of this work. The SLPA is expected to describe L-
shell ionization ofAu, Bi or Pb for E >20 MeV/amu and M-shell ionization for E >4 MeV/amu.
For these very heavy targets, the description of K-shell ionization with the SLPA needs relativistic
impact velocities (v >54).

The comparison of the ionization cross-sections with the experimental data is good for
E >15 MeV/amu for L-shell ionization of Au and Pb. This is an interesting result for a very
deep shell calculated fully theoretically. In the case of M-shell ionization of Au and Bi, the SLPA
results are good for E >2 MeV/amu, better for Bi than for Au, when compared with recent
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Figure 2. Scaled K-shell ionization cross-section of Sb by different ions. Experimental data for C, O and F ions as in
Figure 1. Proton ions, solid stars (34), hollow stars (6); He2+ ions, asterisks, data by Paul and Bolik (7).

measurements by Czarnota et al. (36). Again the mean radius for target electrons is small when
compared with the radius of K-electrons in the projectile, and the theoretical results, calculated
considering the bound electrons in the projectile are the same of those for the bare ions. In all
cases, the SLPA tends to underestimate the experimental values and is below the ECPSSR curve,

Figure 3. L-shell ionization of Au and Pb by He+2. Solid lines present SLPA calculations. Experimental data by Hardt
and Watson (35).
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Figure 4. M-shell ionization of Au and Bi by O+q ions, with q = 3–6. Solid lines present SLPA calculations. Dotted
lines, ECPSSR results. Experimental data by Czarnota et al. (36).

which describes the M-shell ionization as very good. Note that for both L- and M-shell ionization,
these energies are below the energy range, so the SLPA is expected to work.

4. Concluding remarks

We present theoretical calculations for K-, L- and/or M-shell ionization cross-sections of certain
heavy targets (Z = 51, 79, 82 and 83) using the SLPA. The results are very good for K-shell
ionization of Sb by F and O in the MeV/amu energy range, but not for H, He or C ions. For L- and
M-shell ionization of Au, Pb and Bi, the impact energies should be higher than 15 MeV/amu (L-
shell) and 2 MeV/amu (M-shell). The SLPA shows a tendency to underestimate the cross-sections
for impact velocities below that of the target electrons.

The collective description performed using the SLPA is a useful alternative model, especially
for these very heavy ions. It is simple to calculate and only requires the density and binding
energies of target electrons. Extension to more complex systems is straightforward. On the other
hand, the comparison with the known ECPSSR formalism is good, taking into account the ab initio
calculation in the SLPA. Some theoretical and experimental doubts are presented about K-shell
ionization cross-sections, however, which show that this subject, despite having been studied over
many years and with lots of compilations and useful codes, is still open to analysis.
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Appendix. Analytical expression for the effective charge of neutral or positive ions using
Hartree–Fock wave functions

The Fourier transform of the screened Coulomb potential can be expressed as (37, 38):

V (k) = − 4π

k2
Zq(k), (A1)

with

Zq(k) = Zp −
N∑

j=1

< ϕj |eik.r |ϕj >, (A2)
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where ϕj ≡ ϕnj lj mj
are the electronic wave functions of each electron j in the projectile ground state. Following (37),

Equation (A2) can be rearranged as:

Zq(k) = Zp −
∑
nl

NnlZnl(k), (A3)

where Nnl is the number of electrons in the nl-subshell and Znl(k) is:

Znl(k) = 1

2l + 1

∑
m

< ϕnlm|ei�k·�r |ϕnlm > . (A4)

By using the Hartree–Fock wave functions for neutrals or for positive ions tabulated by Clementi and Roetti (31), we can
express the electronic wave functions as:

ϕnlm(�r) =
∑
p

Cnlpχplm(r, θ, φ), (A5)

with Cnlp being the tabulated coefficients and χplm(θ, φ) being the Slater-type orbital with integer quantum numbers (31)

χplm(r, θ, φ) = [(2αlp)!]−1/2(2ζlp)αlp+1/2rαlp−1e−ζlprYlm(θ, φ). (A6)

The values of the coefficients ζlp and αlp and the total number of p-terms in the addition of Equation (A5) are given
by the tabulated Roothan–Hartree–Fock expansion by Clementi and Roetti (31). Introducing Equations (A5) and (A6) in
Equation (A4), we obtain the following expression:

Znl(k) = 1

4π

∑
p

∑
s

CnlpCnls

(2ζlp)αlp+1/2

[(2αlp)!]1/2

(2ζls )
αls+1/2

[(2αls )!]1/2
Isp(k), (A7)

where

Isp(k) =
∫

rαlp+αls−2e−(ζlp+ζls )r+i�k·�rd�r (A8)

is the Flannery–Levy (28) integral, which has a simple analytic solution.


