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Abstract14

An accurate theoretical description of photoionization processes is nec-15

essary in order to understand a great variety of physical and chemical16

phenomena, and allows one to test correlation effects of the target. Com-17

pared to the case of many-electron atoms several extra challenges occur18

for molecules. The scattering problem is generally multicenter and highly19

non-central. Additionally, the molecular orientation with respect to the20

polarization of the radiation field has to be taken into account. These21

features make the computational task much more cumbersome and ex-22

pensive than for atomic targets. In order to calculate cross sections one23

needs to describe the ejected electron with a continuum wavefunction with24

appropriate Coulomb asymptotic conditions. Making a number of initial25

approximations, many different theoretical/numerical methods have been26

proposed over the years. However, depending on the complexity of the27

molecule, agreement among them is not uniform, and many features of the28

experimental data are not so well reproduced. This is illustrated through29

a number of examples. In order to have a global theoretical overview we30

present a survey of most of the methods available in the literature, indicat-31

ing their application to different molecules. Within a Born–Oppenheimer,32

one-center expansion and single active electron approximation, we then33

introduce a Sturmian approach to describe photoionization of molecular34

targets. The method is based on the use of generalized Sturmian func-35

tions for which correct boundary conditions can be chosen. This property36

makes the method computationally efficient, as illustrated with results for37

H2O, NH3 and CH4.38
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1 Introduction88

The quantum description of both bound and unbound orbitals are necessary89

ingredients to study collisions with atoms and molecules. The study of single90

photoionization (PI) provides an indirect tool to test our capacity to describe91

correctly the target before and after the interaction, and thus correlation and92

many-body effects. PI plays an important role beyond atomic and molecular93

physics, since it has a wide variety of applications, such as astrophysics1–3,94

planetary4–6, atmospheric7,8, plasma9–11 or medical physics12,13. Also PI helps95

to understand different processes in surfaces, as structural changes upon surface96

adsorption, quantifying the relationship between shape resonances and the bond97

lengths14–17; or to characterize the relation between gas, chemisorbed and solid-98

state phases in surface reactions18–21.99

In the last few years, a Sturmian approach22,23 has been introduced to study100

single and double ionization of atoms induced by electron or photon impact24.101

It is the purpose of this contribution to extend, implement and apply such102

an approach to the PI of molecular targets. The Hamiltonian for molecules103

being generally multicenter and highly non-central makes life harder than in the104

case of atomic targets. Indeed, the absence of any spherical symmetry couples105

different angular momenta from different atomic orbitals (AOs) that conform106

the molecular orbitals (MOs), and thus convergence of “traditional” methods107

is considerably more difficult to achieve. Additionally, there are various many-108

body effects that can be important in ionization processes, such as the relaxation109

of all MOs, due to the creation of a hole (ionized electron), or the change of110

the remaining pair correlation energies because of such relaxation. An issue111

which does not arise in PI of atoms is the orientation of the molecular target.112

In most experiments the molecule is randomly oriented and this must be taken113

into account within the theoretical calculations.114

When leaving an atomic or molecular target, an ionized electron needs to115

be described accurately by a continuum wavefunction, which has a well de-116

fined boundary conditions. Over the years, quite a few methods have been117

proposed and applied successfully to atoms. The extension of these methods118

and their computational codes to molecular targets is not straightforward, as119

several complications arise beyond the many-body nature of the problem, and120

not all of them can provide the correct asymptotic form. Different approaches121

have been applied to a large variety of molecules ranging from the smallest122

one, H2, up to, e.g., DNA basis. The success of each method depends on the123

considered molecule and photon energy range, the validity of some approxima-124

tions, and possibly on convergence issues or limitations related to the numerical125

implementation.126

Except for small molecules, experimental data are not so abundant, and do127

not always span the whole photoelectron energy range; they therefore do not128

permit to fully assess the quality of different theoretical descriptions. As several129

theories are often not in agreement with each other and with experimental data,130

especially close to threshold, we made a survey of the different methods applied131

to PI in molecules. For each, we briefly indicate the main ingredients, the132

advantages and possible limitations. We also found useful to draw a list (rather133

complete to the best of our knowledge) of all molecules for which PI has been134

investigated theoretically.135
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In order to calculate the transition amplitudes for single PI in atomic or136

molecular systems, many considerations must be taken into account. Usually137

the starting point is the treatment of the ionized electron as a one-electron func-138

tion, the one-center expansion (OCE). In many cases, the vibrational structure139

of the molecule can be ignored, especially in high energy collisions, so that one140

may work within the Born–Oppenheimer (BO) approximation. Also, in order141

to simplify the calculations, the frozen core (FC) approximation and the static142

exchange approximation (SEA) are considered. It is within this frame, together143

with a model molecular potential, that we implement the generalized Sturmian144

approach. In the literature several Sturmian functions implementations exist,145

as reviewed, e.g., in the introductions of References 22 and 23. Similarly to pre-146

vious publications on scattering studies (see the recent review 22 and references147

therein), in this contribution we shall name Generalized Sturmian Functions148

(GSF) those defined in Section 5.1; note that other authors use the same termi-149

nology to define a different class of Sturmian functions. One of the advantages150

of such a method is that it allows to ensure that the continuum wavefunction151

has the correct asymptotic behavior22. To assess the validity of our approach,152

we will compare the calculated PI cross sections for a number of small molecules153

with theoretical and experimental data found in the literature.154

The rest of this paper is organized as follows. We start with some gener-155

alities on PI in Section 2; we continue in Section 3 with a brief panorama of156

what sort of agreement one observes in the literature between theoretical and157

experimental cross sections. In Section 4 we present a survey of different theo-158

retical methods used to investigate molecular PI. In Section 5 we introduce the159

Sturmian approach, and compare our results for PI of H2O, NH3 and CH4 to160

several theoretical and experimental data.161

Atomic units (ℏ = e = me = 1) are assumed throughout, unless stated162

otherwise.163

2 Generalities164

In the study of the interaction of a radiation field (a photon) with a molecular165

target several processes may occur. Consider a photon of energy Eγ = ℏω, such166

that Eγ > I0, where I0 is the ionization potential of the molecule. Once it167

strikes the polyatomic molecule RA in an initial vibrational state ν0 (R is the168

polyatomic radical and A is an individual atom), the different outcomes may be169

ℏω +RA(ν0) →





RA+ + e− (ℓ) Photoionization,
R∗ +A∗ Photodissociation,
R∗ +A+∗ + e− (ℓ) Dissociative photoionization.

(1)170

If we have a dissociation process, the final products can be in an excited state.171

If we have an ejected electron, called photoelectron, it has a defined angular172

momentum ℓ. In this contribution, we will concentrate only on single PI which173

can be considered as a “half-scattering” processes. It involves a bound-free174

transition for which one needs to know only the initial state Ψ0 of the molecule,175

usually its ground state (energy E0), and the final state of the ionized electron.176

The transition operator, that connects both initial and final states, is described177

semi-classically via the dipolar approximation; the dipolar operator in both178
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length (L) and velocity (V) gauges reads179

D̂(L) = −ε̂ · r, (2a)180

D̂(V) = −ε̂ · p, (2b)181

where ε̂ gives the polarization of the field. In this work we consider linear182

polarization along the z direction.183

The major task is to calculate accurately the wavefunction Ψ of the pho-184

toelectron, that is an electron in a continuum state of the ionized molecular185

target, with an energy E = k2/2 defined by the energy of the incident photon186

E = Eγ−I0. Such continuum wavefunctions are more difficult to calculate than187

the low-lying bound-states as they oscillates up to infinity. They are solutions188

of the time-dependent Schrödinger equation (TDSE) or the time-independent189

Schrödinger equation (TISE), with well defined properties. They must be reg-190

ular at the origin of the coordinate system, and the asymptotic boundary con-191

ditions are given by the superposition of an incoming-wave Coulomb function192

plus an incoming spherical wave, generated by the non-Coulomb part of the193

molecular potential25194

lim
r→∞

Ψ(−) ∝ e−i(kz+Z
k

lnk(r−z)) + f
(
k̂, r̂

) 1

r
e−i(kr−Z

k
ln(2kr)), (3)195

where f
(
k̂, r̂

)
is the transition amplitude and Z = −1 for an initial neutral196

target.197

One quantity that is measurable experimentally is the PI cross section, de-198

fined theoretically as199

dσ

dE
=

πe2

m2~2c
ω(g)

∣∣∣
〈
Ψ0

∣∣∣D̂(g)
∣∣∣Ψ

〉∣∣∣
2

, (4)200

where ω(L) = E − E0 or ω(V) = (E − E0)
−1

and c is the speed of light.201

In most experiments it is difficult to determine the spatial orientation of202

the molecule in a given laboratory frame. Only a few advanced experimental203

techniques can perform a full angle-resolved spectroscopy, such as the one based204

on ultrashort pump-probe laser pulses26,27 and the full kinematic experiments205

as COLTRIMS (cold target recoil ion momentum spectroscopy)28. In most206

cases, therefore, one must consider a random orientation of the molecule when it207

interacts with the radiation field. To do that, two different coordinates systems,208

whose origin coincide with the center of mass of the target, are considered29: the209

laboratory frame, r′, defined by the polarization axis of the electric field, and a210

molecular-fixed frame, r, defined by the axis of highest symmetry. Let β and α211

be the polar angles of this molecular axis with respect to the laboratory frame,212

and let the set of Euler angles R̂ = (α, β, γ) denote hereafter the molecular213

orientation. A rotation R̂ will bring the molecular fixed frame into coincidence214

with the laboratory frame. The dipolar operator in length gauge (2a), for a215

linearly polarized field (axis z), in the laboratory frame is then216

z′ =

(
4π

3

)1/2

r
∑

µ

Y µ
1 (r̂)D

1
0µ

(
R̂

)
, (5)217

where D1
0µ

(
R̂

)
is the rotation matrix30 that rotates the dipolar operator to218

the molecular frame. The rotated dipolar operator in velocity gauge follows219
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a similar expression. In order to calculate a cross section for a randomly ori-220

ented molecule, we must calculate first the orientation-dependent transition221

amplitudes in Equation (4) (see also Section 5.2) and then perform an angular222

average over R̂, defined as223

∫
dR̂ ≡ 1

8π2

∫ 2π

0

dα

∫ π

0

sinβ dβ

∫ 2π

0

dγ , (6)224

of the square modulus of such transition amplitudes.225

3 Examples Taken from the Literature226

As mentioned in the Introduction, many different theoretical methods and com-227

putational codes have been developed over the years to study PI in multielectron228

atoms. For molecules, many complications arise. The problem is highly non-229

central and generally multicenter so that continuum wavefunctions are quite230

difficult to calculate. Additionally the vibrational structure can have an impor-231

tant influence on the electronic structure and therefore on the PI itself.232

To overcome all these complexities, additional to the “traditional” frozen233

core (FC) or the SEA, one starts to separate the electronic motion from that234

of the nuclei, and this is done using the BO approximation. One may also235

implement the fixed nuclei (FN) approximation, and it is possible to go further236

and use the OCE, where all electrons are referred to a common center, usually237

the center of mass of the molecule. Such variety of approximations (which238

are needed to deal with molecular systems), together with the choice of basis239

functions or adopted numerical approach, translates into a considerable non-240

uniformity in the quality of the end product. Except for H2, for most molecules241

the PI cross sections obtained using different theoretical or numerical methods242

do not show an overall satisfactory agreement on one hand between them and,243

on the other hand, with experimental data. This is illustrated below with four244

different molecules: H2, N2, CO2 and C6H6. We emphasize that almost all245

experimental data presented here do not have explicit error bars, either because246

they are not indicated in the given references or because they are too small,247

typically smaller than 3%.248

3.1 H2249

We start with H2, the simplest many-electron molecule. Figure 3.1 shows the250

PI cross sections obtained using different methods: self-consistent field (SCF,251

see Section 4.2.1), configuration interaction (CI, see Section 4.1), ground state252

inversion method (GIPM/D, see Section 4.7.2), random-phase approximation253

(RPA, see Section 4.9) and logarithmic derivative Kohn method (LDKM, see254

Section 4.11.1). They are further compared with the experimental data of Chung255

et al 31. For this example, SCF and CI calculations used OCE, CBF used FN256

and LDKM the FC approximation. Except for the SCF results, we see an257

excellent agreement between all theories with experimental data. Indeed, the258

molecule H2 is sufficiently simple to allow for a PI study taking into account259

all interactions. One aspect, though, that remains challenging is to calculate260

precisely the positions and widths of the doubly excited states that depend on261

the nuclear motion.262
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Figure 3.1: (Color online) PI cross section in Mb versus photon energy in eV
for the ground state of H2 molecule. We compare the results obtained using
SCF32 (purple, dash-dot); CI33 (red, dash); GIPM/D34 (brown, dots); RPA35

(blue, dash-dot-dot) and LDKM36 (orange, solid) with experimental data31

(black dots).

3.2 N2263

We show in Figure 3.2 the PI cross sections for the outer valence orbital 3σg of264

N2. For such MO we show calculations performed with CI (Section 4.1), time-265

dependent density functional theory (TD-DFT, see Section 4.3.2), multiple-266

scattering Xα (MS Xα, see Section 4.6), Stieltjes–Tchebycheff technique (STT,267

see Section 4.10) and iterative–Schwinger method (ISM, see Section 4.12.1).268

Note that the results for CI and TD-DFT were obtained using OCE, and for269

ISM using the FC approximation. The theoretical cross sections are compared270

with the experimental results of Plummer et al 37.271
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Figure 3.2: (Color online) Partial PI cross section in Mb versus photon energy
in eV from the MO 3σg of N2. Results for CI

38 (red, dash); TD-DFT39 (green,
dash-dot); MS Xα40 (blue, dots); STT41 (gray, dash-dot-dot) and ISM42 (or-
ange, dash-dash-dot) are compared with experimental data37 (black dots).

The situation changes drastically when moving from H2 to a more complex272
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molecule such as N2. The Figures show that the agreement between different273

theories and experimental data is basically lost, especially for energies close to274

threshold. Moreover, only a partial agreement for higher energies is observed.275

Except for the CI results, none of the other calculations reproduces the different276

series of resonances located between 20 and 25 eV.277

3.3 CO2278

The PI cross sections for CO2 are shown in Figure 3.3 for the MO 1πg. We279

compare the results obtained with GIPM/D (Section 4.7.2), STT (Section 4.10),280

ISM (Section 4.12.1) and R-matrix method (RMM, see Section 4.8). The ex-281

perimental data are taken from Brion and Tan43.282

Here, results for ISM and RMM used both the FC and the FN approxi-283

mations. Depending on the energy range, the different theoretical calculations284

present again only a partial agreement, and even if they cannot reproduce com-285

pletely the experimental data, they perform rather well beyond 25 eV. Although286

the center of mass of CO2 is close to the C atom because of its linear geom-287

etry, this molecule is particularly difficult to describe: the density of charge288

is completely delocalized around the molecule and only the use of multicenter289

wavefunctions yields acceptable PI results, as in the GIPM/D case.290
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Figure 3.3: (Color online) Partial PI cross section in Mb versus photon energy
in eV from the MO 1πg of CO2. Results for GIPM/D44 (brown, dots); STT41

(gray, dash-dot-dot); ISM45 (orange, dash-dash-dot) and RMM46 (blue, solid)
are compared with experimental data43 (black dots).

3.4 C6H6291

Finally, for benzene (C6H6), PI cross sections for the outer valence orbital 1e1g292

are shown in Figure 3.4. The theoretical results obtained using DFT (Sec-293

tion 4.3.1), TD-DFT (Section 4.3.2), GIPM/D (Section 4.7.2) and LDKM (Sec-294

tion 4.11.1) are compared with the experimental data by Carlson et al 47.295

This is a rather complex molecule to describe theoretically, and the difficul-296

ties show up in the PI spectra. None of the calculations reproduce accurately297

the resonances (neither their energy position nor their intensity), let alone the298

overall cross section magnitude except at rather high photoelectron energies.299
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Figure 3.4: (Color online) Partial PI cross section in Mb versus photon energy
in eV from the MO 1e1g of C6H6 (benzene). Results for DFT48 (blue, dash-
dot-dot); TD-DFT49 (green, dash-dot); GIPM/D50 (brown, dots) and LDKM51

(orange, solid) are compared with experimental data47 (black dots).

As evidenced from Figures 3.1 to 3.4, except for H2, for all other molecules300

we can draw similar conclusions: (1) large disagreements between methods are301

clearly observable when comparing PI cross sections; (2) experimental data, in302

particular near threshold, are generally not well reproduced (other features of303

the continuum spectra are also difficult to reproduce). This is also true for H2O,304

NH3 or CH4 molecules; the cross sections will be presented in Section 5.3, where305

we shall compare different theoretical calculations including ours obtained with306

the Sturmian approach. To have an overview of most methods that have been307

proposed to describe molecular PI, we present in the next section a survey and308

indicate to which molecules they have been applied (a rather complete list is309

presented in Appendix A).310

4 Survey of Theoretical Methods311

4.1 CI312

One of the “classical” methods used to study electronic structure in atoms and313

molecules is configuration-interaction (CI); a description of its use for the study314

of PI of molecules can be found in Reference 52.315

Some results obtained using the CI method are the studies by Daasch et al 53316

for CO2, van Dishoeck et al 54 for HCl and Decleva et al 55 for O3. Using B-317

splines56 as a basis set, Apalategui and Saenz57 studied multiphoton ionization318

of H2; Vanne and Saenz58 studied HeH+; Fojón et al 59 also studied H2; Sanz–319

Vicario et al 33 studied PI of H2 by ultrashort laser pulses and Sansone et al 27 for320

H2 and D2; Dowek et al 60 studied circular dichroism in H2. Using the so-called321

time-dependent CI61, we find the works of Klinkusch et al 62 for LiCN, and of322

Sonk and Schlegel63 for C4H6 (butadiene). Finally, using the multichannel CI323

complete-active-space64, we can find the works of Stratmann et al 38 for N2, and324

of Stratmann and Lucchese65 for O2.325
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4.2 Hartree–Fock Methods326

4.2.1 Self-Consistent Field327

Among the studies that have used the Hartree–Fock (HF) method and the self-328

consistent field (SCF) to study PI of molecules, we find the work of Dalgarno66
329

for CH4; Kelly32 studied H2; Schirmer et al 67, together with the Green’s func-330

tion formalism, studied the inner-valence PI of N2 and CO; Padial et al 1, using331

Gaussian-type orbitals (GTOs), studied C2. For calculations performed with the332

relaxed-core HF approximation, we have the results of Larkins and Richards68333

for Li2; the studies of Saito et al on the K-shell photoelectron angular distri-334

bution from CO2
69 and from NO2

70; Semenov et al 71 studied the PI from the335

K-shell of the CO. We should also mention the review of different applications336

of SCF by Ågren et al 72.337

4.2.2 Multiconfiguration time-dependent Hartree–Fock338

In general, it is difficult to describe with high precision highly excited states and339

non-adiabatic dynamics in molecules, especially if one is interested in study-340

ing ionization by high-intensity radiation fields. The multiconfiguration time-341

dependent Hartree–Fock (MCTDHF) approach is a method that uses a linear342

combination of determinants of time-dependent orbitals, and is flexible enough343

to describe the response of a molecule to short and intense laser pulses. The344

formalism can be found in References 73–75.345

The MCTDHF has been used by Kato and Kono75 and by Haxton et al 76346

to study PI of H2 by intense laser fields, and also by Haxton et al 77 for HF.347

4.3 Density Functional Theory348

The density functional theory (DFT) is widely used in quantum chemistry. It349

allows to determine easily the electronic structure of a given system (an atom,350

a molecule, a crystal, etc), regardless of its extension or the number of particles351

that constitute it. While “standard” quantum mechanics works directly with the352

many-body wavefunctions of the different particles in a given system, the DFT353

uses the one-electron electronic density n (r), and is based on two theorems,354

called the Hohenberg–Kohn theorems78. In different implementations of the355

DFT to study PI of molecules, n (r) is calculated using a conventional linear356

combination of AOs (LCAO)48.357

4.3.1 Kohn–Sham DFT358

In the Kohn–Sham DFT (KS DFT)79, the Hamiltonian of the molecular system359

is determined by the density of the occupied orbitals in the ground state, and in360

terms of the Hartree potential, the electron-nuclei interaction, and the so-called361

exchange-correlation potential which contains all the “unknowns” of the sys-362

tem. Different potentials are available in the literature for different atomic and363

molecular systems (see, for instance References 80 and 81), based, for example,364

in the local density approximation or in the generalized gradient approximation.365

The KS DFT has been used by Venuti et al 48 to study PI in C6H6; by366

Stener and Decleva, using the OCE approximation, to study HF, HCl, H2O,367

H2S, NH3 and PH3 (Reference 82), and CH4, SiH4, BH3 and AlH3 (Reference368
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83). Toffoli et al 84, using the multicenter expansion, calculated cross sections369

for Cl2, (CO)2 and Cr(CO)6. Woon and Park85 also studied C6H6 (benzene),370

C10H8 (naphthalene), C14H10 (anthracene) and C16H10 (pyrene). Stranges et371

al 86 studied the dynamics in circular dichroism of the C3H6O (methyl-oxirane).372

Toffoli et al 87 studied the PI dynamics in C4H4N2O2 (uracil).373

4.3.2 Time-Dependent DFT374

The time-dependent DFT (TD-DFT)88 constitutes another line of development375

of the DFT methods. In the first order time-dependent perturbative scheme,376

where the zeroth order is equivalent to the KS DFT89, the linear response of377

the electronic density n (r) to an external weak time-dependent electromagnetic378

field can be described by a SCF potential, given by Zangwill and Soven90.379

The TD-DFT has been used by Levine and Soven39 to calculate photoe-380

mission cross sections and asymmetry parameters of N2 and C2H2. Stener,381

Decleva and coworkers, using B-splines56 and the OCE, studied PI for different382

molecules: Stener and Decleva89 calculated the cross sections for N2 and PH3;383

Stener et al 91 for CH4, NH3, H2O and HF; Stener et al 92 for CO and also from384

the K-shell93; Fronzoni et al 94 for C2H2; Stener et al 49 for CS2 and C6H6;385

Toffoli et al 95 and Patanen et al 96 for CF4, and Holland et al 97 for pyrimidine386

and pyrazine. We also find the work of Russakoff et al 98 for C2H2 and C2H4,387

and by Madjet et al 99 for C60. Different results for molecular PI have been388

reviewed by Stener et al 100.389

For the sake of completeness, we also mention some studies of molecular PI390

that use a slightly different approach, the static-exchange DFT: Plésiat et al 101391

investigated PI of N2 and CO, and Kukk et al 102 from the inner-shells of CO.392

4.4 Complex Methods393

4.4.1 Complex Scaling394

The complex scaling (CS) method103,104 has been used extensively to study395

ionization and, mainly, resonance phenomena in atoms and molecules. The idea396

behind this method is to scale the coordinates of all particles in the Hamiltonian397

by a complex-valued scale factor: r → reiθ . One variant of the CS is the so-398

called exterior complex scaling (ECS)105–107, whereby the coordinates scale only399

outside a fixed radius R0400

r → R (r) =

{
r for r 6 R0,
R0 + (r −R0)e

iθ for r > R0.
(7)401

The ECS method has been applied to study general scattering problems using L2
402

basis set representations. It is especially well suited to study ionization processes403

in molecules, since the definition of the exterior scaling (7) avoids complicated404

scaling expressions in the nuclear attraction terms of the Hamiltonian106 when405

R0 is large enough to enclose all the molecular nuclei.406

The ECS has been used mainly by McCurdy, Rescigno, Mart́ın and coworkers407

to study different ionization processes in atoms and molecules: McCurdy and408

Rescigno108,109 used Cartesian Gaussian-type orbitals (CGTOs) to calculate PI409

cross sections of H+
2 ; Vanroose et al 110,111, using B-splines56, studied double410

PI (DPI) of H2; Rescigno et al 112 performed ab initio DPI calculations of H2;411
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Tao et al, using discrete variable representation (DVR)113, calculated PI cross412

sections for H+
2

114,115 and angular distribution for DPI of H2
116.413

4.4.2 Complex Basis Functions414

In the complex basis functions (CBF) technique108,109,117 (the CS method can415

be considered a particular case of the CBF where the basis functions are defined416

in terms of the physics of the problem) the continuum scattering information is417

extracted from a finite-matrix representation of the electronic Hamiltonian in a418

set of complex square-integrable basis functions. The resulting matrix elements419

necessary to obtain the cross section, can be calculated efficiently using a discrete420

basis set approximation to the spectrum of the Hamiltonian108.421

The CBF technique, together with complex GTO, has been used by Mc-422

Curdy and Rescigno108 to calculate PI cross section of H+
2 ; by Yu et al 117 for423

valence- and K-shell ionization of N2, and by Morita and Yabushita118 for H+
2424

and H2.425

4.5 Linear Algebraic Method426

The linear algebraic method (LAM), developed by Collins and Schneider119,120,427

has been applied successfully to study molecular excitation and ionization by428

electron collisions. The adaptation of the method to study PI in molecules is429

given explicitly in Reference 121. The LAM presents the advantage of including430

explicitly an effective optical potential in order to introduce correlation effects431

into the scattering solution121.432

While the initial state is treated separately, usually in terms of GTO or433

CGTO119, the method is used to calculate directly the ejected electron un-434

bound wavefunction that satisfies the TISE. To do so, the configuration space435

is divided into two regions, with the boundary at r = a: (1) for r > a, where436

nonlocal effects are negligible, the wavefunction can be calculated by standard437

propagation procedures; (2) for r < a, where exchange and correlation effects438

are important, the wavefunction is expanded in two terms: one as a linear com-439

bination of the wavefunctions of the molecular-ion target and the scattering440

wavefunction, and the other in a set of “correlation” functions that are added441

for completeness121.442

In the LAM one obtains a set of differential equations in the SEA, that can be443

converted into a set of radial integro-differential equations using an expansion444

in partial waves of the electronic wavefunctions. Then, this set of scattering445

equations is further transformed into a set of coupled integral equations using446

Coulomb Green’s functions119. Finally, by introducing a discrete quadrature to447

evaluate the integrals, one obtains a set of linear-algebraic equations that can448

be solved with standard linear systems routines. This solution must be matched449

at r = a with the result of the propagation scheme to the asymptotic region.450

More details on the effective optical potential are given in the References 121,451

119 and 122.452

To our knowledge, this method has been used only by Collins and Schnei-453

der121 to calculate cross sections for H2, N2, NO and CO2.454
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4.6 Multi-Scattering455

The multiple-scattering method (MSM) has been developed in different physics456

fields, as in nuclear physics123, solid state physics124, and also in atomic and457

molecular physics (see, for example, References 125 and 126, and references458

therein). The idea behind the MSM is to represent the molecular field, that459

in general is highly non-central in the molecular core region, by a set of three460

potentials VI, VII and VIII, defined in different non-overlapping spheres (called461

muffin-tin partitioning): (I) defined by the {Ii} spherical regions containing the462

different atomic nuclei at their center ri = 0, and with radii {ρi}; (II) defined463

by ri > ρi and r0 < ρIII, where r0 is the radial coordinate from the center of the464

molecule and ρIII is the outer sphere radius, measured from the molecular center.465

In general, the potential VII is considered constant; (III) defined by r0 > ρIII.466

The potential VIII has a spherical symmetry. One can construct the photo-467

electron continuum wavefunction taking into account the continuity conditions468

between all three regions, and imposing the incoming boundary conditions (3) in469

the external region. The total wavefunction is written as Ψ =
∑

iΨi+ΨII+ΨIII,470

where each term is a solution to the potential of the corresponding region of the471

molecular field, and obeys the adequate asymptotic boundary conditions.472

The MSM or, equivalently the multiple-scattering with an undetermined473

factor α (MS Xα)127, have been widely used to study ionization of molecules by474

photon and electron impact. For example, Davenport calculated cross sections475

for N2 and CO40,128, and for H2
128; Dehmer and Dill calculated the K-shell476

PI of N2
129; Grimm130 calculated the cross section for C2H4 and Grimm et477

al 131 for N2, CO, CO2, COS and CS2; Rosi et al 132 studied PI in CH4 and478

CF4; Tse et al 133 investigated the photoabsorption spectra in SiCl4; Ishikawa479

et al 134 studied, implementing a DVR113 method, SiH4, SiF4 and SiCl4; Powis480

studied PI in PF3
135, CH3I

136 and CF3Cl
137. Finally, Jürgensen and Cavell138481

compared directly experimental results with the MS Xα for NF3 and PF3.482

4.7 Plane-Wave-Based Methods483

4.7.1 Plane-Wave and Orthogonalized Plane-Wave Approximations484

The simplest description of an ionized electron is the plane-wave approximation485

(PWA), but it is not expected to give accurate results near threshold139. To486

our knowledge, the first implementations of the PWA are due to Kaplan and487

Markin140,141, Lohr and Robin142, and to Thiel and Schweig143,144.488

The final state of the molecule describes one electron that has been ex-489

cited from a given initial MO to a continuum normalized plane-wave orbital139.490

This plane-wave is not necessarily orthogonal to any of the occupied MOs; if491

orthonormality is imposed, we have the orthogonalized PWA.492

The PWA and the orthogonalized PWA, together with Slater-type orbitals493

(STOs) to describe AO, have been used by Rabalais et al 145 and by Dewar494

et al 146 to calculate PI cross sections for H2, CH4, N2, CO, H2O, H2S and495

H2CCH2. Huang et al 147 used the orthogonalized PWA to calculate angular496

asymmetry parameters for H2, N2 and CH4. Beerlage and Feil148 calculated497

cross sections for HF, (CN)2, CaHCN, C2(CN)2, N2, CO, H2O, furan, pyrole498

and tetrafluoro-pyrimidine. Schweig and Thiel149 calculated the relative band499

intensity of N2, CO, H2O, H2S, NH3, PH3, CH4, (CH3)2S, C6F6, among others.500
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Hilton et al 150 have used the so-called effective PWA to calculate cross sections501

for H2, CO, H2O and C2H4. Finally, Deleuze et al 151 used the orthogonalized502

PWA, together with a many-body Green’s function framework, to calculate PI503

cross sections for CH4, H2O, C2H2, N2, and CO.504

4.7.2 Ground Inversion Potential Method505

The so-called ground state inversion potential method (GIPM) has been devel-506

oped by Hilton, Hush, Nordholm and coworkers150,152 with the aim of obtaining507

a chemical theory of PI intensities153. This method uses the standard one-508

electron PWA, the orthogonalized PWA or the energy shifted PWA150 in order509

to calculate the electronic continuum final wavefunction. The cross section is510

obtained from an atomic summation theory together with a plane wave analysis511

of diffraction effects from photoelectron amplitudes from different atoms that512

interfere with each other34,153. The main difference of GIPM with a standard513

PWA is that the potential felt by an electron when leaving an atomic center in a514

molecule is calculated directly by inversion of the ground state HF orbital152,153.515

The GIPM theory can include three important effects: the change in the nature516

of the atomic orbitals upon formation of the molecule, diffraction effects153 and517

exchange in an exact way.518

The GIPM has been used by Hilton et al to calculate PI cross sections for519

H2O
154 and for H2, N2 and CO34. Also Kilcoyne et al calculated cross sections520

for H2, HF and N2
153; H2O, NH3 and CH4

155; CO, CO2 and N2O
44, and for521

C2H4 and C6H6
50.522

4.8 R-Matrix Method523

Originally introduced in nuclear physics, the R-matrix method (RMM) has been524

adapted to atomic and molecular physics by Burke and coworkers (see Reference525

156 and references therein). Applications of this method, in particular for elec-526

tron collisions, have been reviewed elsewhere157–159. The idea behind the RMM527

is to enclose the scattering particles and the target within a sphere of radius a,528

so that it should be possible to characterize the system using the eigenenergies529

and the eigenstates computed within the sphere. Then by matching them to the530

known asymptotic solutions, one can extract all the scattering parameters. The531

R-matrix is defined as the matrix that connects the two regions in which the532

space is divided into. They are: (1) an internal region, where all the particles533

are close to one another, so that the short-range interactions and exchange are534

important; (2) an external region, where all particles are still interacting, but535

the forces are direct and could have a multi-polar character. In the most conven-536

tional use of the RMM, the Hamiltonian of the internal region is diagonalized in537

order to obtain the R-matrix eigenenergies and eigenfunctions, generally using538

the non-adiabatic formalism160. The initial and final states are expanded in539

terms of these eigenstates. The corresponding coefficients for the initial state540

are usually obtained by performing an all-channels-closed scattering calculation,541

and in this case the problem is reduced to find the zeros of a determinant161,162.542

To obtain the coefficients for the final state, calculations of electron scattering543

by the corresponding molecule can be performed, and the resulting R matrices544

represent the result of a full non-adiabatic treatment of the internal region of545

the scattering problem159, and provides the solution in the external region163.546
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Finally, with both sets of coefficients, it is possible to calculate the required547

transition dipole moments, and thus the PI cross section (4).548

Since the corresponding formalism is relatively new, the RMM has not been549

used for molecules as much as for atoms. However, we have the works by550

Tennyson et al 164 for H2, and by Tennyson165 for H2 and D2. The so-called R-551

matrix Floquet theory166,167 has been used by Burke et al 167 and by Colgan et552

al 168 to study multiphoton processes in H2. Saenz169, using STOs, studied PI553

in HeH+. Tashiro170 calculated cross sections for N2 and NO. Finally, Harvey554

et al 46 recently studied CO2, using GTOs combined with Coulomb and Bessel555

functions.556

4.9 Random Phase Approximation557

The random phase approximation (RPA) is a method that has been applied558

with success to study PI in atoms and molecules171,172. One advantage is that559

PI cross sections calculated in length or velocity gauges coincide. Additionally,560

the computational effort required in the RPA implementation is comparable to561

calculations in the single active electron (SAE) approximation, since the RPA562

uses only two-electron integrals involving two occupied and two unoccupied563

orbitals173,174.564

In the standard procedure of the RPA, the ground state and the one-electron565

wavefunctions for the excited and continuum states of the molecule are calcu-566

lated at HF level. With these, all required matrix elements and in particular567

the Coulomb and dipole matrix elements, can be calculated directly. Next, the568

RPA dipole matrix elements are calculated solving the corresponding equation,569

and the results are used to obtain directly PI cross sections or the required570

observables173–176.571

The RPA has been used to study PI of H2 by Martin et al 35, by Schirmer572

and Mertins177 and by Semenov and Cherepkov176,178. For N2 we can find573

calculations performed by Lucchese and Zurales179; by Semenov and Cherep-574

kov175,180; by Yabushita et al 174, using complex functions; and by Montuoro575

and Moccia181, using mixed L2 basis sets (STOs and B-splines56). For H2S576

we have the results of Cacelli et al 182. For LiH, calculations were performed577

by Carmona–Novillo et al 183. For C2H2 we have the results of Yasuike and578

Yabushita184, who used complex basis functions (see Section 4.4.2), and by579

Montuoro and Moccia, using the mixed L2 basis sets. We can find also calcula-580

tions for the K shell of N2 by Cherepkov et al 185; for the ion C+
60 by Polozkov581

et al 186, or for the fullerenes C20 and C60 by Ivanov et al 187. Extensive calcu-582

lations have been performed by Cacelli et al 188, to study PI in CH4, NH3, H2O583

and HF, and by Amusia et al 171, who used the RPA with exchange to calculate584

PI cross sections of CH4, C2H6, C3H8, C2H4, C2H2, NH3, H2O, CN−, N2, CO,585

CO2, N2O and NO−

2 .586

4.10 Stieltjes–Tchebycheff Technique587

The Stieltjes–Tchebycheff technique (STT), developed by Langhoff and cowork-588

ers (see, for example, References 189 and 190 and references therein), is based589

on theorems from the theory of moments191; its flexibility allows the use of590

different type of basis sets190,192,193. The technique has been widely and suc-591

cessfully used to study ionization processes in different atomic and molecular592
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systems.593

The strength of the interaction of unpolarized radiation with a target gas can594

be described by Kramers–Heisenberg expression of the polarizability (frequency-595

dependent) of the constituent molecules. This strength can be written as a596

Stieltjes integral over the appropriate oscillator strength distribution189,193 or,597

alternatively, by the use of the cumulative oscillator-strength distribution which598

can be approximated by an histogram (Stieltjes procedure). Even if such an his-599

togram cannot represent adequately the continuum of the molecule, it can give600

good approximations to the related power moments, and it rigorously bounds601

the correct distribution through Tchebycheff inequalities191. More technical de-602

tails about the direct computational implementation of the STT are provided603

in Reference 190.604

The STT has been used to study PI in CH, using STOs, by Barsuhn and605

Nesbet194; in H2, using GTOs in a CI method (see Section 4.1), by ONeil606

and Reinhardt195; in N2, together with GTOs, by Rescigno et al 193 and using607

LCAO with optimized STOs by Stener et al 41. In H2O by Williams et al 196608

and by Delaney et al 197 in the SEA, both using GTOs; by Diercksen et al 198,609

using Cartesian Gaussian basis sets and by Cacelli et al 199 using STOs in the610

independent-channel approximations. By Cacelli et al, we also find calculations611

for NH3
199, HF200, HCl201, H2S

202 and CH4
200. For CO we mention the work612

by Görling and Rösch203, who used GTOs. For F2, Orel et al 204 used contracted613

Gaussians. For C6H6 Gokhberg et al 205 used the STT together with the Lanczos614

algorithm. Finally, Stener et al 41 have performed calculations using LCAO with615

optimized STOs for CO2, N2O, SF6, C2N2, TiCl4 and Cr(CO)6.616

4.11 The Kohn Variational Method617

Among different approximate methods used to determine the energy spectra618

and the corresponding wavefunctions, we have the perturbation theory and the619

standard Ritz variational method25, where approximate solutions of the TDSE620

or the TISE for a given problem are found in a subspace of the real prob-621

lem. Besides the standard Ritz method, there is also, e.g., the Kohn variational622

method (KVM)206. The idea behind the latter is to find a variational expres-623

sion that allows one to calculate the wavefunction with a correct asymptotic624

behavior. This is dictated by two arbitrary fℓ (r) and gℓ (r) functions, that be-625

have asymptotically as the regular Fℓ (kr) and, respectively, irregular Gℓ (kr)626

Coulomb functions. The trial wavefunction can be written as627

ψt
ℓ (r) = fℓ (r) + λtgℓ (r) +

∑

i

ciϕi (r) , (8)628

where {ϕi} is a set of L2 functions and λt is a trial parameter. The Kato iden-629

tity207 is used to find a stationary λs value. We can distinguish two options for630

the trial wavefunction (8): (1) if fℓ and gℓ are the regular and irregular Coulomb631

functions, then we have λ = tan δℓ, where δℓ is the phase shift related to a short632

range potential; (2) if gℓ is an outgoing function h
(−)
ℓ , called “regularized” ir-633

regular Coulomb function (defined as h
(−)
ℓ (r) = ik−1/2 [Fℓ (kr) − ic (r)Gℓ (kr)],634

where c (r) is a cutoff function) then λ = eiδℓ sin δℓ, i.e., the T -matrix (transition635

matrix). In this case we have the complex Kohn method207,208.636

Two different implementations of the KVM in the study of PI of molecules637

are separately hereafter described.638
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4.11.1 Logarithmic Derivative Kohn Method639

The logarithmic derivative Kohn method (LDKM)209,210, and its variant, the640

finite-volume variational method211, were originally proposed to generate a641

translational basis for reactive scattering, using Lobatto shape functions210,212,213.642

In this method, all the required radial integrals are performed explicitly over a643

finite volume V , usually a sphere. The main difference between the LDKM and644

the standard KVM is that different coefficients are added to the functions fℓ645

and gℓ in (8); these coefficients can be determined by matching the wavefunc-646

tion and their derivatives with the exact Coulomb functions across the surface647

that delimits the integration volume V 51,213. In many of the implementations648

of the LDKM, Lobatto shape functions, referred usually as free-type functions,649

are used as the basis set {ϕi} in (8).650

The LDKM has been used to calculate PI cross sections for H+
2 by Le Rouzo651

and Raşeev211, and by Rösch and Wilhelmy213; Raşeev36 studied autoioniza-652

tion in H2; and Wilhelmy et al 51,214 calculated cross sections and asymmetry653

parameters for N2, CO and C6H6.654

4.11.2 Complex Kohn method655

The complex Kohn method (CKM), developed by McCurdy, Rescigno and656

coworkers to study excitation and ionization of molecules by electron colli-657

sions208,215,216, have proved to be very effective, in particular in the first-order658

calculation of dipolar transition moments215. The adaptation of the method to659

study PI in molecules has been described by Lynch and Schneider217. Different660

elections of the arbitrary cutoff function c (r) or the irregular function gℓ (r)661

have been tested217,218.662

The CKM has been used Lynch and Schneider217 to study PI of H2 and663

N2; by Rescigno et al 219 to study CO, examining the effects of the interchannel664

coupling; Orel and Rescigno220 to study NH3 and, more recently, Jose et al 221665

to study PI of SF6 also adding interchannel coupling effects.666

4.12 The Schwinger Variational Method667

While many variational methods are based on the TISE (a differential equation),668

several others, as the Schwinger variational method (SVM)222 are based on the669

equivalent integral equation, the Lippmann–Schwinger equation (LSE)223,224.670

The advantage of the LSE over the TISE to study collisions processes is that671

the correct boundary conditions of the problem are automatically incorporated672

through the use of the corresponding Green function GC. The SVM is a powerful673

formulation of the scattering problem that can provide highly accurate solutions674

without requiring expansions in very large basis sets225,226. The idea behind675

this method is to obtain a stationary variational condition over the T -matrix.676

In general, one can obtain better converged results using the SVM compared to677

the KVM results.678

The implementation of the SVM has been developed along two methods,679

named the Schwinger multichannel method227 and the iterative-Schwinger method680

(ISM). The latter, and a variant using continued fractions, are now briefly de-681

scribed.682
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4.12.1 Iterative Schwinger683

The ISM is an iterative approach to the solution of collisions problems using684

the SVM225 to solve the LSE. The first implementation of ISM226,228,229 was685

the study of scattering of low-energy electrons by atoms and molecules. In the686

case of molecules, the fixed-nuclei approximation was used together with the687

assumption that the interaction between the ionized electron and the molecular688

ion is described by the static-exchange potential229,230. The description of the689

ISM implementation to study PI is given with details in References 42 and 45.690

In the ISM instead of solving the associated LSE for each partial-wave of691

the scattering function, one solves equivalently a LSE for the T matrix225,230:692

T = U + UGCT . The iterative method begins by approximating the short-693

range potential U by a separable potential Ũ , using an initial set of expansion694

functions R; then the scattering solutions for the approximate potential Ũ are695

obtained from the corresponding LSE. The iterative procedure is continued by696

augmenting the original set of functions with those obtained with the approx-697

imated potential. Using this augmented set of functions, the first iteration698

is completed by calculating a new T matrix. A second iteration is begun by699

constructing a new set of solutions and combining them with the initial trial700

functions set; this will yield a new T matrix. The iterative procedure is contin-701

ued until the wavefunctions converge, yielding the LSE solutions for the exact702

potential U 229,230.703

This method has been widely used to study PI of molecular systems. Using704

CGTO as the initial set of functions R, we find calculations by Lucchese et al 42705

for N2; using spherical GTOs, Lucchese et al 45,230 calculated PI cross section706

for CO2 and Lynch et al 231 for C2H2. Natalense et al presented results for707

SF6
232 and for CH4, CF4 and CCl4

233; Machado et al for H2O
234 and SiH4

235;708

Machado and Masili236 studied H2; Stephens and McKoy237 for OH; Braunstein709

et al 238 for CH4; Wells and Lucchese239 for C2H2; for C60 we find the results by710

Gianturco and Lucchese240; and Wiedmann et al 241 calculated the rotationally711

resolved PI cross section for CH3, H2O, H2S and H2CO.712

4.12.2 Continued Fractions713

The method of continued fractions (MCF) was originally proposed by Horáček et714

Sasakawa242,243 for the study of elastic scattering of fast electrons by atoms; sub-715

sequently, Lee et al adapted it to study scattering of slow electrons by atoms244716

and by linear molecules245, and extended it to study ionization by electron colli-717

sions in polyatomic molecules246,247. The extension of the MCF to the PI study718

of molecules is explained with details in Reference 248. The idea is to represent719

the scattering matrix as a continued fraction. The continuum wavefunction is720

obtained from the solution of the LSE using the static-exchange potential, with721

the long-range Coulomb potential of the ionic core removed. The MCF does722

not require basis functions and it is characterized by rapid convergence.723

The application of the MCF starts with the definition of a nth-order weak-724

ened potential operator U (n), from which the reactance matrix K is expressed725

in the form of a continued fraction. The nth-order correction to K, as well726

as to the wavefunction, can be approximated successively. The operator U (n)
727

becomes weaker and weaker as n increases, and the procedure can be stopped728

after a few steps. The converged K matrix corresponds to the exact solution729
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for a given potential U in LSE248.730

To our knowledge, the MCF has been used only to study PI of NH3
248.731

4.13 Crank–Nicolson732

The Crank–Nicolson (CN) method249 was originally developed to solve numer-733

ically differential equations of heat-conduction type, employing a combination734

of backward/forward finite-difference of all involved variables. It is correct up735

to the second order in Ĥ∆t, and is numerically stable. The CN scheme can736

be used to propagate an initial wavefunction with an imaginary time evolution737

operator, in which, by the Wick rotation, the time t is replaced by −iτ . In such738

a way, any initial arbitrary state can converge directly to a particular desired739

state (bound or continuum), just by adjusting the time-step of the propagator.740

The CN scheme has been used to study general PI features by Goldberg741

and Shore250; we can find also different studies in PI of H+
2 by Picón et al 251,742

Yuan et al 252, Silva et al 253 and Bian254. The ion HeH2+ has been studied by743

Bian254 and the angular distributions for H2 by Yuan et al 252.744

5 Sturmian Approach745

5.1 Generalized Sturmian Functions746

In the literature we can find different approaches to Sturmian functions, depend-747

ing on the type of problem to be solved. There are essentially two lines, one748

associated to bound states and another to scattering problems. The first line749

initiated by Shull and Löwdin255, formalized by Goscinski256 and impulsed later750

on by Aquilanti and coworkers257,258. It is within this line that the generalized751

Sturmian functions were introduced by Avery and coworkers259,260 to deal with752

many electron atoms and chemical systems. On the scattering line, the work753

was initiated by Rawitscher261,262 and continued by Macek, Ovchinnikov and754

coworkers263,264. We extended the scattering functions proposed by Rawitscher755

and started to use them in scattering studies with the name Generalized Stur-756

mian Functions (GSFs) to indicate that the basis functions are solving general757

atomic potentials.758

Details about the presently used GSF are given in References 22 and 23759

and references therein, and only the essentials are recalled here. GSF are so-760

lutions of a Sturm-Liouville problem, from which Rotenberg took the name.761

Noted S(ℓ, E)
n (r), they are regular at the origin and satisfy the two-body non-762

homogeneous Schrödinger equation763

[
−1

2

d2

dr2
+
ℓ (ℓ+ 1)

2r2
+ U (r)− E

]
S(ℓ, E)
n (r) = −β(ℓ, E)

n V (r)S(ℓ, E)
n (r) , (9)764

where E is an externally fixed parameter and β
(ℓ, E)
n are the eigenvalues for765

a given angular momentum ℓ. In general, the generating potential V (r), a766

short-range potential, dictates the size of the inner region in which most of the767

dynamics is supposed to occur, while the auxiliary potential U (r) determines the768

asymptotic behavior of all GSFs. This property is illustrated in Figure 5.1, for769

functions with a fixed energy E = 0.5 a.u., an auxiliary Coulomb potential with770
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charge Z = −1 and a Yukawa generating potential. In general, the outgoing771

asymptotic behavior of the GSFs with an auxiliary Coulomb potential is given772

by the second term of (3)773

lim
r→∞

S(ℓ, E)
n (r) ∝ ei(kr−

Z
k
ln(2kr)). (10)774

Additionally, all the solutions conform a complete basis set, with the potential-775

weighted orthogonality relation776

∫
∞

0

dr S(ℓ, E)
n′ (r)V (r)S(ℓ, E)

n (r) = δn′n. (11)777

Note that the integral is defined without taking the complex conjugate of the778

function S(ℓ, E)
n′ (r).779
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) 
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Figure 5.1: (Color online) Real part of 10 generalized Sturmian functions, with
a fixed energy E = 0.50 a.u. and ℓ = 1, obtained solving Equation (9), for r ∈
[0, 100], together with a Coulomb auxiliary potential with charge Z = −1, and
a Yukawa potential as a generating potential, with parameter αshort = 0.0219.
The exact Coulomb (analytic) regular function (blue, dash) is also shown.

5.2 Sturmian Approach to Photoionization Process780

We shall present in this section the theoretical formalism developed within a781

Sturmian approach for molecules. We start with a brief description of the used782

molecular model potentials, then we derive the driven equation of the TISE and783

provide the necessary formula to calculate the PI cross section. As a simple784

illustration of the numerical implementation in the atomic case, we show results785

for the hydrogen atom.786

5.2.1 Molecular Model Potentials787

To study PI of molecules, we shall use the SAE approximation265 for the initial788

state wavefunction. We then need a molecular model potential that plays the789

role of a scattering potential. Consider the active electron placed in the MO790

i of the ground state, and denote φi (r) the corresponding wavefunction. The791
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molecular model potential we shall use is the following266
792

Vimol (r,R) = −
M∑

n=1

Zn

|r−Rn|
+

NMO∑

j=1

Nij

∫
dr′

|φj (r)|2
|r− r′| , (12)793

where M is the number of nuclei in the molecule, Zn is the charge of each794

nucleus, Rn is the position of each nuclei respect to the center of mass of the795

molecule, NMO is the number of MOs and Nij = 2 − δij . This potential is the796

direct term within the SEA. For the sake of simplicity, the R dependence is797

omitted hereafter.798

We shall take the MO i given by Moccia; they are expressed as799

φi (r) =
N∑

j=1

AijRj (r)S
mj

ℓj
(r̂) , (13)800

where S
mj

ℓj
(r̂) are the real spherical harmonics30, and the N radial wavefunc-801

tions are given as Slater type-orbitals (STOs)802

Rj (r) =

[
(2ζj)

2nj+1

(2nj)!

]1/2

rnj−1e−ζjr, (14)803

with tabulated integers nj and exponents ζj . These MO allow one to calculate804

analytically, in a partial-wave expansion, the molecular model potential.805

As mentioned before, in a typical experiment the molecules are randomly806

oriented. Although this is not the proper way to proceed, we may consider as807

starting point an angular average of the model potential (12), i.e., a central808

potential809

Uimol (r) =
1

4π

∫

4π

dr̂ Vimol (r) . (15)810

This averaging procedure is illustrated through Figure 5.2, where the effective811

charges rUimol (r) and rVimol (r) for two set of angles (θ, φ) are compared in the812

case of CH4. The effective charge goes from −6 at r = 0 and to −1 asymptoti-813

cally. The minimum is located at r ≈ 2.08 a.u., i.e. at the equilibrium position814

of each H atom; its depth and sharpness depend on the orientation and whether815

the angular average has been performed or not.816

The model potential (12) proposed in this work can be certainly improved817

in many aspects, some of which are under current investigation. One of them is818

the inclusion of the exchange. Also, as we use an independent particle approxi-819

mation, some many-body aspects (i.e., correlation) are only included indirectly820

through the use of MO in Equation (12), but not explicitly.821

5.2.2 Driven Equation and Cross Section822

To introduce our Sturmian approach, we start with the use of an arbitrary823

potential U (r), such as the one given by Equation (12). We describe the PI824

process using the first-order perturbation theory for a molecule that interacts825

with a radiation field. The Hamiltonian can be written as826

Ĥ = Ĥ0 + Ŵ (t) , (16)827
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Figure 5.2: (Color online) Left panel: Representation of the spatial localiza-
tion if the individual atoms on CH4; the mean equilibrium distance is indicated.
Right panel: Molecular model (12) (red dash and green dash-dot) and angular
averaged (15) (blue, solid) potentials for CH4, at indicated angles. The poten-
tial in green (dash-dot) corresponds to the variation of the potential on the the
green path on the figure of the left panel.

where Ĥ0 = T̂ + U
(
r, R̂

)
is the field-free Hamiltonian of the target with828

R̂ = (α, β, γ) the set of Euler angles that specify the spatial orientation of829

the molecule; T̂ is the kinetic energy operator, and830

Ŵ (t) =

{
−F (L) (t) ε̂ · r = F (t) D̂(L), length gauge

−F (V) (t) ε̂ · p = F (t) D̂(V), velocity gauge
(17)831

where F (g) (t) is the electric field in the length gauge or the vector potential in832

the velocity gauge, ε̂ gives the polarization of the field and D̂ are the dipolar833

operators (2); F (t) contains the time-dependent profiles of the radiation field.834

Dropping the explicit R̂-dependence for the moment, we begin with the835

TDSE for the total Hamiltonian (16)836

(
i
∂

∂t
− Ĥ

)
Ψ(r, t) =

(
i
∂

∂t
− Ĥ0 − Ŵ (t)

)
Ψ(r, t) = 0, (18)837

and propose the general solution to be838

Ψ(r, t) = e−iω0t
[
Φ(0) (r) + Ψscatt (r, t)

]
, (19)839

where Φ(0) (r) is the wavefunction of the initial ground state of the molecule,840

usually the active MO to ionize, with energy ω0, and Ψscatt (r, t) is the wavefunc-841

tion of the photoelectron, with energy ω = E (in atomic units). Replacing (19)842

in (18), we obtain843

[
i
∂

∂t
− ω0 − Ĥ0 − Ŵ (t)

]
Ψscatt (r, t) = Ŵ (t) Φ(0) (r) . (20)844
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Now, if we apply a Fourier transform to (20), we obtain the TISE845

(
ω − ω0 − Ĥ0

)
Ψscatt (r, ω)−

1√
2π

∫
∞

−∞

dω′ Ŵ (ω′) Ψscatt (r, ω − ω′)

= Ŵ (ω)Φ(0) (r) ,

(21)846

where Ŵ (ω) is the Fourier transform of Ŵ (t).847

Equation (21) contains the interaction with the field to all orders, and there-848

fore Ψscatt (r, ω) contains information over all possible processes. Neglecting the849

integral term of (21), we can introduce a perturbative expansion on the scat-850

tering wavefunction25. Since we are interested here only in single PI processes,851

we retain the first order, and then Equation (21) results in the driven equation852

for the final state wavefunction853

(
ω − ω0 − Ĥ0

)
Ψ(1) (r, ω) = Ŵ (ω)Φ(0) (r) . (22)854

This is the equation that we want to solve; the scattering wavefunction at first855

order, Ψ(1) (r, ω), will provide the PI information.856

To solve equation (22), we separate first the scattering wavefunction in its857

radial and angular parts858

Ψ(1) (r, ω) =
1

r

∑

ℓm

ϕℓ (r, ω)Y
m
ℓ (r̂) . (23)859

Usually, the radial wavefunction ϕℓ (r, ω) is expanded in some radial basis set.860

Within our Sturmian approach it is expanded in a GSF set (see Section 5.1)861

ϕℓ (r, ω) =
∑

j

a
(ℓ, E)
j (ω)S(ℓ, E)

j (r) . (24)862

Performing an angular projection, Equation (22) is converted into a set of863

angular-coupled differential equations864

∑

ℓm

[(
ω − ω0 +

1

2

d2

dr2
− ℓ (ℓ+ 1)

2r2

)
δℓ′ℓδm′m − Um′m

ℓ′ℓ (r)

]
ϕℓ (r, ω) = ̺m

′

ℓ′ (r, ω) ,

(25)865

where Um′m
ℓ′ℓ (r) = 〈ℓ′m′ |U (r) | ℓm〉 and ̺m′

ℓ′ (r, ω) = r
〈
ℓ′m′

∣∣∣Ŵ (ω)
∣∣∣Φ(0)

〉
. As866

mentioned in Section 1, the use of a non-central potential to describe the molec-867

ular target couples directly the different angular momenta of the initial state.868

For atoms or angular averaged molecular potentials, on the other hand, there is869

no coupling, Um′m
ℓ′ℓ (r) is diagonal and we have a single radial equation870

(
ω − ω0 +

1

2

d2

dr2
− ℓ (ℓ+ 1)

2r2
− U (r)

)
ϕℓ (r, ω) = ̺mℓ (r, ω) . (26)871

Recall now that the potential U
(
r, R̂

)
of the field-free Hamiltonian Ĥ0 con-872

tains the orientation R̂ of the molecule. This orientation dependence is to be873

accounted for by ϕℓ (r, ω) and finally by the coefficients a
(ℓ,E)
j (ω), so that we874

actually have a
(ℓ, E)
j

(
ω, R̂

)
.875
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Now, to solve the coupled system of Equations (25), we use the GSF expan-876

sion (24), and obtain877

∑

ℓm

∑

j

[(
ω − ω0 +

1

2

d2

dr2
− ℓ (ℓ+ 1)

2r2

)
δℓ′ℓδm′m − Um′m

ℓ′ℓ (r)

]

× a
(ℓ, E)
j (ω)S(ℓ, E)

j (r) = ̺m
′

ℓ′ (r, ω) .

(27)878

The final step consists in projecting (27) on S(ℓ, E)
i (r) (note that it is not the879

complex conjugate, see Equation (11)): then, all the resulting matrices are880

calculated as indicated in References 22 and 23. Solving the matricial problem881

with standard numerical methods provides the coefficients a
(ℓ, E)
j (ω).882

All GSFs of the basis set have the same and correct asymptotic behavior,883

in this case the behavior dictated by the Coulomb potential (see Section 5.1).884

This means that our basis functions possess, by construction, important phys-885

ical information and need to expand essentially the inner region, whose size886

will be determined by the range of the driven term. This makes the basis set887

adequate and finally computationally efficient. From the asymptotic property888

of the GSFs, we obtain the transition amplitude directly from the expansion889

coefficients of the scattering wavefunction in (24)267890

T
(
ω, r̂, R̂

)
= −

√
2π

∑

ℓ

Y m
ℓ (r̂)

〈
Ψ

(−)
−k

∣∣∣Ŵ (ω)
∣∣∣Φ(0)

〉
=

∑

ℓmj

Y m
ℓ (r̂) a

(ℓ, E)
j

(
ω, R̂

)
.

(28)891

After an angular projection, we finally have the PI cross section as a function892

of the photon energy267
893

dσ(ℓ)
(
R̂

)

dE
=

4π2 ω
(g)
ki

c
k

1

2π

∣∣∣
∑

j a
(ℓ, E)
j

(
ω, R̂

)∣∣∣
2

|F (ω)|2
. (29)894

where ω(L) = E − E0 or ω(V) = (E − E0)
−1

is the difference between final and895

initial energies in either length or velocity gauges, and F (ω) is the Fourier896

transform of the radiation field profile F (t).897

5.2.3 Example: Hydrogen Atom898

The coupled system of equations (27) allows us to study PI processes for any po-899

tential. For systems that are described with a central potential, we are left with900

a single differential equation267,268. Applications to a set of different molecules901

will be given in Section 5.3 and is here illustrated for hydrogen atom. For this902

atomic target, we solved the TISE (27) in both length and velocity gauges for903

electron energies in the range [0.00, 3.00]. Each one of these energies was used904

as the fixed energy E to calculate our GSFs basis through (9), where a Coulomb905

potential with charge −1 was taken as auxiliary potential and a Yukawa poten-906

tial with an energy-dependent parameter as generating potential. For the initial907

state we used the exact ground state wavefunction of the atom. Our calculated908

PI cross section (29) is shown in Figure 5.3, and is compared with the analytical909

formula given by Harriman269. Agreement between the cross sections in both910

gauges is perfect. Comparing with the analytical formula we obtain errors of the911

order of 10−8 ∼ 10−11% over all the energy range (see Figure 5.4), showing that912
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our results with the selected GSF parameters gives very stable and “numerically913

exact” solutions to the TISE (22).914
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Figure 5.3: (Color online) PI cross section of H atom from the ground state
1s, in Mb versus photon energy in eV. Our results for length (blue, solid) and
velocity (red, dash) and are compared with the exact analytical formula by
Harriman269 (green, dots).
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Figure 5.4: (Color online) Absolute errors for the calculated PI cross section
in Figure 5.3. (a): For the results in velocity gauge and (b): in length gauge.

5.3 Results For Molecules915

In this section we report some results obtained by applying our Sturmian ap-916

proach for molecular single PI, first solving Equation (27) for the angular aver-917

aged potential (15), and then using the non-central potential (12). Some results918

have been partially published before268,270 for CH4 and H2O. The treatment919

of molecular systems with an averaged (central) potential is similar to that of920

atomic systems. For all cases we used 60 GSFs for each final energy and final921
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(ℓ,m) set; the basis functions are defined in a box of 50 a.u., using an aux-922

iliary Coulomb potential with charge −1, and a generating Yukawa potential923

with an energy-dependent parameter. We have verified that in all cases the924

cross sections are converged in terms of number of GSFs. The initial MO were925

taken from Moccia publications, specifically for H2O from Reference 271, for926

NH3 from Reference 272 and for CH4 from 273. For the non-central potential,927

with the fixed spatial molecular orientation given by Moccia, we use exactly the928

same GSF basis and initial MOs. The respective PI cross sections were calcu-929

lated using Equation (29), and we shall present our results in both length and930

velocity gauges. It is worth emphasizing here that the majority of theoretical931

publications on molecular PI present results obtained with the length gauge,932

but do not provide a detailed analysis of gauge agreement, as it is often done933

for atomic systems.934

5.3.1 H2O935

First, we start to study PI from the valence orbitals of H2O whose electronic936

ground state configuration is 1a21 2a
2
1 1b

2
2 3a

2
1 1b

2
1

1A1. We study here only the937

two valence MOs. For the inner valence orbital 3a1 (E0 = −15.1323 eV), the938

calculated PI cross sections are shown in Figure 5.5, and for the outer orbital939

1b1 (E0 = −13.4805 eV) in Figure 5.6. Both are compared with TD-DFT940

calculations by Stener et al 91, GIPM/D by Kilcoyne et al 155, STT by Cacelli941

et al 199, and ISM by Machado et al 234; the experimental data were reported942

by Banna et al 274.943

For the MO 3a1, we observe a good agreement between our results in veloc-944

ity gauge and other theoretical calculations, in particular for photon energies945

beyond 30 eV, where our results are very close to the TD-DFT and GIPM/D;946

on the other hand, the length gauge results considerably overestimate the cross947

sections for all calculated energies. In general, the cross sections for inner va-948

lence orbitals are difficult to calculate accurately, due to the presence of different949

many-body effects, as relaxation of the core.950

For the MO 1b1, the gauge discrepancy is of the same order as for the 3a1951

case. Our cross sections compare fairly with other theoretical results, ours being952

seemingly too low in the threshold region where unfortunately no experimental953

data are available.954

The results obtained using the non-central potential (12), are only slightly955

better, indicating therefore that the central potential (15) is good enough to956

study this particular molecule.957

5.3.2 NH3958

Next we study PI for both valence orbitals of NH3 whose ground state electronic959

structure is 1a21 2a
2
1 1e

4 3a21
1A1. For the inner valence MO 1e (E0 = −16.2071960

eV), the cross section is shown in Figure 5.7, and for the outer valence MO 3a1961

(E0 = −11.2819 eV) in Figure 5.8. Our results are compared with the TD-DFT962

results by Stener et al 91, GIPM/D by Kilcoyne et al 155, STT by Cacelli et al 199,963

and with calculations using MCF by Nascimento et al 248; the experimental data964

were reported by Brion et al 275.965

For the orbital 1e, our results in velocity gauge show only a fair agreement966

with all reported data, in particular at high photon energies. Gauge discrepancy967
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Figure 5.5: (Color online) Partial PI cross section in Mb versus photon energy
in eV from the MO 3a1 of H2O. Our results using the angular averagedmolecular
potential (15) for length (blue, solid) and velocity (red, dash) gauges, and using
the non-central potential (12) in length (light blue, thin solid) and velocity
(purple, thin dash) gauges are compared with results for TD-DFT91 (green,
dash-dot); GIPM/D155 (brown, dots); STT199 (gray, dash-dot-dot); ISM234

(orange, dash-dash-dot) and with experimental data274 (black dots).
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Figure 5.6: (Color online) Same as Figure 5.5 for MO 1b1 of H2O.

is again important and, fortuitously, the length gauge results reproduce the968

experimental magnitude around 22 eV.969

For the orbital 3a1, our results exhibit a slightly better gauge agreement;970

the length gauge cross section presenting the same shape, but with a larger971

magnitude. The results in velocity gauge are in acceptable agreement with the972

experimental data over the whole energy range.973

As for H2O, the use of the non-central potential (12) has a small effect,974

except in length gauge for the 3a1 orbital.975

5.3.3 CH4976

Finally, we show our results for CH4 whose ground state electronic structure is977

1a21 2a
2
1 1t

6
2

1A1. The calculated PI cross sections in both length and velocity978

gauges for the inner valence MO 2a1 (E0 = −25.0454 eV) are shown in Fig-979
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Figure 5.7: (Color online) Partial PI cross section in Mb versus photon en-
ergy in eV from the MO 1e of NH3. Our results using the angular averaged
potential (15) for length (blue, solid) and velocity (red, dash) gauges, and us-
ing the non-central (12) in length (light blue, thin solid) and velocity (pur-
ple, thin dash) gauges, are compared with results for TD-DFT91 (green, dash-
dot); GIPM/D155 (brown, dots); STT199 (gray, dash-dot-dot); MCF248 (or-
ange, dash-dash-dot) and with experimental data275 (black dots).
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Figure 5.8: (Color online) Same as Figure 5.7 for the MO 3a1 of NH3.

ure 5.9, and for the outer valence MO 1t2 (E0 = −13.7199 eV) in Figure 5.10.980

They are compared with TD-DFT calculations by Stener et al 91, GIPM/D by981

Kilcoyne et al 155, MSM by Rosi et al 132, and with STT by Cacelli et al 200; the982

experimental data are taken from Backx and van der Wiel276.983

For the inner valence orbital 2a1, the length gauge calculation shows no984

agreement with any other calculations. For higher energies, say beyond 40 eV,985

we have a good agreement between our velocity results and experimental and986

other theoretical data.987

For outer valence orbital 1t2, results obtained in velocity gauge show a fair988

agreement with experimental data, at least for photon energies higher than 30989

eV; near threshold the position of the experimental peak is rather well repro-990

duced but not its magnitude. Length gauge results are about a factor two too991

large.992
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Figure 5.9: (Color online) Partial PI cross section in Mb versus photon energy
in eV from the MO 2a1 of CH4. Our results using the central potential (15)
for length (blue, solid) and velocity (red, dash) gauges, and using the non-
central (12) for length (light blue, thin solid) and velocity (purple, thin dash)
gauges, are compared with TD-DFT91 (green, dash-dot); GIPM/D155 (brown,
dots); MSM132 (orange, dash-dot-dot); STT200 (gray, dash-dash-dot) and with
experimental data276 (black dots).
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Figure 5.10: (Color online) Same as Figure 5.9 for the MO 1t2 of CH4.

For this molecule, the effect of using the non-central potential (12) is almost993

unnoticeable for the 1t2 orbital but improves the velocity gauge result for the994

2a1 orbital at lower energies.995

As can be observed from Figures 5.5 to 5.10, the Sturmian approach can996

give reasonable PI cross sections, in particular for ionization from the outer997

MOs. Some general features are: (i) little difference is seen between the use of998

the angular averaged (central) potential (15) and the non-central potential (12)999

(the latter improves marginally the cross sections); (ii) the length gauge results1000

are systematically much larger over the whole energy range than those obtained1001

with the velocity gauge, and are generally not in agreement with other data1002

(experimental or theoretical). This discrepancy indicates that the initial state1003

description needs to be improved; (iii) our velocity gauge results are in overall1004

fair agreement with other theoretical cross sections, in particular for energies1005
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above, say, 15 − 20 eV over the ionization threshold; (iv) exactly as illustrated1006

in Section 3 with other molecules, the agreement between theoretical results1007

(including ours) and experimental data is not uniform. For energies below 151008

eV above ionization threshold agreement is generally poor.1009

6 Conclusions1010

In this contribution we explored different theoretical aspects of PI of molecules.1011

The description of this process requires solving quantum mechanically a very1012

difficult many-body and multi-center problem. Contrary to molecular electronic1013

structure calculations, one needs to evaluate a continuum state with appropriate1014

asymptotic conditions. To make calculations feasible, a number of approxima-1015

tions has to be made. Moreover, over the years, a range of theoretical methods1016

and numerical techniques have been proposed. Among them, one finds those1017

familiar in quantum chemistry such as HF, CI and DFT, but also others, such1018

as the RMM, CS or RPA, which encountered great success in atomic scattering1019

calculations and were extended to molecular targets. Since in most experiments1020

the molecules are randomly oriented, an average of the cross sections must be1021

performed over all spatial orientations. This is an extra computational challenge1022

that does not appear when studying collisions with atomic targets.1023

We began (Section 3) by describing the degree of theoretical-experimental1024

agreement one may find in the literature. The PI of the valence orbitals of1025

H2, N2, CO2 and C6H6, are taken as an illustration, and allow to pinpoint1026

some of the challenges one is confronted to. Except for H2, a non-uniform1027

picture arises. Agreement between theoretical results and experimental data is1028

not always satisfactory; moreover, depending on the molecular orbital which is1029

ionized and the energy range, severe discrepancies are often observed between1030

different calculations. This is due to both the approximations made and the1031

technique adopted. For this reason we provided, in Section 4, a brief description1032

of each method, together with the list of molecules to which they are applied.1033

We then introduced (Section 5) our Sturmian approach for PI. Essentially,1034

the method provides one-electron basis functions (named Generalized Sturmian1035

Functions) with adequate asymptotic boundary conditions. As they intrinsically1036

contain this property, the basis functions are particularly adequate in describing1037

the ionized electron continuum state. We briefly described how the Sturmian1038

method, developed originally for atoms, may be implemented for molecules with1039

a non-central molecular potential.1040

As indicated above, in order to reduce the complexity of the problem, differ-1041

ent approximations must be considered to make it tractable. In this very first1042

implementation of the Sturmian approach we started with the OCE and the1043

SAE approximations. These reduce considerably the dimension of the problem1044

and allow one to deal with one-electron wavefunctions, an ideal starting point1045

to test the versatility of our method for molecules. It is well known that these1046

approximations are good enough to study symmetric molecules, and in partic-1047

ular the ones with a heavy nucleus in its center of mass; this is the case for1048

the selected molecules in this work (H2O, NH3 and CH4) for which we reported1049

results for PI from their valence orbitals. We stress here that the computational1050

procedure to obtain such results is exactly the same as the one used to study1051

PI in hydrogen atom, with an angular averaged molecular model potential (15).1052
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The same GSF basis and initial state wavefunctions are used for calculations1053

with the non-central potential (12). It turns out that the use of the latter only1054

slightly improves the calculated cross sections. A systematic gauge comparison1055

clearly showed that the length gauge largely overestimates the spectra at all1056

energies. Considering some of the crude approximations, we may state that the1057

implemented technique yields velocity gauge cross sections in reasonable agree-1058

ment with experimental data, in particular at higher photoelectron energies.1059

Although clearly perfectible (see below), these results are promising since they1060

demonstrate that we have a working computational tool to study the electronic1061

spectra of different molecules.1062

Let us add a short comment on computational efficiency. As illustrated1063

by several bound-state calculations reported in our review22 (and references1064

therein), the GSF method is able to deliver results with high accuracy and low1065

computational cost. For scattering calculations, although there is not a rigorous1066

way to perform efficiency comparisons, some estimations were given in Reference1067

277 with studies of three-body atomic breakup problems. Comparisons between1068

the GSF and state-of-the-art methods proved that our methodology improves1069

the numerical efficiency by at least an order of magnitude. Recently, in a study1070

of DPI of He278, the GSF method reproduced very precisely ECS differential1071

cross sections with a substantial gain (more than 50%) in memory storage of1072

Hamiltonian matrix. In the present molecular applications the GSF tool is1073

similar. The built in properties make the GSF set very adequate (and, to our1074

mind, efficient) to deal with scattering problems, here PI.1075

The use of the angular averaged molecular model potential, which is equiv-1076

alent to include the random orientation of the molecule before the scattering1077

calculations, gave us good results for high energies; for lower energies a better1078

description of the target is clearly necessary. Besides the molecular potential1079

itself, in that regime all the many-body effects are important, and the wave-1080

function for the initial state should include all active electrons. In that respect,1081

we tried to include exchange terms in different manners. In our preliminary1082

attempts, such terms did not remove the observed gauge discrepancies; we are1083

currently investigating other ways to include in our model both exchange and1084

correlations effects. Furthermore, the interactions with all nuclei becoming im-1085

portant, a many-center wavefunction should be employed; this may lead in a1086

very expensive description of the system from the computational point of view,1087

particularly for polyatomic molecules. The use of a non-central molecular po-1088

tential (12) gives slightly better results in the low photon energy regime, since1089

it is a more realistic description of the molecule. However, in this case the cross1090

sections must be calculated for any Euler angles set. The final angular average1091

over all possible spatial orientations of the molecule in the laboratory frame (de-1092

fined by the polarization of the radiation field) is then computationally much1093

more expensive. Moreover, in all investigated systems, in particular for inner1094

valence orbitals, we saw that our length gauge results are always overestimating1095

experimental data. The gauge discrepancies are known (see, for instance, Ref-1096

erences 89, 199, 200, 202, 268 or 279), but are rarely discussed in the literature1097

for molecular cases. They can be related to the quality of the wavefunctions for1098

the initial state and also by the absence of different many-body effects. In order1099

to obtain a better gauge agreement, one would need to use more sophisticated1100

wave functions and avoid the FC and SAE approximations, since in some cases1101

the relaxation effects are important, as it has been shown by TD-DFT results1102
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(see Sections 3, 4.3.2 and Figures 5.6 and 5.10).1103

As a summary, we have presented here some results of a first implementation1104

of our Sturmian approach to study PI of molecules. Improvements of calculated1105

cross sections may be obtained using more realistic molecular potentials and1106

initial wavefunctions. Investigations in this direction are under way and will be1107

presented elsewhere. GSFs offer also a promising tool to study other ionization1108

processes in molecular systems such as the single ionization by electron impact,1109

the so-called (e, 2e) process.1110

Acknowledgments1111

We acknowledge the CNRS (PICS project No. 06304) and CONICET (project1112

No. Dl 158114) for funding our French-Argentinian collaboration, and CON-1113

ICET (PIP 201301/607). G. Gasaneo also thanks the support by PGI (24/F059)1114

of the Universidad Nacional del Sur.1115

A List of Photoionization Calculations for Dif-1116

ferent Molecules1117

We list here, molecule by molecule, the references of all applications of theoret-1118

ical methods mentioned in Section 4.1119

Homonuclear diatomic1120

1. H+
2

108,109,114,115,118,211,213,254
1121

251–253
1122

2. H2
27,32,33,35,36,57,59,60,75,76

1123

110–112,116,118,121,128,145–147
1124

150,153,154,164,165,167,168,176–178
1125

195,217,236,252
1126

3. D2
27,165

1127

4. Li2
68

1128

5. C2
1

1129

6. N2
38–42,51,67,89,101,121

1130

117,128,129,131,145–149,151
1131

153,154,170,171,174,175,179–181,185
1132

193,217
1133

7. O2
65

1134

8. F2
204

1135

9. Cl2
84

1136

Heteronuclear diatomic1137

10. HeH2+ 254
1138

11. HeH+ 58,169
1139

12. LiH183
1140

13. CH194
1141

14. OH237
1142

15. HF77,82,91,148,153,188,200
1143

16. CN− 171
1144

17. CO34,40,44,51,67,71,92,93,101,102
1145

128,131,146,148–151,171,203,219
1146

18. NO121,170
1147

19. HCl54,82,2011148

Polyatomic1149

20. BH3
82

1150

21. H2O
82,91,146,148–151,154,155,171

1151

188,196–199,234,241,268
1152

22. NH3
82,91,149,155,171,188,199,220,248

1153

23. LiCN62
1154

24. AlH3
82

1155
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25. H2S
82,146,149,182,202,241

1156

26. PH3
82,89,149

1157

27. SiH4
82,134,235

1158

28. CO2
41,44–46,53,69,121,131,171,230

1159

29. NO2
41,44,70,171

1160

30. NO−

2
171

1161

31. O3
55

1162

32. C2N2
41,148

1163

33. CaHN148
1164

34. C2O2
84

1165

35. COS131
1166

36. NF3
138

1167

37. CS2
49,131

1168

38. CF4
95,96,132,233

1169

39. PF3
135,138

1170

40. CF3Cl
137

1171

41. SiF4
134

1172

42. SF6
41,221,232

1173

43. CCl4
233

1174

44. SiCl4
133,134

1175

45. TiCl4
41

1176

Organic molecules1177

46. CH3
241

1178

47. CH4
66,82,91,132,145–147,149–151

1179

155,171,188,200,233,238,268,270
1180

48. CH3I
136

1181

49. H2CO
241

1182

50. C2H2
39,94,98,151,171,181,184,231,239

1183

51. C2H4
50,98,130,145,146,150,171

1184

52. C2H6
171

1185

53. C2(CN)2
148

1186

54. C3H6O (methyl-oxirane)861187

55. C3H8
171

1188

56. (CH3)2S
149

1189

57. C4H6
63

1190

58. C4H4O (furan)1481191

59. C4H5N (pyrrole)1481192

60. C4H4N2 (pyrimidine)971193

61. C4H4N2 (pyrazine)971194

62. C4H4N2O2 (uracil)871195

63. C6H6 (benzene)48,50,51,85,2051196

64. C6F6
149

1197

65. C4F4N2
148

1198

66. Cr(CO)6
41,84

1199

67. C10H8 (naphthalene)851200

68. C14H10 (anthracene)851201

69. C16H10 (pyrene)851202

Fullerenes1203

70. C20
187

1204

71. C+
60

186
1205

72. C60
99,187,240

1206

Bibliography1207

[1] Padial, N. T.; Collins, L. A.; Schneider, B. I. Astrophys. J. 1985, 298, 369.1208

[2] Liedahl, D. A.; Paerels, F. Astrophys. J. 1996, 468, L33.1209

[3] Bautista, M. A.; Romano, P.; Pradhan, A. K. Astrophys. J. Suppl. Ser. 1998, 118,1210

259.1211

[4] Dopita, M. A.; Meatheringham, S. J. Astrophys. J. 1991, 367, 115.1212



A Sturmian approach to photoionization of molecules 35
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Pérez-Torres, J. F.; Morales, F.; Sanz-Vicario, J. L.; Mart́ın, F. Phys. Rev. A 2009,1247

80, 011402.1248

[27] Sansone, G. et al. Nature 2010, 465, 763.1249

[28] Fernández, J.; Mart́ın, F. New J. Phys. 2009, 11, 043020.1250

[29] Chandra, N. J. Phys. B: At. Mol. Phys. 1987, 20, 3405.1251

[30] Edmonds, A. R. Angular Momentum in Quantum Mechanics; Princeton University1252

Press: Princeton, 1957.1253

[31] Chung, Y. M.; Lee, E.-M.; Masuoka, T.; Samson, J. A. R. J. Chem. Phys. 1993, 99,1254

885.1255

[32] Kelly, H. P. Chem. Phys. Lett. 1973, 20, 547.1256

[33] Sanz-Vicario, J.; Palacios, A.; Cardona, J.; Bachau, H.; Mart́ın, F. J. Electron1257

Spectros. Relat. Phenomena 2007, 161, 182.1258

[34] Hilton, P. R.; Nordholm, S.; Hush, N. S. J. Electron Spectros. Relat. Phenomena 1980,1259

18, 101.1260

[35] Martin, P. H. S.; Rescigno, T. N.; McKoy, V.; Henneker, W. H. Chem. Phys. Lett.1261

1974, 29, 496.1262
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[255] Shull, H.; Loöwdin, P.-O. J. Chem. Phys. 1959, 30, 617.1562

[256] Goscinski, O. Adv. Quantum Chem. 2002, 41, 51 Preliminary research unpublished.1563

Included as an appendix.1564

[257] Aquilanti, V.; Cavalli, S.; Coletti, C.; Grossi, G. Chem. Phys. 1996, 209, 405.1565

[258] Aquilanti, V.; Cavalli, S.; De Fazio, D. J. Chem. Phys. 1998, 109, 3792.1566

[259] Avery, J.; Shim, R. Int. J. Quantum Chem. 2001, 83, 1.1567

[260] Avery, J.; Avery, J. J. Math. Chem. 2003, 33, 145.1568

[261] Rawitscher, G. Phys. Rev. C 1982, 25, 2196.1569

[262] Rawitscher, G. Phys. Rev. E 2012, 85, 026701.1570

[263] Ovchinnikov, S. Y.; Macek, J. H. Phys. Rev. A 1997, 55, 3605.1571

[264] Macek, J. H.; Yu Ovchinnikov, S.; Gasaneo, G. Phys. Rev. A 2006, 73, 032704.1572

[265] Fano, U.; Cooper, J. Rev. Mod. Phys. 1968, 40, 441.1573

[266] Fernández-Menchero, L.; Otranto, S. Phys. Rev. A 2010, 82, 022712.1574

Fernández-Menchero, L.; Otranto, S. J. Phys. B: At. Mol. Opt. Phys. 2014, 47, 035205.1575
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