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Abstract

We investigate the feasibility of using pseudopotentials to generate the bound and con-
tinuum orbitals needed in collisional calculations. By examination of several inelastic
processes in the first Born approximation, we demonstrate the inconveniences of this
approach. Instead, we advocate use of effective potentials obtained with the depurated
inversion method (DIM). In this contribution, we extend this method to molecular
systems. Calculations of single first-order photoionization and proton-impact ionization
using the DIM show fair agreement with experimental results for both atoms and
molecules.
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1. Outline

Inelastic transition calculations require the representation of the bound

and continuum states involved in the collisional processes. The hypothetical

existence of an effective one-electron local potential accounting for these

states would allow more direct generation of the orthogonal wavefunctions

for the interacting particles. This approach should include individual nl-orbital

potentials, a feature missing from most of the standard density functional

methods. The idea of replacing a many-body, nonlocal interaction by an

effective one-electron equation opens up the possibility of studying extremely

complex systems with high accuracy.

In this context, one promising idea emerges from the pseudopotential

approximation (PPA), in which all the complexity of the wavefunctions near

the core—that usually consumes a huge numerical effort—is avoided. For

instance, density functional theory codes using pseudopotentials, such as

the PARSEC, for example,1,2 permit the use of an equally spaced grid involving

a relatively small number of points. Otherwise, the use of realistic potentials

describing the nucleus Coulomb potential requires a high density of points

concentrated at the origin to describe what the pseudopotentials cast aside.

Thus, if PPA was applicable in the field of collision theory, one would save

an enormous amount of computational resources.

Another interesting approach is the depurated inversion method

(DIM),3–5 which allows accurate, effective potentials to be obtained by

substituting the coupled multielectron equations into a Kohn–Sham-type

equation. In the first step, the potential is obtained through inversion of

the one-electron equation. Next, a careful optimization of the potential is

carried out, eliminating poles, and imposing the appropriate boundary

conditions analytically. In that way, the DIM potentials are parametrized

in simple analytical expressions.

In the present work, we explore the possibility of implementing an effec-

tive potential approximation in the atomic collision theory to describe inelas-

tic processes. In particular, we examine several collisional processes involving

a single electron transition: photoionization, excitation, ionization, and elec-

tron capture. A wide variety of ab initio methods have been implemented

to compute scattering cross sections for atomic targets, from the early

implementations of the first Born approximation (FBA),6,7 to more sophisti-

cated fully quantum mechanical methods, e.g., Refs. 8–11. Whether for

atoms or molecules, we shall present cross sections and compare with some
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experimental data. We do not wish, here, to present a detailed comparison

with existing calculations. The main purpose is to illustrate the effective

use of the DIM in collision applications. To this end, several simplifications

are made (1) The calculations are constrained to Hamiltonians describing

only the moving projectile, the target, and the active electron; (2) The

transition-matrix elements are only considered in first perturbative order.

If the first-order fails, it would not make any sense to extend the calculation

to higher terms of the series. For simplicity, we will restrict our calculations

only to the FBA framework, which is known to give reasonable agreement

with the experimental cross section in the intermediate—high projectile

energy range. Moreover, within this energy range and approximation

order, the Hartree–Fock orbitals are known to provide the correct high

energy limit.

We examine the above mentioned inelastic processes for two atoms

with a single outer electron: hydrogen and lithium. In this context, we

inspect the influence of the target description in the cross sections when

the PPA and DIM approaches are implemented. Furthermore, these effects

have been previously studied in other perturbative approaches, i.e., the

continuum distorted wave eikonal-initial-state (CDW-EIS), for various

targets (for example, see Refs. 12, 13). The DIM approach is further tested

in the case of many-electron atoms by comparing photoionization cross

sections with experimental measurements.

On the other hand, the description of molecular systems constitutes a real

challenge due to their nonspherical symmetry and multicenter character.

Many ab initio and semiempirical theoretical approximations14–16 have been

developed to this end over the last century. In this work, we present an

extension of the DIM method for simple molecular systems, providing a

new parametric expression for the potentials. The target description is once

again tested by examination of its performance in first-order collisional

processes, and the methane molecule being taken as an example.

2. Theory

2.1 Pseudopotential approximation
The pseudopotential approximation consists in replacing the Coulomb

potential in the many-electron system Hamiltonian with a smooth function

so that the electron wavefunctions oscillating rapidly in the core region are

replaced by nodeless pseudo-orbitals having the right energy and the same
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outer range properties. In general, the pseudopotentials VPP can be defined

through a pseudocharge ZPP as

VPPðrÞ¼�ZPPðrÞ
r

, (1)

ZPPðrÞ¼
f ðrÞ, r� rc

1, r> rc
,

�
(2)

where rc is a cutoff radius that separates the core, r � rc, from the valence

region, r > rc, of the target and f(r) is a continuous function with a constant

value at the origin. Fig. 1 illustrates a pseudopotential (solid line) and its

corresponding pseudo-wavefunction for the 3s orbital of argon. Notice that

the pseudopotential behaves as�r�1 (dot-dash line) in the valence region, as

defined in Eqs. (1) and (2). The pseudo-wavefunction agrees with the one-

electron Hartree–Fock (HF) orbital (dashed line) in the outer region, losing

all information about the atomic structure close to the origin.

In Section 3, we analyse the feasibility of implementing pseudopotentials

in collisional processes calculations for two simple atomic targets: hydrogen

and lithium. For each atom, the following pseudopotentials are examined

Name Source Type Refs.
A abinit GGA 17, 18
P parsec Troullier Martins 1, 2

ð3Þ

The hydrogen atom has only one electron, and the corresponding

pseudopotential is not essential. However, the hydrogen pseudopotentials from

(3) reproduce with high accuracy the main features of the wavefunctions, even

for excited states.

0.01 0.1 1 10
r (a.u.)

–1.5

–1

–0.5

0

V 3s

rcAr

–1/r
0.01 0.1 1 10

r (a.u.)

–0.5

0

0.5

1

u 3s

HF
PARSEC

A B

Fig. 1 (A) Pseudopotential, (B) pseudo-wavefunction and HF orbital for the 3s orbital of argon.
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Wewill now proceed to examine the pseudocharges and its one-electron

solutions for the lithium atom closely. First, we study the spatial and

momentum representation of the pseudocharges. The momentum-space

equivalent of Z(r) is given by the Fourier transform

~ZðkÞ¼ 1ffiffiffiffiffi
2π

p
Z +∞

�∞
ZðrÞ e�ikr dr: (4)

The pseudocharges from (3) for the 2s orbital of lithium are illustrated in Fig. 2.

For comparison, we include the potential obtained from implementing the

depurated inversion method described in Section 2.2. The pseudocharges

vanish at the origin, avoiding the divergence of theCoulomb potential. How-

ever, this feature comes at a price: the pseudocharges in the spatial represen-

tation are repulsive around r ¼1 a.u., and their momentum picture fails to

represent the target for high k, showing an incorrect oscillatory behavior

for values greater than kc ¼ (2πrc)
�1 � 0.7 a.u..

Secondly, we inspect the behavior of the bound pseudo-orbitals obtained

from solving the one-electron Schr€odinger equation with a pseudopotential.

As usual, the bound state wavefunctions can be written as

ψnlmðrÞ¼
unlðrÞ
r

Ym
l ðr̂Þ, (5)

where unl(r) are the reduced radial wavefunctions, and Ym
l ðr̂Þ are the spher-

ical harmonics. Similarly, the Fourier transform of these functions is given by

~ψ nlmðkÞ¼
χnlðkÞ
k

Ym
l ðk̂Þ: (6)
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Fig. 2 Pseudo and DIM charges for the 2s orbital of lithium. (A) Spatial and
(B) momentum representation.
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The spatial and momentum representations of the 2s radial pseudo-

wavefunctions of lithium corresponding to the pseudocharges from (3) are

displayed in Fig. 3. Although the pseudo-orbitals are very different from the

DIM 2swavefunction, the transformed χ(k) seems to have similar character-

istics. However, a closer inspection of the tail region of these functions

(see the inset of the figure) shows the existence of several nodes. We will

see later that these discrepancies have significant consequences in the cross

sections for most of the collisional processes examined.

Finally, the pseudopotential approach not only affects the representation

of the bound orbitals but also determines the form of the continuum wave-

functions. For large r, the free state orbitals of an electron in the presence of a

Coulomb potential can be written as

uklðrÞ! sin kr� l
π

2
�η ln2kr + σl + δl

� �
, (7)

where k is the particle wave number, η is Sommerfeld’s parameter, σl is the
Coulomb phase shift, and δl is the wave phase shift with respect to the

Coulomb wave.

Comparisons between the DIM (solid line) and the pseudo (dashed) con-

tinuum ks wavefunctions for lithium are shown in Fig. 4, close to the origin

(left) and asymptotically (right). The pseudo and DIM wavefunctions behave

similarly away from the nucleus. The asymptotic phase shiftΔ accounts for the

differences between the potentials. As the energy of the free electron increases,

Δ diminishes. However, the orbitals in the core region are different even with

increasing energy; the first maximumof theDIMwavefunctions is consistently

smaller than of the pseudo-orbitals, which is understood since the Coulomb-

type attraction of the nuclei is stronger than the pseudopotential in that region.
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Fig. 3 Pseudo and DIM bound state wavefunction for the 2s orbital of lithium in
(A) spatial and (B) momentum representation.
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2.2 Depurated inversion method potentials
The depurated inversion method3–5 consists of assuming that the many-

electron atom orbitals can be represented by the solution of Kohn–Sham-

type equations, in which the nl effective potentials are given by

VnlðrÞ¼ 1

2

1

unlðrÞ
d2unlðrÞ
dr2

� lðl+1Þ
2r2

+ εnl, (8)

where unl and εnl are the nl orbital wavefunctions and energies, respectively.
In this work, the atomic structure is approximated with the Hartree–Fock
method, which is computed with the HF codes by C. Froese Fischer19 and

the NRHF code by Johnson.20 The computation of Eq. (8) poses various

numerical problems. The nodes and asymptotic decay of the wavefunctions

unl(r) introduce significant numerical errors in the inversion procedure

(see Ref. 5 for further details). The nodes of the orbitals produce huge

unphysical poles, while the rapid asymptotic decay of the internal wave-

functions generates large divergences in the tail region of the potentials.

The depuration method is implemented to tackle these unphysical features.

An effective potential with a Coulomb-type shape Vr(r) ¼ �Zr(r)/r is

defined, and we enforce the correct boundary conditions fitting the inverted

potential with the following analytical expression

ZrðrÞ¼
Xn
j¼1

zje
�αj rð1+ βjrÞ+1 ! ZN , r! 0

1, r!∞

�
(9)

where
P

zj ¼ZN �1 (ZN here stands for the nuclear charge). The parameters

αj and βj are optimized to reproduce the HF values accurately.
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Fig. 4 Continuum ks wavefunctions with energies E near the origin (left) and in the
asymptotic region (right), calculated with the DIM potential (solid line) and the ABINIT

pseudopotential (dashed line).
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3. Collisional processes in atoms

The most significant advantage of the pseudopotential method is its

simplicity. However, it is worth determining the validity of this approach

when used for computing collisional processes. In this section, we perform

a thorough examination of the pseudopotentials for hydrogen and lithium

by comparing the cross sections of four inelastic processes: proton-impact

excitation, proton-impact ionization, charge exchange, and photoioniza-

tion. The initial and final states of the targets are obtained by solving the

corresponding Schr€odinger equation. For the hydrogen atom, we compare

the pseudopotential results with the exact analytical solutions. Furthermore,

in order to assess the applicability of the depurated inversion method, we

compute the photoionization of more complex many-electron atoms and

compare our findings with experimental data.

3.1 Proton-impact excitation
The proton-impact excitation of target X is defined as

H+ +X!H+ +X∗: (10)

The excitation cross section σ of the target from the initial bound state ψ i to

the excited state ψ f may be written as

σ¼ μ2

4π2
k f

ki

Z
Tf i

�� ��2dΩ, (11)

where μ is the reduced mass of the proton–atom system, ki and kf are the

initial and final relative momenta, and

Tf i ¼hψ f jV jψ ii (12)

is the transition-matrix or T-matrix. If the initial and final states of the tran-

sition are described by the Hartree–Fock method, the orbitals will give the

correct high energy limit in the first-order approximation (this is not the case

for the charge exchange process). Hence, we will concentrate our comput-

ing efforts in the first perturbative order of the transition-matrix element

through the FBA, given by

TFBA
f i ¼ ~V ðpÞF f iðpÞ: (13)
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The term Ff i(p) is the form factor

Ff iðpÞ¼ 1

ð2πÞ3=2
Z

~ψ∗
f ðkÞ~ψ iðk+pÞ dk, (14)

where p is the momentum transfer vector

p¼ pminv̂ + η, (15)

pmin ¼ εf �εi
v

! ∞, v! 0

0, v!∞
,

�
(16)

v̂ is the ion velocity, η is the transversal momentum transfer, so that v̂ � η¼ 0,

whereas εi and εf are the binding energies corresponding to the initial and

final states. A more comprehensive formulation of the FBA can be found,

for instance, in Ref. 21.

The first Born proton-impact excitation cross sections of hydrogen and

lithium from the ground states are shown in Fig. 5. The pseudopotential results

for the f1¼ 2s, 2p and f2¼ 3s, 3p, 3d final states of hydrogen agree excellently

with the analytical expression. For lithium, the pseudopotential cross sections

agree in a broad velocity range with the DIM calculations, except for low

proton-impact velocities. This disagreement arises from the form factor. For

low impact velocities, themomentum transfer vector is large (16). As discussed

earlier, in this region the bound momentum orbital ~ψ ðk+pÞ is not described
adequately by the pseudopotentials. An alternative expression for the form fac-

tor can be considered by implementing the peaking approximation

Ff iðpÞ� ~ψ iðpÞ~ψ ∗
f ð0Þ+ ~ψ f ðpÞ~ψ ∗

i ð0Þ: (17)
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Fig. 5 Proton-impact excitation cross section from the ground state for (A) hydrogen
and (B) lithium.
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Therefore, in order to have the correct form factor, it is necessary to obtain

an accurate description of the initial bound state at large momentum values,

which is not the case for the pseudostates (see Fig. 3B) and hence their failure

when used in the cross section calculation.

3.2 Proton-impact ionization
The transition matrix (12) for the proton-impact ionization of X,

H+ +X!H+ +X + + e�, (18)

can also be written in terms of the first-order Born approximation. In this

case, the final state ψ f in Eq. (14) is an outgoing continuum wavefunction

ψ�
kf
, while εf ¼ k2f =2 is the energy of the ionized electron.

The single-differential proton-impact ionization cross sections dσ/dεf of
hydrogen and lithium at a proton velocity of vp ¼ 1 a.u. are shown in Fig. 6.

In the case of hydrogen, the pseudopotential and analytical results agree for all

the electron energy range, except at very high values. On the other hand, for

lithium, the cross sections computed with pseudopotentials only agree at low

energies.Once again, assuming thatψ�
kf
(k) can be approximated by a planewave,

the form factor is reduced to the Fourier transform of the initial bound state

Ff iðpÞ� ~ψ iðp�k f Þ: (19)

Then, as kf increases, so does pmin, and the form factor is not well represented

by the pseudopotentials. The significant discrepancies shown in Fig. 6 provide

another demonstration of how a wrong description of the momentum space

wavefunction may produce huge errors in collisional processes calculations.
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Fig. 6 Single differential proton-impact ionization cross section from the ground state
of (A) hydrogen and (B) lithium at vp ¼ 1 a.u.
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3.3 Proton-impact charge exchange
The proton-impact charge exchange of target X is defined as

H+ +X!H+X +: (20)

The charge transfer cross section by the collision of a proton (electron cap-

ture) is computed with the first-order Brinkman–Kramers approximation.22

Accordingly, the matrix element is defined by

TBK
f i ¼ ~ψ ∗

f ðWf Þ εf �
W 2

f

2

" #
~ψ iðWiÞ, (21)

where Wi and Wf are the momentum transfer vectors

Wi¼Wi0v̂ + η, Wi0¼ v

2
�pmin (22)

Wf ¼Wf 0v̂ + η, Wf 0 ¼ v

2
+ pmin, (23)

and they satisfy the condition Wi +Wf ¼ v, and pmin is defined in Eq. (16).

The charge exchange cross sections of hydrogen and lithium in the

ground state are illustrated in Fig. 7. The cross section of hydrogen is

described with high accuracy by the pseudopotential approach for a wide

range of proton velocities. However, this process constitutes a symmetrical

resonance, i.e., εf¼ εi, and the agreement may be misleading. For the lithium

case, the pseudopotentials fail utterly to describe the electron capture correctly

at low and high velocities. For low and high vp values, the momentum transfer

vector becomes large, and therefore, the cross sections calculated with

pseudopotentials disagree completely for most of the energy values.
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Fig. 7 Proton-impact electron capture cross section for (A) hydrogen and (B) lithium in
the ground state.
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3.4 Photoionization
The single photoionization is defined as

ħω+X!X + + e: (24)

Considering a perturbative photon field, the initial bound ψ i and final con-

tinuum ψ�
kf
states of the target are not significantly distorted; therefore, the

relevant matrix element of the photoionization process is given by

TPh
k ¼

Z
ψ�
kf
ðrÞ �iε̂λ � rr½ �ψ iðrÞ, (25)

where ε̂λ is the polarization versor and k f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðω+ εiÞ

p
, as imposed by

energy conservation.

The first-order photoionization cross sections of hydrogen and lithium

are shown in Fig. 8. The pseudopotentials results for the hydrogen atom

agree with the exact analytical expression results only for low photon ener-

gies, failing at larger values. These discrepancies can be understood consid-

ering the continuum wavefunction ψ�
kf
(r) as a plane wave. Consequently,

the matrix element Tk
Ph is reduced to

TPh
k �� ε̂λ � kf

� �
~ψ i

kf
� �

, (26)

and it is determined entirely by the behavior of the bound target pseudostate

in the momentum representation. For hydrogen, the pseudo-orbital from

PARSEC in the Fourier space coincides with the exact analytical solution

for the entire range of k, which explains the excellent agreement in the cross

section results. For lithium, the pseudopotential cross sections disagree with
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Fig. 8 Single photoionization cross section for (A) hydrogen and (B) lithium.
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the DIM results for all energy values. The large oscillations in the cross sec-

tions are originated by the spurious oscillatory structure of the bound state

for large k values (see inset of Fig. 3B).

3.5 DIM Photoionization of many-electron atoms
In order to assess the applicability of the depurated inversion method for

atoms with a more complex structure, we compute the photoionization

of many-electron targets with the DIM potentials4 and compare our

results with experimental values. The first-order photoionization cross

section of nitrogen and neon are shown in Fig. 9. Experimental data

from23–26 is illustrated with hollow symbols. The DIM photoionization

cross sections of these atoms agree excellently with the experimental

values for low, medium and high photon energies. For neon, discre-

pancies start to be noticeable for low and intermediate energy. An accu-

rate photoionization description of heavier atoms requires the inclusion

of many-body effects that can be relevant, such as orbital relaxation due

to the creation of a hole, collective response of inner shell electrons27 and

correlation effects.

4. Depurated inversion method for molecules

The depurated inversion method described above is extended here to

determine effective potentials for molecules; methane is taken as an example.

Furthermore, the molecular description of CH4 given by DIM is tested by

computing two collisional processes within the FBA.
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Fig. 9 Single photoionization cross section for (A) nitrogen and (B) neon.
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4.1 Theory
Without loss of generality, we will present the DIM theoretical grounds for

hydride compounds. The Hamiltonian of an N-electron X Hn molecule

within the Born–Oppenheimer approximation is given by

H¼�
XN
i¼1

1

2
r2

ri
�
XN
i¼1

ZN

ri
+
XN
i¼1

VHðriÞ+
XN
i<j

1

rij
, (27)

VHðriÞ¼�
Xn
j¼1

1

ri�RHj

�� �� , (28)

where ZN is the nuclear charge of the heavier atom, and RHj
are the coor-

dinates of the hydrogens respect to the X atom. The corresponding

Schr€odinger equation HΨ¼EΨ is solved and the orbitals are expressed

as in Eq. (5) considering the single-center expansion (SCE). The orbitals

and energies are found by solving the Hartree–Fock equations. The compu-

tation of these equations generally relies on the use of finite basis sets for the

representation of the molecular orbitals (MOs). Usually, the MOs are

expressed as a linear combination of atomic orbitals (LCAO),

Ψi¼
X
j

cjiϕj, (29)

which can be constructed with Gaussian-type orbitals (GTO) basis sets.

The inverted molecular potential expression, analogous to Eq. (8),

obtained from GTO basis sets present more difficulties than the atomic case.

In addition to the asymptotic divergences and the poles, large unphysical

oscillations arise.28–31 These prominent oscillations originate from undula-

tions present in the MOs due to the finite number of the basis set. The sec-

ond derivative, necessary to evaluate the inversion formula, amplifies these

features.28,31 In some cases, the oscillations are huge, e.g., near an electro-

negative atom like Cl. The appearance of these oscillations in the inverted

potentials forces us to incorporate further actions in the depuration scheme.

To illustrate this procedure, we consider the 1s orbital of the carbon

atom. We solved the Hartree–Fock equations using the 6-311G basis set

with GAMESS code32,33 and obtained inverted potentials by implementing

Eq. (8). The resulting Z6�311G
1s charge is shown in Fig. 10A with a dot-

dashed line. The charge oscillates significantly at low distances and diverges

for higher r values. The same calculation was repeated using the universal

Gaussian basis set (UGBS), which has a more significant amount of prim-

itives. The corresponding inverted charge ZUGBS
1s is exhibited in the figure
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with a dashed line. Although the charge still diverges around r � 1a.u., the

oscillations are now circumscribed near the nucleus. Finally, the differen-

tial Hartree–Fock equations for the carbon atom were solved using the

finite-differences (FD) method. The 1s inverted charge obtained with this

procedure, ZFD
nl (solid line) shows no oscillations since no basis sets have

been used to construct the orbital; however, the charge still diverges for

r > 1a.u., as it usually does for all HF calculations.

The oscillations pattern will vary for each basis set used in the calcula-

tions. We may define oscillation profiles as

pBSnl ¼ZBS
nl �ZFD

nl , (30)

whereZBS
nl is the inverted charge of the atom using a particular basis set “BS”

and ZFD
nl is the effective charge obtained from the inversion of the finite-

difference wavefunctions. In the previous example, the basis set considered

for calculating the 1s orbital of carbon were 6-311G and UGBS. The oscil-

lation profiles for the 1s orbital, using Eq. (30) for these basis sets, are shown

in Fig. 10B. Since the orbital profiles for each atomic basis set are distinctive,

once they are determined for the atomic case, they can be removed in

further molecular calculations. An example of this procedure is given

in the following section.

4.2 Example: Methane
In order to illustrate the implementation of the DIM for molecules, we con-

sidered CH4, which is highly symmetric, and therefore, can be described

with an angular averaged potential.34 We computed the HF molecular

orbitals and energies of CH4 employing the UGBS basis sets of carbon

and hydrogen, which considers angular momenta up to L ¼ 1. Methane

calculations with this basis set should include polarization functions
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Fig. 10 (A) Effective charges for the 1s orbital of carbon. (B) Basis-set oscillation profiles.
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(at least d-functions) to increase the accuracy of the molecular energies.35,36

However, to isolate the effects of the basis set, we computed the atomic oscil-

lation profiles and the molecular orbitals on the same footing. The charges

obtained by direct inversion are given in Fig. 11 with dashed lines. Since the

molecular orbitals are given by LCAO of carbon and hydrogen, the oscillations

of the inverted charges are a consequence of the finite basis set of these atoms.

To remove the most critical oscillations, first, wemust determine the oscillation

profiles produced by the atomic carbon basis set. We use Eq. (30) to determine

the pUGBS
1s , pUGBS

2s , and pUGBS
2p profiles of carbon. Then, we remove the oscilla-

tions by subtracting the carbon pUGBS
nl profiles from the corresponding inverted

charges ZUGBS
i of CH4. The oscillations are removed for all orbitals except for

the 2a2, which presents small oscillatory residues from the hydrogen basis set.

Since the residual fluctuations are minimum and near the nucleus, we

proceeded to implement the depuration scheme as described in Section 2.2.

We define a new parametric DIM charge equation,

ZðrÞ¼
X
j

Zje
�αj r +ZHe

�ð ln r� lnβÞ2=ð2γÞ +1: (31)
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Fig. 11 (A) 1a1, (B) 2a2, and (C) 2t1 effective charges of CH4; direct inversion (dashed line)
and depurated inverted (solid line).
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In contrast to the approximation proposed for atoms (9), a second term has

been added to the formula to account for the presence of the hydrogens.

This expression allows us to conveniently adjust both the location and

width of the screened hydrogenic potential without affecting the correct

charge value at the origin. The optimized parameters for the methane mol-

ecule are given in Table 1, and the corresponding DIM charges are shown

in Fig. 11, with solid lines. The orbital energies obtained with these charges

are also given in the table.

4.3 Collisional processes
The orientation of the molecular targets is important for determining the

cross sections of collisional processes. However, it is generally not pre-

established in the experiments. Thus, the spherically averaged description

of the system assumed by the DIM potential makes sense. In the following,

we examine two collisional processes in the first-order approximation:

proton-impact ionization and single photoionization.

Proton-impact ionization
Results for the proton-impact ionization cross section for CH4, calculated

under the first Born approximation, are given in Fig. 12. The initial bound

and the final continuum states of the molecule needed for the T-matrix

computation (Eq. (12)) were calculated with the DIM potentials from

Table 1 Energies and fitting parameters for the DIM effective charges (Eq. (31)), for CH4.

nl E Z α β γ

1a1 �11.1949 1.925280 0.641982

0.953120 5.571510

2.121600 1.500440

2a2 �0.9204 2.912200 3.149990

2.087800 0.771371

1.23640 2.329570 0.053420

2t1 �0.5042 0.901953 2.895140

1.112030 0.388649

2.986017 2.931210

1.30182 2.169850 0.012616

195Collision processes using effective potentials



Section 4.2. The ionization cross section for high and intermediate energies

shows good agreement with the experimental results. The failure at low

energies is ascribed to the validity of the first Born approximation and

not to our DIM approach.

Photoionization
The photoionization cross section for CH4, calculated with the DIM poten-

tials in a first-order approximation, is shown in Fig. 13 (solid lines). Good

agreement with the experimental results (symbols) is found for high energy

values and at the threshold. The curve between �15 and �300 eV shows

the photoionization from the outer n ¼ 2 shell, while the discontinuity
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Fig. 12 Proton-impact ionization cross section for CH4. Solid line: first-order DIM
theoretical calculations. Symbols: experiments from Refs. 37 and 38.
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Fig. 13 Single photoionization cross section of CH4. Solid line: first-order DIM theoretical
calculations. Symbols: experiments from Refs. 39–41.
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at 300 eV corresponds to the threshold of the 1a1 inner shell orbital. For low

and intermediate photon energies, the agreement between our calculations

and the experimental values from Refs. 39–41 is not that good.

Phenomena such as molecular orbital relaxation, possible collective contribu-

tions, and correlation effects must be considered in further calculations. On the

other hand, for the 1a1 inner shell photoionization, these effects are not

significant, and we obtain a perfect agreement with the experimental results.

5. Concluding remarks

In this work, we explored the possibility of using pseudopotentials

within the single electron model to calculate inelastic transitions. The first

Born approximation was used to calculate proton-impact excitation, ioni-

zation, electron capture, and photoionization. Two simple atoms were

studied, having a single electron in the outer shell. For hydrogen, we found

excellent agreement for all the collisional processes, for low and intermedi-

ate energies. In the case of lithium, the only process that can be calculated

with reasonable accuracy is the proton-impact excitation. We concluded

that the range of validity is restrained to minimal momentum transfers.

The depurated inversion method, on the other hand, accurately reproduces

photoionization experimental results for many-electron atoms.

We extended the DIM for molecular systems. In this case, the inversion

procedure produces huge oscillations due to the finite size of the basis sets

involved in the Hartree–Fock orbital calculations. An additional step is

included during the depuration scheme. In order to determine the oscilla-

tion profile for a particular basis set, we computed the inverted atomic

charges in a finite-differences framework. By subtracting the charges, it is

possible to isolate the oscillations corresponding to this particular basis set.

We used the DIM method to determine the effective potentials for CH4.

These potentials are implemented in first-order proton-impact ionization

and photoionization cross sections calculations. For both processes, we

found good agreement with the experimental results. The main discrepan-

cies can be attributed to the fact that only first-order is considered in the

perturbation theory.
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