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Abstract. We study theoretically the double ionization of helium by 6 MeV proton impact. For such
fast projectiles, when considering the projectile-target interaction to first order, the four-body Schrödinger
equation reduces to solving a three-body driven equation. We solve it with a generalized Sturmian functions
approach and, without evaluating a transition matrix element, we extract the transition amplitude directly
from the asymptotic limit of the first order scattering solution. Fivefold differential cross sections (FDCS)
are calculated for the double ionization process for a number of coplanar kinematical situations. We present
a detailed theory-experiment comparison for intermediate momentum transfers (from 0.8 to 1.2 a.u. and
from 1.4 to 2.0 a.u.). In spite of some experimental restrictions (energy and momentum ranges) and the
low count rates, we found that our theoretical description provides a very satisfactory reproduction of
the measured data on relative scale. We then explore how the binary, recoil and back-to-back structures
change with increasing momentum transfers (0.853 to 1.656, to 3.0 a.u.). Within the impulsive regime,
with a momentum transfer of 3.0 a.u., we also analyze the FDCS for different excess energies. Finally, in
analogy to an experimentalist gathering electrons with different excess energies to obtain enough counts,
we provide a collective FDCS prediction that hopefully will stimulate further measurements.

1 Introduction

The study of double ionization of simple atoms by charged
particle or photon impact allows for a rich investigation
of reaction dynamics, and a way to test electron-electron
correlation effects. Charged particles, in contrast to pho-
tons, can transfer a significant momentum to the target
and the dynamics is less understood. In the case of a he-
lium target, doubly ionized by impact of an electron or
a proton, we have a pure four-body Coulomb scattering
problem which poses a formidable challenge to theoreti-
cians. The most detailed information on the double ion-
ization process is gained from fully, fivefold, differential
cross sections (FDCS). Experimentally, however, measur-
ing such a quantity is rather difficult because of low count
rates. This is particularly true for protons; as a conse-
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quence, compared to the electron impact case, so far only
one experiment [1] has provided FDCS, while several mea-
sured total cross sections and double-to-single ionization
ratios are available (e.g., [2–5]). The 6 MeV differential
cross sections measured by Fischer et al. [1] were later in-
tegrated to yield doubly differential cross sections [6,7].
The data were further analyzed through so-called four-
particle Dalitz plots, and comparisons with other projec-
tiles was made with respect to the projectile charge to
speed ratio [8,9].

From a theoretical viewpoint, calculations FDCS for
proton-helium double ionization are very scarce [10–12].
A more abundant literature is available, though, for less
differential cross sections (see, e.g., [13–17] and refer-
ences therein). In the present work we present a detailed
theoretical study of FDCS for the double ionization of
helium by 6 MeV proton impact. In our formulation,
the four-body Schrödinger equation corresponding to the
proton-helium system is transformed into a set of driven
equations containing successive orders in the projectile-
target interaction. The first order driven equation is solved
with a generalized Sturmian functions (GSF), ab initio,
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approach [12,18,19]. The transition amplitude, extracted
from the asymptotic limit of the first order solution, is
equivalent to the familiar first Born approximation.

In a previous contribution [12], we focused mostly
on a comparison between our ab initio methodology and
two different improvements on the 3C model by López
et al. [10,11]. All these discussions considered protonic
projectiles with an incident energy of 700 keV, implying a
velocity of 5.29 a.u. The final part of that manuscript con-
tained a comparison with experimental FDCS [1], having
faster projectiles: 6 MeV (velocity: 15.5 a.u.), a regime
better suited for our first order Born scheme treatment
of the projectile-target interaction. Because the counting
rates were so small, the experimentalists had to assem-
ble cross sections containing a range of momentum trans-
fers (direction and magnitude) and energies; as such, the
cross sections are not fully differential. From the inter-
mediate momentum transfer results reported in [1], how-
ever, we made a successful comparison with those whose
kinematic conditions had the narrowest angular range for
the momentum transfer vector. The first new results of
the present manuscript will show that the agreement was
even better than observed in that article. Then we will
show a theoretical-experimental comparison for another
data series from the same experiment, still at intermediate
momentum transfers. Keeping the same incident energy,
we then turn our attention to the impulsive regime, i.e.,
with a high momentum transfer q = 3 a.u., and present
FDCS for three emission energies. Since it is expected that
a further experiment would observe small count numbers,
we produce a theoretical FDCS consisting on the addi-
tion of the three, analogous to the experimental approach
adopted by Fischer et al. [1]. This can be of use should
the experimentalists not register enough counts for a more
completely differential cross section.

For protonic projectiles at 6 MeV, the experimental
cross sections in reference [1] possess the appropriate sym-
metry to suggest that a first Born order treatment is suf-
ficient to describe the essential physics involved; this was
indeed confirmed in our previous study [12]. It should be
noted, however, that the situation is quite different for the
electron impact case, for which second order effects have
been reported even for projectiles with energy as high as
2 keV (see [1,20,21] and references therein). An analysis
with respect to the charge and the velocity of the projectile
was presented in [1]. While some contributing ionization
mechanisms are proportional to even power of the cor-
responding Sommerfeld parameter, interference between
amplitudes do depend on the sign of the projectile. Only
a second Born treatment would be able to properly take
into account all relevant mechanism; this, however, goes
beyond the scope of the present contribution.

The rest of the paper is arranged as follows. In Sec-
tion 2 we briefly outline the theoretical framework, and
the GSF approach to solve the three-body driven equa-
tion. Results are presented in Section 3. Finally, a brief
summary is provided in Section 4. Atomic units (� = e =
me = 1) are used throughout the article, unless otherwise
stated.

2 Fast projectile formulation and GSF
approach

The proton-helium collision is a four-body scattering prob-
lem. For fast projectiles, one may use a first order treat-
ment in the perturbative series of the projectile-target
interaction. The resulting three-body problem takes the
form of a driven equation. Here, we solve it with the GSF
method.

Let r1 denote the position of the projectile (mass mP )
and ri (i = 2, 3) that of the two helium electrons with
respect to its nucleus (mass mT , charge Z = 2), and rij =
|ri − rj| the distance between particles i and j. The full
four-body Hamiltonian reads [11]

H = − 1
2μTP
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1
2μT
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1
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3 +
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where the reduced masses μTP = mP mT

mP +mT
and μT =

mT

mT +1 . Similarly to references [12,18,19], we propose to
write

H = H0 + W̄ , (2)

where
H0 = hp + hHe, (3)

with
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(
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the three-body helium Hamiltonian acting the subsystem
(2, 3) and hp = − 1

2μT P
∇2

1 the free-particle kinetic term
associated to the projectile 1. The perturbation

W̄ =
Z

r1
− 1

r12
− 1

r13
(5)

couples the two Hamiltonians hHe and hP .
With such a decomposition, for a total energy E, the

four-body Schrödinger equation with outgoing (+) type-
behavior reads[

H0 + W̄ − E
]
Ψ+ (r1, r2, r3) = 0. (6)

It can be transformed into a set of coupled driven equa-
tions containing successive orders in the projectile-target
interaction, as shown in reference [18]. The solution is pro-
posed as:

Ψ+ (r1, r2, r3) =
∑

n

Ψ (n)+ (r1, r2, r3) , (7)

where each order retains n interactions W̄ between the
projectile and the target.

The zeroth order equation

[H0 − E] Ψ (0)+ (r1, r2, r3) = 0, (8)

corresponds to a separable solution, eiki·r1 Φi (r2, r3),
where Φi (r2, r3) is the helium ground state and a plane
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wave of momentum ki describes the fast incident
projectile.

Allowing for one interaction only, one needs to solve
the first order equation

[H0 − E] Ψ (1)+ (r1, r2, r3) = −W̄Ψ (0)+ (r1, r2, r3) . (9)

As proposed in [18], the first order solution is written as:

Ψ (1)+(r1, r2, r3) =
1

(2π)3/2

∫
dk eik·r1Φ+

sc (k, r2, r3) ,

(10)
where the three-body scattering (label sc) function Φ+

sc
characterizes the physics of the ejected electrons. Let Ea

denote the energy of two electrons in interaction with the
nucleus in the final state, and k2/2 the energy associated
to the projectile: the total energy of the system is then
E = Ea + k2/(2μTP ). The momentum transfer vector is
defined as q = ki −kf where ki is the incident and kf the
scattered momentum.

Replacing equation (10) into (9), one arrives to a
driven equation for Φ+

sc (q, r2, r3) [18]:

[hHe − Ea] Φ+
sc (q, r2, r3)

= −4π

q2

1
(2π)3

(
Z − eiq·r2 − eiq·r3

)
Φi (r2, r3) , (11)

where the momentum transfer q dependence is explicit in
the three-body scattering wave function.

Formally [22], for large hyperradii ρ =
√

r2
2 + r2

3, the
asymptotic behavior of Φ+

sc (q, r2, r3) is directly related to
the transition amplitude Tk̃2,k̃3

through

|Φ+
sc (q, r2, r3) |2 −→

ρ→∞ (2π)κ3|Tk̃2,k̃3
|2 1

ρ5
, (12)

where κ =
√

2Ea is the hypermomentum. In our driven
equation approach, therefore, the transition amplitude is
extracted from the scattering solution in the double con-
tinuum channel. [Note that this approach is equivalent to
the more familiar expression used in the FBA, whereby a
transition matrix element is calculated; it involves a six di-
mensional integral corresponding to the projection of the
driven term of equation (11) onto the final two-electrons
double continuum.]

For two electrons escaping with energies E2 and E3

in the solid angles dΩ2 and dΩ3, the FDCS – within the
FBA – is defined as

d5σ

dΩ2dΩ3dΩfdE2dE3
= (2π)4

kfk2k3

ki
|Tk̃2,k̃3

|2, (13)

where the projectile, whose energy Ef = k2
f/(2μTP ) is

determined by total energy conservation, is scattered in
the solid angle dΩf .

To solve the first order three-body driven equation (11)
for a given q we use a Sturmian approach with one-particle
GSF. Details of the method are described in [12,19,23],
and will only be briefly outlined here.

For convenience [19,23], the helium ground state is also
constructed within the GSF formalism. Negative energies
GSF basis can be used efficiently to obtain two-electron
bound states [24–27]. Here, like in [12], the helium ground
state with an energy of –2.9035 a.u. is obtained with the
GSF method [26,27], using 20 Sturmians per coordinate
per partial wave, with individual angular momenta up
to 4.

In order to calculate the scattering function, we pro-
ceed as explained in reference [19]: Φ+

sc (q, r2, r3) is de-
composed in total-angular-momentum partial waves, and
subsequently expanded on products of radial GSF with
outgoing Coulomb behavior (see Eq. (19) of [19]). This
proposal converts the driven equation (11) into a linear
system (similar to Eq. (21) of [19]) which is solved with
standard methods. In all kinematical configurations con-
sidered below, convergence in the number of partial waves
has been verified.

Once Φ+
sc (q, r2, r3) is obtained, we extract from equa-

tion (12) the quantity |Tk̃2,k̃3
|2 at a given large enough ρ

value. Finally the FDCS is calculated with expression (13).

3 Results

In this contribution, only coplanar configurations are con-
sidered, and all angles are defined with respect to the
incident-beam direction. We consider excess energies Ea =
E2 + E3 of 10, 20 and 40 eV, and an equal energy sharing
between the ejected electrons 2 and 3, i.e. E2 = E3. All our
calculations include total angular momenta up to 3, while
the partial waves contain individual angular momenta l2,
l3 up to 5. For 5 + 5 eV kinematics we employed a spatial
box of 50 × 50 a.u. (ρ = 50 a.u.), while 45 × 45 a.u. for
10 + 10 eV (ρ = 45 a.u.) and 30× 30 a.u. for 20 + 20 eV
(ρ = 30 a.u.) excess energies, using 55, 50 and 40 Stur-
mian per coordinate per partial wave, respectively. Boxes
of similar sizes have been used successfully to compare
with other theoretical as well as with experimental cross
sections for double ionization of helium by photon [28],
electron [19] and proton [12] impact. To properly reach the
asymptotic regime, in particular for low excess energies,
one could consider larger hyperradii; we have observed,
however, that once convergence is reached, the size of the
spatial domain only affects the magnitudes and not the
FDCS shape (we recall that in the present study we com-
pare with relative experimental data).

We divide our results into two main sections.
– In the first one, we continue the line started in [12], an-

alyzing to a more extensive detail the FDCS that was
already shown to agree with the relative scale experi-
ments [1] at intermediate momentum transfer (q in the
range 1.4 to 2 a.u.). We delve deeper into the compar-
ison, plotting FDCS for fixed values of θ2. This type
of comparison is locally more stringent than matching
the overall experimental and theoretical FDCS shape
in terms of both emission angles (contour plots). We
then compare fixed-angle FDCS with another experi-
mental data set [29], with a slightly lower momentum
transfer in the range 0.8 and 1.2 a.u.
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– The second section is dedicated to a theoretical study
of the FDCS for an impulsive (q = 3.0 a.u.) regime,
again under equal energy sharing geometries. For com-
parison we begin with a fixed excess energy, studying
how the FDCS evolves from intermediate momentum
transfers to the impulsive regime. Then, within the im-
pulsive regime we present cross sections for different
outgoing energies. Considering that experimentalists
may have to collect ejected electrons having different
excess energies due to low counting rates, we construct
also a collective FDCS for electrons emerging with 5
+ 5 eV, 10 + 10 eV and 20 + 20 eV.

3.1 Detailed comparison with experimental results
at intermediate momentum transfers

We begin by comparing our theoretical FDCS with the
relative scale experimental data of Fischer et al. [1]. Due
to the low counting rate, the measurements were made
with the collection of electrons with E2 = E3 < 25 eV
and momentum transfers ranging in magnitude q from 1.4
to 2.0 a.u. and in angle θq from 75◦ to 85◦. As such, the
measured cross sections cannot be considered as properly
fully differential.

In order to make a theory-experiment comparison,
we made a calculation [12] at the intermediate value
θq = 81.85◦ and the total emission energy chosen in the
middle of the measured range, i.e., 10 eV per electron.
As the experimental momentum transfer ranged from
qmin = 1.4 a.u. to qmax = 2.0 a.u., we took an averaged
value 〈q〉 = 1.656 a.u. obtained through

〈q〉 =

[
1

qmax − qmin

∫ qmax

qmin

1
q4

dq

]−1/4

. (14)

The weight in this momentum transfer average is inspired
by the fact that the FDCS inherits a factor 1/q4 from
the transition matrix (see Eqs. (11) and (13)). It will be
shown in Section 3.2 that contributions to the electron
yield are visibly stronger for smaller momenta transfers,
backing the weighted average approach.

Figure 1 shows, as a function of both emission angles,
the experimental data, together with our theoretically cal-
culated contour plots (both on relative scales). Similarly to
the recent analysis [12,21] of double ionization processes,
for compactness and ease of description, we will desig-
nate hereafter the binary peak as A, the recoil peak as
B and the back-to-back structure as C. The binary peak
emerges as the result of one target electron initially ab-
sorbing momentum from the projectile, and then colliding
with the remaining target electron. The sum of their mo-
menta, k2+k3, points into the direction of q. On the other
hand, the recoil peak requires the electron hit by the pro-
jectile to perform a recoil off the nucleus, and strike the
other electron afterwards, resulting in a momentum sum
k2+k3 antiparallel to q. The back-to-back structure, as its
name suggests, consists on an emission with both ejected
electrons emerging in opposite directions. A classical pic-
ture to produce such an emission is as follows: one target

Fig. 1. Theoretical [12] and experimental [1] FDCS over-
lapped. The binary, recoil, and back-to-back structures are la-
belled by, respectively, A, B and C.

Fig. 2. Schematic representation of the (a) recoil and (b) back-
to-back type processes.

electron receives momentum from the projectile, and re-
coils off the nucleus emerging in a direction antiparallel to
q and giving the nucleus a momentum ≈−2q; the nucleus
then scatters the second electron in the q direction [30].
Figure 2 provides a schematic representation of the recoil
and back-to-back processes, which will be discussed later
in the text.

Despite the limited amount of counts, the cross section
shapes in Figure 1 (theory from Ref. [12], experiment from
Ref. [1]) show good agreement. In brief, both have their
binary peaks (A) centered at the same angles (θ2, θ3). A
dip is present in both theory and experiment where the
recoil peak (B) would be present for smaller momentum
transfers, and this structure is merged with the back-to-
back one (C).

A more detailed comparison can be achieved by look-
ing at different fixed θ2 cuts from the FDCS presented
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Fig. 3. FDCS in a.u. for fixed indicated θ2, all with same vertical range. The experimental data correspond to a momentum
transfer between 1.4 and 2.0 a.u. [1], while for the theory we used the weighted average 〈q〉 = 1.656 a.u. and the two emitted
electrons each take 10 eV [12]. Experimental counts were normalized at the largest peak value to the calculation [12] in order
to have the best overall agreement for the θ2 = 156◦ cut.

in Figure 1. They are plotted in Figure 3, where the
experimental data was globally normalized to match the
tallest structure, A, with our cross section. The observed
agreement is even stronger than evidenced by the previ-
ous figure. This is quite remarkable if one recalls that our
calculation is made with an averaged q value and that
experimental data are not proper FDCS. The experimen-
tal shapes and height ratios of the structures are rather
well reproduced by our theoretical calculations. There are
some appreciable departures from the dipolar limit [31]:
the recoil (B) and binary (A) peaks are markedly differ-
ent in shape, and an important back-to-back (C) emission
structure is observed.

We continue the analysis, with another set of exper-
imental data provided by Fischer [29], with a momen-
tum transfer ranging from 0.8 to 1.2 a.u., directed at
≈75◦. The measurements include the collection of equal-
energy-sharing electrons with energies ranging from 10
to 20 eV each. In our calculation, on the other hand,
we took the weighted-average momentum transfer (14)
〈q〉 = 0.853 a.u., electrons ejected at 10 + 10 eV, and
θq = 74.09◦. Figure 4 shows a good agreement in the over-
all placement and shape of the cross section structures.
This is again very satisfactory in view of the non-fully dif-
ferential character of the experimental data. To investigate
the issue of the ejected electrons’ energy range, we have
also calculated, for the same momentum transfer, the 20
+ 20 eV kinematical situation (with θq = 70.76◦). We ob-
served a FDCS roughly four times smaller in magnitude,
with a very similar shape. Therefore, the addition of both
cross sections is strongly dominated by the 10 + 10 eV one,

Fig. 4. FDCS in a.u. for fixed indicated θ2, all with same ver-
tical range. The experimental data correspond to a momentum
transfer between 0.8 and 1.2 a.u., while for the theory we used
the weighted average 〈q〉 = 0.853 a.u. and the two emitted
electrons emerge with kinetic energies of 10 eV. Experimental
counts globally normalized to the present theoretical to pro-
duce the best overall agreement for the θ2 = 18◦ cut.

and the 20 + 20 eV contribution would essentially add a
25% in magnitude, leaving the TDCS shape essentially
unchanged. This means that the experimental-theoretical
comparison of Figure 4 remains qualitative; for a quantita-
tive comparison, experiments would need to have narrower
excess energy limits.
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Table 1. Binary (A), recoil (B) and back-to-back (C) peak
heights and peak height ratios, for excess energies of Ea =
(10 + 10) eV and for the different momentum transfer values
in a.u.

q A B C B/A C/A
0.853 6.0E-04 2.0E-04 1.5E-04 0.33 0.25
1.656 2.0E-04 4.0E-05 7.0E-05 0.20 0.375
3.000 2.5E-05 4E-06 2.0E-05 0.16 0.80

In the two momentum transfer intervals analyzed
above, the theory-experiment agreement evidences that
for proton-helium collisions the first order Born approx-
imation is enough to characterize the dynamics. This is
notoriously different for electron impact ionization, where
second order effects are strongly evident in experimental
cross sections [1,20,21,32,33].

3.2 Theoretical FDCS for the impulsive regime

We turn to explore theoretically the impulsive regime,
choosing a momentum transfer q = 3 a.u. directed at
θq ≈ 85◦. Byfixing the excess energyat Ea = (10 + 10) eV,
we start by looking at the FDCS evolution as the momen-
tum transfer increases.

Figure 5 shows contour plots of the FDCS for the
two cases described in the above section, i.e., q = 0.853
and q = 1.656 a.u., together with the impulsive regime
q = 3 a.u. configuration. As the momentum transfer in-
creases (top to bottom) a clear trend towards a more dom-
inant back-to-back emission emerges: it gains in relative
magnitude and simultaneously extends to substantially
larger angular domains. We also clearly observe that the
recoil structure is smeared out.

Quantitatively, all peaks decrease in magnitude as q
increases (see Tab. 1). In particular, when the momen-
tum transfer grows from q = 1.656 to q = 3.0, the bi-
nary (A) magnitude experiences a sharp drop that can
be understood as follows: as q increases, the time spent
by the impacted electron in the area of the nucleus is
smaller, reducing the likeliness of a subsequent collision
with the other electron. This reasoning also applies for
the recoil peak, after the impacted electron recoils off
the nucleus. This leads to a recoil-to-binary-peak ratio
B/A that is only moderately changed (0.20 to 0.16),
considering that the momentum transfer is roughly dou-
bled. On the other hand, back-to-back emission depends
weakly on the interelectronic repulsion and only requires
electron-nucleus hard interactions: thus the back-to-back
(C) magnitude decreases, but to a lesser extent. As a con-
sequence, the peak height ratio C/A increases with q indi-
cating clearly that back-to-back emission gains in relative
preponderance.

To gain further insight, we also calculated FDCS un-
der the impulsive regime (q = 3) and three equal energy
sharing situations: E2 = E3 = 5 eV, E2 = E3 = 10 eV
and E2 = E3 = 20 eV. Results are shown in Figure 6. The
three evidence the common A, B and C peaks, although
with varying relative weights. For the (20 + 20) eV

Fig. 5. FDCS in a.u. (intensity scale indicated on the right-
hand side) in terms of both emission angles for an excess en-
ergy of 10+ 10 eV and for the following momentum transfers:
(top) q = 0.853 a.u., (middle) q = 1.656 a.u. and (bottom)
q = 3.0 a.u.

excess energy configuration, the high ejection velocities
make off-nucleus recoil less probable, and the binary
structure dominates the FDCS (see Fig. 6c); the nucleus
is a mere spectator. For electrons emerging with (5 +
5) eV (i.e., k2 = k3 = 0.606 a.u.), on the other hand, the
nucleus has to absorb a significant amount of momentum
regardless of the emission directions. This allows for more
interactions, such as a binary collision followed by one
of the electrons performing a subsequent recoil. This
scenario [(θ2 ≈ 0◦, θ3 ≈ 250◦) and (θ2 ≈ 150◦, θ3 ≈ −70◦)]
is compatible with the FDCS in Figure 6a. Emission
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Fig. 6. FDCS in a.u. (intensity scale indicated on the right-hand side) in terms of both emission angles for different excess
energies, with a fixed momentum transfer q = 3. Excess energies: (a) 5 + 5 eV, (b) 10 + 10 eV, (c) 20 + 20 eV and (d) sum of
the three others.

in those directions can also be achieved through a back-
to-back process. In ab initio methodologies (like the GSF)
it is difficult to separate out, when they can produce
equivalent kinematics, the FDCS contribution of each
mechanism. Indeed, the scattering wave function
Φ+

sc (q, r2, r3), obtained in a numerically exact fash-
ion, contains simultaneously all physically possible
intra-target collision mechanisms.

Since for the impulsive regime the calculated FDCS ab-
solute scale are rather small compared to those presented
for lower momentum transfers, we expect that measure-
ments will be rather difficult to perform. Experimentalist
may be forced to collect electrons for different excess en-
ergies as done by Fischer et al. [1]. In the same spirit, we
may increase the number of theoretical counts by sum-
ming FDCS contributions corresponding to different final
energies; this comes at the cost of losing detailed infor-
mation about the underlying collision mechanisms. Since
the fragments’ momenta are well defined both in experi-
ments and in theory, there should be no coherent superpo-
sition leading to cross section interference. The incoherent
FDCS sum of the three final energy contributions is shown
in Figure 6d. The resulting cross section exhibits B and C
peaks that blend the contributions from 5 + 5 eV and 10
+ 10 configurations, whereas for the A peak there are also
relevant contributions from the 20 + 20 eV case. An exper-
iment with equal-energy-sharing electrons from 5 + 5 eV

up to 20 + 20 eV would be expected to present a FDCS
like the one shown in Figure 6d.

4 Summary

In this contribution we calculated FDCS for proton-
impact helium double ionization. For fast projectiles, the
four-body problem is reduced to a three-body one (equiva-
lent to a first order Born approach). We used the GSF ap-
proach to solve the corresponding driven equation. From
the asymptotic double continuum part of the numerical
solution, we extracted the transition amplitude and thus
the FDCS.

We performed stringent theory-experiment FDCS
comparisons, achieving a great degree of accord for inter-
mediate momentum transfer values. Our first order Born
treatment for the projectile-target interaction is enough
to produce a very good agreement in coplanar geometry,
strongly suggesting that it is enough to capture the essence
of the collision dynamics involved for protonic projectiles.
Keeping the excess energy fixed, we first studied how the
FDCS changes with increasing momentum transfers. The
shape and relative magnitude variations of the back-to-
back and recoil peak are understood in terms of electron-
electron and electron-nucleus (recoil) collisions. We then
proceeded to analyze the impulsive regime (i.e., a high
momentum transfer, q = 3 a.u., to the target subsystem),
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and described the structures that appear in the FDCS for
different excess energies. We finished by offering a collec-
tive FDCS for electrons with kinetic energies of 5 + 5 eV,
10 + 10 eV and 20 + 20 eV, in what can be considered
as the theoretical counterpart of the experimental proce-
dure followed by Fischer et al. [1] due to the very low
counting rates. Our result could be compared with an ex-
periment gathering equal energy electrons with energies
ranging from 5 + 5 eV up to 20 + 20 eV for momentum
transfers near 3.0 a.u.
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