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Abstract

We propose and implement a spectral approach to describe continuum states of
diatomic systems. The method is based on Generalized Sturmian Functions in prolate
spheroidal coordinates. With the one-electron dihydrogen cation as an example, we
demonstrate the numerical efficiency by calculating photoionization cross sections.

1. Introduction

The molecular ion H+
2 is the simplest stable molecular system, and is

presented in standard molecular physics books since it allows one to under-

stand why molecules form. Besides, this one-electron molecular ion is

involved in many reactions that finally produce polyatomic molecules,

and is thus important for example in astrophysics.
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H+
2 (as well as its isotopologues) is composed of two nuclei and an elec-

tron, constituting a quantum three-body problem with Coulomb interac-

tions which has been extensively studied since the early days of quantum

mechanics.1–3 It was rapidly recognized that prolate spheroidal coordi-

nates, which possess the natural symmetry of diatomic systems, are the best

suited choice since they make the Schr€odinger equation separable (see also
Ref. 4).

In quantum chemistry, one is generally interested in obtaining the bound

part of the energy spectrum, that is to say finding the energy levels and the

corresponding bound-state wavefunctions. For one-electron diatomic sys-

tems, in the fixed-nuclei approximation, the molecular three-body problem

reduces to solving a system of two coupled ordinary differential equations

(one (quasi)radial and one (quasi)angular); while analytical solutions exist

formally,1–3 they involve two expansions that are not particularly tractable

giving rise to complicated energy equations. One thus generally resorts to

one of the numerical methods available in the literature (see, e.g., 5–8
and references therein). Energies and wavefunctions of the ground and sev-

eral excited states have been obtained with great precision, in particular for

the archetypal H+
2 ion.

The continuum part of the spectrum is of a different nature, and is

useful in different contexts, such as scattering studies. One example is pro-

vided by the electron attachment to a neutral molecular system. Another

example appears when a charged particle, or a photon, interacts with a

molecule, since one possible process is ionization of the target. In that case

an electron is ejected from a specific orbital of the molecule, with a pos-

itive kinetic energy set by energy conservation; such an electron should

then be described by a continuum state. The energy being fixed a priori,

the corresponding wavefunction, whose spatial part will oscillate up to

infinity, remains to be determined. Appropriate scattering boundary con-

ditions have to be imposed and the accurate description of such non-L2

wavefunctions is therefore more laborious and computationally more expen-

sive. The study of continuum states for atomic systems has a long history, and

most methods were developed in spherical coordinates. Some of them have

been adapted or extended to molecular systems, whether in a monocentric or

a multicentric approach. Closely related to the present work, one such

method is the spectral approach that uses one-electron Generalized Sturmian

Functions.9 Initially applied to atomic systems (including the notorious

three-body correlated system (p+, e�, e�)), the approach has then been

extended10 to deal with molecules in a one-center approach (see Ref. 11
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for an application to single photoionization and12 to ionization by electron

impact). More recently, the photodouble ionization of water13,14 has been

studied with a correlated two-electron continuum built with one-electron

Generalized Sturmian Functions. Because of their geometry, diatomic mol-

ecules in general and one-electron diatomic molecular systems in particular

merit a separate treatment; for the continuum part of the spectrum, a number

of numerical schemes have been proposed since the 1970s (see, e.g., 15–21
and references therein). Spherical coordinates are not natural for two-center

systems, and the use of prolate spheroidal coordinates should provide, in prin-

ciple, the most effective framework.7

We have recently started to investigate diatomic molecules within a

Generalized Sturmian Functions approach extended to prolate spheroidal

coordinates. As a first step8 we looked at the bound states of the molecular

ion H+
2 (and some other heteronuclear ions, such as HHe+2 or HLi+3). It

turns out that our method is computationally efficient: small basis sets suffice

to obtain rather accurate ground and excited states. Besides, the method

proved to be robust over a wide range of internuclear distances R, including

in the notoriously difficult atomic limit. Although of a different nature, for

completeness, we should mention that Coulomb Sturmian Functions in

these spheroidal coordinates have been investigated and applied to a similar

study of bound states7,22 (see also Ref. 23 for some of the underlying

mathematics).

In this work, we wish to tackle the second step, that is to say the contin-

uum part of the spectrum. The spectral approach allows one to treat bound

and continuum states in a similar fashion, with Generalized Sturmian

Functions of, respectively, negative or positive energy. One of the main

advantages is that an appropriate asymptotic behavior can be imposed on

all basis elements: inserting the correct physics into the basis makes the

expansions converge rapidly.While such spectral method has been explored

in spherical and hyperspherical coordinates, exploited successfully in atomic

systems, and later extended to molecules treated in a monocentric way, we

nowwish to focus on diatomic molecules, and thus work with prolate sphe-

roidal coordinates. As a start, we present here one-electron basis functions,

postponing the study of correlated systems to a later stage. We implement

and illustrate the method by obtaining continuum states of H+
2 which pro-

vides a benchmark for numerical issues. The quality of our wavefunctions is

tested through time-independent calculations of photoionization cross

sections. A single photon ionizes the molecular target, and the electron is

ejected into the continuum with a given energy E. Both the initial bound
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state and the continuum state of energy E are described within our Sturmian

formalism. The cross sections can be compared with results published in the

literature.

The rest of the paper is arranged as follows: In Section 2, we begin with

the description of a general one-electron system in prolate spheroidal coor-

dinates and outline the proposed Sturmian method. Details of the numerical

scheme are also provided. Results of our calculations are presented in

Section 3, where photoionization cross sections of the ground state of H+
2

are compared with those found in the literature. A short summary is given

in Section 4.

Atomic units (ħ ¼ me ¼ e ¼ 1) are assumed throughout.

2. Generalized Sturmian Functions method

2.1 Prolate coordinates and the Schr€odinger equation
Wewish to study a diatomicmolecular system consisting of one electron and

two nuclei of arbitrary charges Z1 andZ2 placed at a fixed distance R along a

line defining the z-axis (see Fig. 1). For further use, we set a1 ¼ R(Z1 � Z2)

and a2¼R(Z1 +Z2). It is well known that such systems are best investigated

with prolate spheroidal coordinates, defined by

ξ ≡ r1+ r2
R

1 � ξ < ∞ (1a)

η ≡ r1 � r2
R

� 1 � η � 1 (1b)

ϕ ≡ arctan
y

x

� �
0 � ϕ � 2π: (1c)

Fig. 1 One–electron diatomic molecule, with two nuclei separated by a distance R, and
the electron at a distance r1 from nucleus 1 and r2 from nucleus 2.
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The volume element is R3

8
ðξ2 � η2Þ dξ dη dϕ.

Themolecular system involves threeCoulomb interactions. The electron-

nuclei potential is given by

V ðξ, ηÞ ¼ �Z1

r1
� Z2

r2
¼ � 2

R2

a2ξ� a1η

ðξ2 � η2Þ : (2)

In the fixed–nuclei approximation, the nuclear repulsive potential energy

1/R is an additive constant since the internuclear distance R enters as a

parameter.

The Schr€odinger equation for the electron (we neglect any nuclei finite

mass effect)

� 2

R2ðξ2 � η2Þ
∂

∂ξ
ðξ2 � 1Þ ∂

∂ξ
+

∂

∂η
ð1� η2Þ ∂

∂η

��

+
ξ2 � η2

ðξ2 � 1Þð1� η2Þ
∂
2

∂ϕ2

�
+ V ðη, ξÞ

�
ψðξ, η,ϕÞ ¼ E ψ ðξ, η,ϕÞ,

(3)

is separable in prolate spheroidal coordinates. The solution is expressed as a

product of three functions

ψðξ, η,ϕÞ ¼ UðξÞΛðηÞΦðϕÞ: (4)

The azimuthal function Φ fulfills the equation

d2Φ
dϕ2

+ m2Φ ¼ 0, (5)

whose solutions are

ΦðϕÞ ¼ 1ffiffiffiffiffi
2π

p eimϕ, (6)

with m ¼ 0, � 1, � 2, � 3,⋯ (m is a good quantum number because of

the axial symmetry of the potential). Once the azimuthal dependence has

been eliminated, we are left with a two variable differential equation

∂

∂ξ
ðξ2 � 1Þ ∂

∂ξ

� �
+ a2ξ� p2ξ2 � m2

ξ2 � 1

�

+
∂

∂η
ð1� η2Þ ∂

∂η

� �
� a1η � p2η2 � m2

1� η2

�
UðξÞΛðηÞ ¼ 0,

(7)
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where p2 ¼ jEjR2

2
> 0 is a scaled energy, and the upper sign is for the bound

case and the lower sign for continuum states. Eq. (7) is also separable, and

one gets a system of two ordinary differential equations

∂

∂ξ
ξ2 � 1
	 
 ∂

∂ξ

� �
+ a2ξ� p2ξ2 � m2

ξ2 � 1
+ Amq

� �
UmqðξÞ ¼ 0, (8a)

∂

∂η
1� η2
	 
 ∂

∂η

� �
� a1η� p2η2 � m2

1� η2
� Amq

� �
ΛmqðηÞ ¼ 0, (8b)

where the label q refers to the number of zeros of the function Λmq(η). The
(quasi)radial equation for Umq(ξ) and the (quasi)angular equation for Λmq(η),
are coupled through both the scaled energy p2 and the separation constant

Amq. States with different m values are not coupled, and can therefore be

considered independently.

2.2 Sturmian approach
For both bound and continuum states, we solve the coupled equations using

a spectral approach, based on expansions on Sturmian functions in radial and

angular coordinates.

2.2.1 Angular
For a given m and q, the solution of Eq. (8b) is proposed as an expansion

Λjmj,qðηÞ ¼
X
j

cj S
a
j ðηÞ, (9)

on Sturmian functions, i.e., eigenfunctions of the Sturmian equation

∂

∂η
1� η2
	 
 ∂

∂η

� �
� m2

1� η2

� �
Saj ðηÞ ¼ �βj S

a
j ðηÞ, (10)

with boundary conditions Saj ð1Þ ¼ 1 and Saj ð�1Þ ¼ ð�1Þ j for m ¼ 0 and

Saj ð1Þ ¼ Saj ð�1Þ ¼ 0 for m 6¼ 0. The solutions are actually the well-known

associated Legendre polynomials,24 Saj ðηÞ ¼ Pm
j ðηÞ , and correspond to

eigenvalues βj ¼ j(j + 1).

The normalization of our resulting angular solution Λjmj,q(η) is taken
such that Z 1

�1

Λjmj,qðηÞΛjmj,q0 ðηÞdη ¼ δqq0 : (11)
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2.2.2 Radial
For the radial part, we propose an expansion

UðξÞ ¼ ðξ2 � 1Þjmj=2
X

j

djSr
j ðξÞ, (12)

on a basis of Generalized Sturmian Functions Sr
j ðξÞ generated by the

Sturmian equation

∂

∂ξ
ξ2�1
	 
 ∂

∂ξ

� �
+2ξjmj ∂

∂ξ
+ a2 ξ� p2s ξ

2

� �
Sr
j ðξÞ¼ αj VsðξÞ Sr

j ðξÞ, (13)

where αj are the eigenvalues and p2s ¼ � R2Es

2
is a parameter that can be set

freely.Vs, known as generating potential, must be a short range potential and

we adopt here the same choice as in Ref. 8. The two boundary conditions

enforced on the basis are as follows: At ξ ¼ 1, we require Sr
j ðξÞ 6¼ 0 and

finite (for bound-type Sturmian functions more details are given in

Ref. 8). At the other end, for ξ ! ∞, for bound-type functions we simply

impose a vanishing Sr
j ðξÞ for large ξ; technically we fix Sr

j ðξ ¼ ξmaxÞ ¼ 0

where ξmax is the radial box size considered as sufficiently large. For

continuum-type Sturmian functions, we impose the sinusoidal behavior

(see Eq. 14), still imposing Sr
j ðξ ¼ ξmaxÞ ¼ 0 and normalizing Sr

j ðξÞ so that

the last maximum of
ffiffi
8
π

q
1
ξR

1ffiffi
k

p
h i�1

Sr
j ðξÞ is set to have a unit amplitude.

The choice of Es is conveniently guided by the physical behavior one

wishes to describe, and thus depends on whether one is interested in having

a bound or continuum basis.

For a bound state with an a priori unknown energy value, taking Es < 0

close to a guess of the sought after energy turns out to be a good choice.

With this choice, all basis elements Sr
j ðξÞ will have an exponential decay

e�ps ξ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�EsR

2=2
p

ξ, and will be suited to build up the radial part of that

bound state.

For a continuum state of energy E¼ k2/2> 0, taking Es ¼ E is a natural

choice since all basis elements will then intrinsically possess the adequate

energy; furthermore, if Vs is taken to be of short range, Eq. (13) indicates

that they will all have the correct asymptotic behavior. This is a key feature

of our Sturmian approach. Finally, the radial functions Uk
jmj,qðξÞ are built to

behave asymptotically (ξ ≫ 1) as19,20
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Uk
jmj,qðξÞ ¼

ffiffiffi
8

π

r
1

ξR
1ffiffiffi
k

p sin
kRξ
2

+
Z1+ Z2

k
ln ðkRξÞ � ‘π

2
+ Δjmj,q

� �
,

(14)

with ‘ ¼ q + jmj and Δjmj,q a phase, as to be normalized in the energy space

R3

8

Z ∞

1

~U
k

jmj,qðξÞ ~U
k0

jmj,qðξÞξ2dξ ¼ δðE � E0Þ: (15)

In both continuum and bound cases, the Sturmian expansions convert the

two differential equations into two generalized eigenvalue problems (see

details in Ref. 8), solving the eigenvalue problem for the Amq parameters

for the angular part and for the eigenvalues p2 for the radial part. An appro-

priate choice of Es will impose the correct energy behavior onto the radial

Sturmian functions, ultimately making the basis more efficient from a con-

vergence point of view.

2.2.3 Numerical procedure
For bound states, we adopt an iterative scheme as detailed in Ref. 8 for any

given value of the quantum number m. We start from a guess energy value

p2 for a given number q of angular nodes. We solve the angular eigensystem

(8b) to find the separation constant Amq. With that value of Amq we then

solve the radial eigensystem (8a) with our Sturmian basis and find the energy

eigenvalues. We then select the closest eigenvalue to the initial guess and

iterate that energy in the angular equation to find the newAmq. The iteration

is performed until the energy difference is smaller than 10�10. With just

6 Legendre polynomials to expand the angular part, we found for the ground

state an energy of E1σg ¼ �1:102634186 a.u. and Amq ¼ 0.811729480.

For continuum states, we proceed as follows: For a given q, we first solve

the angular part (8b) for a fixed positive energy Emq; here again we used 6

Legendre polynomials. For the radial part we then start the search of a ξmax
such that at ξ¼ ξmax that energy eigenvalue Emq has a zero in that endpoint.

Starting with a guess value for ξmax around 80 a.u., we perform a bracketing

minimum search for the radial (energy) eigenvalue problem, defined as the

absolute value of the difference between the searched energy and the closest

real eigenvalue. After bracketing we use Brent’s method for minimum

search,25 up to a tolerance of 10�10.
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3. Results

In this paper we consider only the hydrogen molecular ion H+
2 for

which Z1 ¼ Z2 ¼ 1 and thus a1 ¼ 0. In order to facilitate the comparison

with other theoretical results, all calculations were performed for a fixed

internuclear distance of R ¼ 2 a.u.

3.1 Continuum states
For a given energy Ec, and given numbers m and q, we solve the coupled

system of equations. We set ξmax, the maximum of the radial coordinate,

close to 80 a.u. The key of the Sturmian method resides in the fact that

the asymptotic behavior of the solution is already fulfilled by the basis func-

tions; therefore, only a few elements are needed to expand the internal

region. As a numerical check, we have also used B–splines to construct

the radial Sturmian basis, and validated all calculations.

As an example, we present in Figs. 2 and 3 the angular and radial solutions

we have obtained for m ¼ 0, an energy Ec ¼ 1 a.u. and for the components

q¼ 1, 3, 5. The number of nodes in the angular solutions is clearly observed.

To better appreciate the asymptotic radial behavior, we plotted the radial

solutions Uq(ξ) multiplied by ξ. This product reaches quite rapidly the

asymptotic regime (14); from ξ ¼ 20 up to ξmax (not shown) each compo-

nent ξUq(ξ) is essentially a sinus function. For comparison, the ground state is

-1 -0.5 0 0.5 1
η

-2

-1

0

1

2

Λ
0q

(η
)

q=1
q=3
q=5

Fig. 2 The angular function Λmq(η), solution of Eq. (8b) for m ¼ 0 and q ¼ 1, 3, and 5,
calculated for Ec ¼ 1 a.u. with 6 Legendre polynomials.
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also included in the figure; the radial function decays very rapidly, being

negligible for ξ larger than 10 a.u.

3.2 Photoionization cross section
In order to test the quality of our continuum states, we apply them to study

the photoionization of H+
2 by a single photon of energyω, and linearly polar-

ized along the Êdirection (here chosen along the z-axis). If the photoelectron
is ejected with energy Ec ¼ k2/2, the energy conservation reads

ω ¼ Ec + IP, (16)

where IP stands for the ionization potential. Hereafter we assume the molec-

ular target, described by the wavefunctionΨi, to be in its ground state 1σg for
which IP¼ 1.102634 a.u. Also, we take the continuum state, described by a

wavefunction Ψk, to be normalized in energy space.

In the dipole approximation, the cross section in the length gauge is

given by26

σ ¼ 4π2αω ΨkjÊ � rjΨih ij j2, (17)

where α stands for the fine structure constant. The polarization being along

the z-axis, the dipole operator reads Ê � r ¼ z ¼ ξηR
2
. In the velocity gauge

the definition is given by

5 10
ξ

-0.5

0

0.5

1

ξ 
  U

0q
(ξ

)

q=1
q=3
q=5

Fig. 3 The radial function ξ Umq(ξ), solution of Eq. (8a) for m ¼ 0 and q ¼ 1, 3, and 5,
calculated for Ec¼ 1 a.u. with 10 radial Sturmian functions. The radial part of the ground
state Ψ1σg is also plotted (in green).
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σ ¼ 4π2α
ω

ΨkjÊ � rrjΨih ij j2, (18)

where, for the chosen polarization, the operator reduces to

Ê � rr ¼ d

dz
¼ 2

Rðξ2 � η2Þ ηðξ2 � 1Þ d

dξ
+ ξð1� η2Þ d

dη

� �
: (19)

In both cases, the matrix element is a three-dimensional integral over the

electronic coordinates. The cross sections calculated in both gauges are equal

if exact wavefunctions are used in the matrix element evaluation. Any devi-

ation is a signature of the approximate description of the states involved.

Generally speaking, the photoionization process provides an indirect tool

to test the theoretical description of the target before and after the interac-

tion, and thus our capacity of describing correlation and many-body effects

for both bound and unbound electronic states. In the case of the one-

electron ion H+
2 , there is no correlation, but the present photoionization

study provides a stringent test of the final continuum state on which this

paper is focused.

Since the ground state 1σg corresponds to m ¼ 0, the continuum state

will also have m ¼ 0. Moreover, the ground state has no zeros (q ¼ 0) so

that only odd values of q of the continuum will contribute (it turns out that

values higher than q ¼ 5 do not contribute significantly).

We have calculated, in both the length and velocity formulation, the

contribution of different q values, and denote σq the corresponding partial

cross section. We denote by σtotal ¼
P

q σq. In Table 1 we provide (1/3)σq
for different energies and compare with results from the literature.

From these results, we can make the following statements. Our approach

provides very satisfactory results with rather small basis sets. They can be

compared, for example, with the 20 angular times 80 radial B–splines with
order 7, employed in the calculations presented in Ref. 21. Gauge agree-

ment is also pretty well observed, except for q ¼ 5 whose contribution is

though rather small relatively to the q ¼ 1 and q ¼ 3 components.

In Fig. 4 we show the contributions σtotal obtained in both length and

velocity gauge. We compare our results with those of Bian21 obtained with

an imaginary-time-propagation (ITP) method (note that Bian gives only

length gauge data); the length and velocity gauge results of Tao et al.18

obtained with the complex scaling method are visually indistinguishable

from those of Bian and are not reproduced here. Our results are in very nice

agreement over the whole energy range.
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In Fig. 5 we show the relative contributions σq/σtotal for q ¼ 1, 3, and 5.

We observe the same trend as featured by the results of Bian.21 The total

cross section is strongly dominated by the q ¼ 1 channel at low energies

but this contribution decreases rapidly as the energy increases. At about

Table 1 Partial cross sections (1/3)σq for the photoionization of the ground state H+
2

1σg ! Ecσu calculated at a internuclear distance R ¼ 2 a.u.

Photoelectron energy
Ec 5 k2/2 (a.u.)

Gauge and
source

Ecpσu
σq51

(× 1022 Mb)

Ecfσu
σq53

(× 1022 Mb)

Echσu
σq55

(× 1022 Mb)

1 L [present] 0.694 0.933 0.00031

V [present] 0.698 0.906 0.00071

L&V15 0.694 0.904 0.00042

L21 0.688 0.907

2 L [present] 0.516 0.630 0.00632

V [present] 0.516 0.613 0.00176

L&V15 0.516 0.618 0.00132

L21 0.517 0.618

4 L [present] 0.198 0.222 0.00916

V [present] 0.198 0.218 0.00347

L&V15 0.200 0.222 0.00314

L21 0.202 0.220

0 2 4 6
Ec (a.u.)

0

0.01

0.02

0.03

0.04

0.05

σ q  (
M

b)

q=1  L
q=3  L
q=5  L
q=1  V
q=3  V
q=5  V
Total L
Total V
Bian

Fig. 4 Cross sections for the photoionization of the ground state of H+
2 as a function of

the photoelectron energy Ec ¼ k2/2.
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Ec ¼ 5 a.u. the q ¼ 3 becomes the largest contribution. The q ¼ 5 compo-

nent remains weak throughout the considered energy range (about two

orders of magnitude smaller).

4. Summary

We have investigated continuum states of the molecular ion H+
2, using

expansions on Generalized Sturmian Functions in spheroidal prolate coor-

dinates. The numerical scheme, based on a double expansion in (quasi)radial

and (quasi)angular coordinates, is presented and tested. The continuum

wavefunction is used to calculate photoionization cross sections which com-

pare very well with data found in the literature. It is worth emphasizing that

in our calculation both the initial bound and final continuum states are

treated within the same Sturmian approach which proves to be robust,

and numerically efficient since only rather small basis are needed. This is

due to (i) the use of natural coordinates for this molecular geometry;

(ii) the intrinsically physical behavior imposed asymptotically onto the radial

Sturmian functions. In line with what was presented in Ref. 8, we are

currently also implementing a two-dimensional approach whereby a two-

dimensional Sturmian basis set is used.

The present work provides us with positive energy one-electron basis

functions suited for diatomic molecules. In a near future, we plan to apply

the developed tool to explore angular distributions for the photoionization of

one-electron diatomicmolecules,18,20,27 and study also electron scattering.20

0 1 2 3 4 5 6 7
E

c
  (a. u.)

0

0.2

0.4

0.6

0.8

σ q  /
  σ

to
t

q=1
q=3
q=5

Fig. 5 Relative contribution of each σq/σtotal (calculated in the length gauge) for the
photoionization of the ground state of H+

2 , as a function of the photoelectron energy
Ec ¼ k2/2.
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In a more remote future, the idea is to deal with the more challenging two-

electron correlated case, by investigating single and double ionization pro-

cesses on H2 and on quasi two-electron targets like N2.
28 Similarly to what

was proposed with Generalized Sturmian Functions for atomic systems,29

one way to take up this challenge for many-electrons diatomic molecules

is to proceed by constructing correlated functions, with angularly coupled

products of the present one-electron Sturmian functions in prolate spheroi-

dal coordinates. Among the two-electron matrix elements, integrals involv-

ing the electron-electron interaction 1/jr1 �r2j will be the most difficult to

evaluate. However we should be able to make good use of its expansion in

prolate spheroidal coordinates, which is given in terms of regular Legendre

functions in the angular variables η1 and η2, and the regular and irregular

Legendre functions in the radial variables ξ1 and ξ2.
30
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