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a b s t r a c t 

We present a method for the treatment of the time dependent radiative transfer equation under the 

discrete ordinate approximation. The novelty of the proposed approach stems, in part, from the incorpo- 

ration of a spectral method for the calculation of the spatial differential operators based on the Fourier 

Continuation procedure introduced recently by Bruno and co–authors. This is a spatially dispersionless 

and high order method, which can handle arbitrary geometries, including those encountered in the for- 

ward model of light transport in optical tomography. We validate our theoretical results by compari- 

son with analytic and experimental outcomes of the fluence measurements on tissue-like phantoms. The 

method makes it possible to calculate the time of flight of photons in random media efficiently and with 

high accuracy. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Neutral particle transport modelling is of interest on many

ranches of science and technology. Applications include radiation

ransport in planetary and stellar atmospheres [1] , remote sensing

2,3] , neutron transport research for nuclear reactor design [4,5] ,

adiation heat transfer for industrial applications [6] , and model-

ng of transport of photons in tissue–like media for medical physics

pplications [7–9] among others. In this paper we are particularly

oncerned with optical tomography applications where the main

oal is characterization of biological media on the basis of light

easurements typically involving external illumination. The bio-

ogical body could be a human breast or neck (for applications

n tumor diagnosis [10,11] ), a head (where the information of the

ransmitted and diffusely reflected light provides functional infor-

ation of the brain through the characterization of the blood flow

nd the oxygenation state of hemoglobin [12] ), or a finger (with

pplications in the diagnosis of finger joint arthritis, among others

13] ). Infrared light, which can penetrate and sense several cen-

imeters within tissue, is mostly used in these contexts. Light is

etected at different locations in reflection or transmission con-

gurations. In order to infer the optical properties of the media,

terative reconstruction techniques need accurate results in a very
∗ Corresponding author at: CONICET, Instituto de Astronomía y Fsica del Espa- 
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hort amount of time. With this goal in mind, we have developed

he present method. 

The governing equation for neutral particle transport is known

s the radiative transfer equation or the neutron transport equa-

ion, depending on the field of application. This equation is the lin-

arized Boltzmann equation, which is formulated in phase space.

t models the transport of particles which interact mainly with a

ackground media, and do not interact with each other. The radia-

ive transfer equation (RTE) comprises a multidimensional problem

ven for simple cases in one spatial dimension, because it involves

oth the position and the velocity domains, in addition to time.

n view of the importance and wide applicability of this equation,

nd in view of the high computational complexity it entails, sev-

ral numerical techniques have been proposed for its treatment,

ncluding stochastic and deterministic methods (see, for example

5,14] ). 

The most widely used stochastic method in radiative transfer is

he Monte Carlo method. While quite simple, this approach is com-

utational more demanding than deterministic methods. Among

eterministic techniques, the most popular are the P N method

15] and the discrete ordinates method. In the P N method the solu-

ion is factored into spatial and angular components. The angular

omponent of the specific intensity is expanded in spherical har-

onics, yielding a hierarchy of coupled partial differential equa-

ions, the lowest-order one of which is a diffusion–like equation.

his “diffusion approximation” for photon transport can also be ob-

ained through asymptotic analysis, and it corresponds to a regime

https://doi.org/10.1016/j.jqsrt.2019.106589
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
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in which the mean free path of the particles is much smaller than

the characteristic length of the physical system [16,17] , i.e., a highly

scattering region. 

In the present work we employ the discrete ordinates method

(DOM), originally derived by Chandrasekhar [1] , who was mainly

concerned with astrophysical applications. In the DOM method the

angular component is decomposed into a set of discrete direc-

tions representing the propagation directions of the rays. The ra-

diation transfer equation becomes a set of equations in a fixed

grid, coupled through the collision terms. For the treatment of

the spatial differential operator, several techniques have been pro-

posed, including prominently the finite difference method [18,19] ,

the finite element method [20,21] , and the finite volume method

[22] . 

In our work, a novel spectral technique developed in [23,24] ,

the Fourier Continuation (Gram) (FC–Gram) method, is employed

for the first time to solve radiation transport problems. This ap-

proach utilizes an analytical method to continue any given func-

tion into a periodic function in an enlarged domain of definition.

Hence, Fourier transforms can be employed for the differential op-

erators, thus achieving spatial high order and very small amounts

of artificial spatial dispersion. 

A major problem concerning the treatment of the RTE is the

computation time needed for its solution. The high dimensionality

of the transport equation makes its numerical treatment a compu-

tationally intensive task. In optical tomography, several iterations

over the forward model are required in order to solve the pa-

rameter reconstruction problem, posing computationally a tremen-

dously demanding problem. For this reason, approximations to the

RTE as the diffusion equation are generally employed. However, the

employment of the diffusion equation is not physically accurate in

media where absorption dominates, in regions close to the source

in optical tomography, or in low scattering regions. The method

presented here yields accurate solutions of the transport problem

with coarser grids, having a direct impact on the computation time

required for a given accuracy. 

We tested the accuracy and performance of our method, val-

idating the numerical results with analytical solutions, manufac-

tured problems and experimental results. The FC method can ap-

proximate the derivatives of the RTE with fourth–order accuracy,

and, as demonstrated in [25] , it gives rise to small dispersion er-

rors. The paper is arranged as follows. In Section 2 the main gov-

erning equations and boundary conditions for radiative transport

are presented, and the physical significance of these equations is

discussed. In Section 3 the numerical methods employed and the

Fourier Continuation Discrete Ordinates Method (FC–DOM) imple-

mentation are described. In Section 4 our results are examined,

by comparisons with analytical solutions and detector readings on

tissue–like phantoms reported by Klose et al. [19] . The first phan-

tom examined is homogeneous, and the second phantom contains

a void–like region, giving rise to a situation for which the diffu-

sion equation fails to describe photon-transport correctly. Also in

this section, our FC–DOM is compared with another DOM method

proposed by Fujii et al. [26] , employing a third–order finite differ-

ence scheme. A few concluding comments, finally, are presented in

Section 5 . 

2. Light transport model 

We employ the radiative transfer equation as a model for light

propagation in turbid media, with absorbing and scattering prop-

erties. The light specific intensity I(r , ˆ �, t) , represents the amount

of energy irradiated per unit time, per unit area, per unit of solid

angle, at a point r , propagating with direction 

ˆ �, and at time t . It
atisfies the corresponding RTE equation: 

1 

c 

∂ I(r , ˆ �, t) 

∂t 
+ 

ˆ � · ∇I(r , ˆ �, t) + μt (r ) I(r , ˆ �, t) 

= μs (r ) 

∫ 
2 π

p( ̂  � · ˆ �′ ) I(r , ˆ �′ , t) d ̂  �′ + q (r , ˆ �, t) , (1)

here the units of I are W /( m 

2 sr). Here c denotes the average

peed of light in the medium (the velocity vector of photons is

  = c ̂  �), and the coefficients μa and μs are the macroscopic ab-

orption and scattering coefficients, respectively; the total scatter-

ng coefficient μt is given by μt = μa + μs . The macroscopic coef-

cients can be related to the microscopic coefficients if the con-

tituents of the media, its concentrations and microscopic cross

ections are known. The last term of the Eq. (1) , q , is an exter-

al source function. Usually, it represents a laser beam. In this

ork we deal only with monochromatic light, so we ignore all

avelength dependence. For the presentation of our computational

ethod, we will deal here only with two–dimensional problems.

herefore, the integration on the right hand side of the equation –

he inscattering source–, is performed on the unit circle, which de-

nes all the possible propagating directions for a photon. This in-

egral represents all radiant energy scattered by the medium from

ll directions into the beam. The function p is the phase function

hich represents the probability for a photon traveling in direction
ˆ ′ to be scattered into the beam with direction 

ˆ �. We employ the

mpirical phase function introduced by Henyey–Greeinstein [27] ,

idely used in the optical tomography community to model the

ighly anisotropic nature of scattering in biological tissue: 

p( ̂  � · ˆ �′ ) = 

1 

2 π

1 − g 2 

(1 + g 2 − 2 g ˆ � · ˆ �′ ) 3 / 2 
. (2)

n order to ensure conservation of energy, the phase function is

ormalized [28,29] : 
 

2 π
p( ̂  � · ˆ �′ ) d ̂  �′ = 1 . (3)

Other quantities of interest are the scalar flux, also known as

he fluence rate, which accounts for the total intensity radiated at

 particular point: 

(r , t) = 

∫ 
2 π

I(r , ˆ �, t) d ̂  �. (4)

nd the photon current: 

�
 

 (r , ˆ �, t) = 

∫ 
2 π

ˆ �I(r , ˆ �, t) d ̂  �. (5)

For optical tomography problems, in general, the measurements

f radiation are performed by detectors located at the external

oundary of the medium. The flux of photons reaching the detec-

ors [30] is given by 

 + (r b , t) ≡
∫ 
�+ 

[
1 − f ( ̂  � · ˆ n ) 

]
( ̂  � · ˆ n ) I(r b , ˆ �, t) d ̂  �, (6)

here r b is a point at the domain boundary, ˆ n is the outward nor-

al versor of the surface, and �+ represents the external boundary

urface (in which 

ˆ � · ˆ n > 0 ). The reflections at the inner boundary

urface �− (where ˆ � · ˆ n < 0 ) due to mismatches on the refractive

ndexes cannot be neglected, and Fresnel boundary conditions have

o be used: 

(r b , ˆ �, t) = f ( ̂  �r · ˆ n ) I(r b , ˆ �r , t) on �−. (7)

n Eq. (7) ˆ �r is the specularly reflected direction for a beam inci-

ent on the inner surface of the medium: 

ˆ 
r = R̄ 

ˆ �, (8)

ith reflection matrix R̄ = ̄I − 2 ̂  n ̂  n T , where Ī denotes the identity

atrix in two dimensions and f represents the Fresnel reflection

oefficient for the corresponding direction. 
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Let n m 

and n a denote the refractive indexes of the body under

xamination and its surroundings, respectively. From Snell’s law

 m 

sin (θi ) = n a sin (θt ) , the critical angle for total reflection is given

y n m 

sin (θc ) = n a . The Fresnel coefficient f is given by: 

f ( ̂  �r · ˆ n ) = 

{ 

1 
2 

(
sin 2 (θt −θi ) 

sin 2 (θt + θi ) 
+ 

tan 2 (θt −θi ) 

tan 2 (θt + θi ) 

)
if θi < θc , 

1 if θi ≥ θc . 

. Numerical methods 

.1. Discretization of the angular variable 

In order to discretize the radiative transfer equation in the an-

ular variable, we employ the discrete ordinates method. A set of

 discrete directions ˆ �m 

= (ξm 

, ηm 

) are choosen, where the di-

ection cosines ξm 

= ˆ x · ˆ �m 

= cos ( φm 

) and ηm 

= ˆ y · ˆ �m 

= sin ( φm 

)

epresent the projection of the versor along the x and y axis, re-

pectively. We choose to discretize the directions according to the

oots of the Chebyshev polynomials: 

m 

= 

π(2 m − 1) 

M 

. (9) 

he directions can be computed for the first quadrant only and the

emaining directions then be obtained by symmetry. Denoting the

iscretized intensity as I m 

= I(r , ˆ �m 

, t) , the RTE Eq. (1) becomes: 

1 

c 

∂ I m 

∂t 
+ 

ˆ �m 

· ∇I m 

+ μt I m 

= μs 

M ∑ 

m 

′ =1 

w m 

′ p m,m 

′ I m 

′ + q m 

, (10) 

here the Chebyshev quadrature weights are all given by the sin-

le value w m 

′ = 2 π/M. 

.2. Discretization of the time variable 

For the discretization of the time variable we employ an ex-

licit Forward Euler scheme. The specific intensity at a particular

ime t n +1 = n 
t is computed in terms of known quantities from

he previous time step t n . Denoting I n m 

= I(r , ˆ �m 

, t n ) , the time de-

endent RTE equation is solved propagating the solution with 

I n +1 
m 

= I n m 

+ c
t 

(
μs 

M ∑ 

m 

′ =1 

w m 

′ p m,m 

′ I n m 

′ + q n m 

− ˆ �m 

· ∇I n m 

− μt I 
n 
m 

)
, (11) 

hich is a first order approximation for the time derivative. 

.3. Spatial discretization: The FC(Gram) spectral approach 

Fourier collocation methods provide high order accuracy, lim-

ted dispersion, and mild CFL conditions. Moreover, Fast Fourier

ransform, which can be utilized in conjunction with Fourier col-

ocation methods, make it possible to perform calculations in

(N log (N)) operations, where N is the number of discretization

oints. However, application of Fourier collocation methods to non

eriodic functions gives rise to the Gibbs phenomenon and associ-

ted severe accuracy degradations. 

The Fourier Continuation method (FC) [23] was developed for

he spectral treatment of partial differential equations on general

omains with arbitrary boundary conditions. The method relies on

 continuation procedure, that extends a non periodic function into

 periodic one. This enables the use of Fourier transform methods

or evaluation of spatial derivatives, giving rise, in the non–periodic

ontext, to the spectral convergence and dispersionless properties
ypical of Fourier methods. The continuation procedure selects the

orrect harmonics in the Fourier series expansion of the functions

nvolved, avoiding Gibbs phenomena related to function disconti-

uities, while preserving the high order accuracy of the method. 

In order to apply the FC procedure to a non periodic function

 ( x ), the function must first be evaluated at a discretized grid of N

oints, separated by the same distance h : 

 = 

x max − x min 

N 

= 

x N+1 − x 1 
N 

. (12) 

he values of the function g i = g(x i ) define two vectors. One

f them, g l , is constructed with the first d l points g l =
 g 1 , g 2 , . . . , g d l ] 

T , and the other, g r , with the last d r points g r =
 g N+1 −d r , g N−d r , . . . , g N+1 ] 

T . The continuation procedure, a detailed

escription of which can be found in [23] , consists of three steps: 

1. The d l and d r matching values g 1 , g 2 , . . . , g d l and

g N+1 −d r , g N−d r , . . . , g N+1 are projected on a Gram polynomial

basis. 

2. Continuations to zero g l ( x j ) and g r ( x j ) are produced for each

orthogonal polynomial at the left and right extremes of the

function. These continuations extends from the d l points and

the d r points along C extra points, and smoothly transition to

zero. 

3. These continuations to zero are combined to obtain the total

continuation of the function, g c ( x j ). 

This procedure renders a smooth and periodic continuation of

he original function, such that g c (x j ) = g(x j ) for j = 1 , 2 , . . . , N +
 . 

The whole continuation procedure might be expressed in ma-

rix form as: 

 

c = 

[
Ī 

Ā 

]
g , (13) 

here g c is the vector of the N + C + 1 continued function values

 g c ] j = g c (x j ) , and Ī is the identity matrix. The matrix Ā is given

y: 

Ā g 

]
j 
= [ ̄A l ̄Q 

T 
l g l + Ā r ̄Q 

T 
r g r ] j 

= g l (x j ) + g r (x j ) . (14) 

here the columns of Q̄ l and Q̄ r are given by the d l and d r values

f the Gram polynomial basis mentioned in point 1) above, and

he columns of Ā l , ̄A r contain the C continuation values that blends

he Gram polynomial basis to zero [25] . The number of matching

oints, d l and d r , determine the order of the approximation. For

xample, if d l = d r = 5 , as chosen for all cases below, the Gram

olynomial approximation g c ( x ) approximates g ( x ) with fifth order

ccuracy, and the derivative dg / dx is obtained with fourth order ac-

uracy. 

The matrices Ā l , Q̄ l , ̄A r and Q̄ r are obtained with high precision

rithmetic in matlab , only once for all calculations, and then they

re imported into our fortran codes. A detailed explanation of

he Fourier Continuation procedure, and for the construction of the

atrices Ā l , Q̄ l , ̄A r and Q̄ r can be found in [23–25] and references

herein. 

As an example, we illustrate, in Fig. 1 , the cotinuation of a func-

ion g(x ) = x 1 / 3 e sin (x ) , which is non periodic. The function is given

etween the points x 1 = 1 and x N+1 = 5 . We choose to add C = 25

ontinuation points, setting d l = d r = 5 matching points (shown

ith diamonds, in the figure). The continued constructed function

 

c ( x ) is periodic. Its period b is given by the original domain of the

unction, plus the length of the continuation, i.e., b = (N + C) h . As

een in the figure, the first d l points are replicated, by construction,

xactly beyond the point (b + 1) h, giving rise to a periodic func-

ion. The discrete Fourier transform, determines the N p = N + 1 + C
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Fig. 1. Fourier Continuation of function g(x ) = x 1 / 3 e sin (x ) for x ∈ [1, 5]. The circles 

show the C = 25 continuation points, and the diamonds, the d l = 5 and d r = 5 

matching points. The dashed curves are the continuations to zero, g l ( x ) and g r ( x ). 
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coefficients a k 

g c (x j ) = 

N p / 2 ∑ 

k = −N p / 2 

a k exp 

(
2 π ik 

(x j − x min ) 

b 

)
, (15)

which allows the accurate calculation of all spatial derivatives in

the advection operator of the radiative transfer Eq. (11) . In order

to prevent the appearance of high frequency modes which might

perturb the stability of the method, an exponential filter is intro-

duced [23] : 

ˆ a k = exp 

( 

−α

∣∣∣∣ 2 k 

N p 

∣∣∣∣
2 β

) 

a k , (16)

which is implemented, in our calculations, with α = 2 and β = 5 .

The derivative is then evaluated as: 

dg c (x j ) 

dx 
= 

N p / 2 ∑ 

k = −N p / 2 

2 π ik 

b 
ˆ a k exp 

(
2 π ik 

(x j − x min ) 

b 

)
. (17)

The method shows stability under the Courant–Frederichs–

Lewy condition (abbreviated as the CFL condition throughout this

paper). 

The algorithm to advance one time step the RTE by means of

the FC–DOM approach, starting from a given initial condition, is

summarized in Algorithm 1 . 

Algorithm 1 FC–DOM explicit scheme. 

1: for each time–step n do 

2: for each direction 

ˆ �m 

do 

3: Impose boundary conditions. 

4: for each y do along x 

5: Apply Fourier Continuation I(x, y, ˆ �m 

, t n ) . 

6: Apply FFTW to obtain Eq. (15). 

7: Apply the filter (16). 

8: Evaluate ∂ I/∂ x using Eq. (17). 

9: end for 

10: for each x do along y 

11: Steps 5-7. 

12: Evaluate ∂ I/∂ y using Eq. (17). 

13: end for 

14: Evaluate the right hand side of equation (11). 

15: end for 

16: end for 
. Results 

The present section contains four main subsections. In the first

ubsection we compare the accuracy and efficiency of the Fourier

ontinuation method with a recent finite difference method (FD)

roposed by Fujii et al. [26] , performing a detailed error analysis.

n particular, we show that our method is a fourth order approxi-

ation to the derivatives, and that the finite difference method is

hird order. 

In the second part we construct a manufactured solution, and

e compare the errors given by the FC–DOM method against the

rrors obtained using the finite difference method (FD–DOM) when

he solution is propagated in time in two different situations. 

In the third subsection we use our model for the simulation of

ight transport in scattering tissue. We reproduce, numerically, the

xperiments carried out on scattering of infrared light in tissue–

ike phantoms. The experiments performed by Klose et al. [19] , re-

orted detector readings (the outgoing fluence) on the boundary

f the phantoms. This experiment was designed to have transla-

ional symmetry along the z direction, which makes it suitable for

he 2D approximations used in this paper. We analyzed two types

f these phantoms, one is homogeneous and the other contains a

oid–like region. This simulation tests the capability of our method

o capture the physics in a real laboratory situation, where Fresnel

oundary conditions are necessary. Next, in Section (4.3.3) , comes

 time independent benchmark used for a brief discussion on the

ay effects phenomenon. 

In the last subsection we validate our time dependent results

ntroducing a problem for which the analytic solution is known.

his case was published by Paasschens [31] . The analytical solu-

ion is used to validate the time numerically simulated propaga-

ion. Then we compare the performance of our FC–DOM method

ith the FD–DOM, using a benchmark that mimics a laboratory

ituation, to demonstrate the performance of both methods in re-

listic situations. 

All simulations were run on a workstation with an AMD Ryzen

 1700 processor with clock speed of 3.0 GHz on a Linux system.

he programs were compiled using the gfortran compiler. 

.1. FC Vs. FD: Error analysis 

With the aim to compare our RTE results with a finite differ-

nce scheme, we implemented the spatial discretization for the ad-

ection term proposed by Fujii et al. [26] , which is a third–order

pproximation: 

ξk ∂ I 
n 
k /∂ x ∼{ ξk 

6
x 
[2 I n 

i +1 , j,k 
+ 3 I n 

i, j,k 
− 6 I n 

i −1 , j,k 
+ I n 

i −2 , j,k 
] if ξk ≥ 0 , 

ξk 

6
x 
[ −I n 

i +2 , j,k 
+ 6 I n 

i +1 , j,k 
− 3 I n 

i, j,k 
− 2 I n 

i −1 , j,k 
] if ξk < 0 , 

here ξk = ˆ x · ˆ �k is the proyection of the ˆ �k versor onto the ˆ x di-

ection. 

We compare the accuracy order for the FC and FD methods,

y implementing the Fourier method and the finite differences

cheme (18), for the calculation of the first derivative of a given

unction. We choose for the comparison, the non periodic function

(x ) = x 1 / 3 e sin (x ) for x ∈ [1, 5], the same function that has been con-

erted into a periodic one in the previous section. Fig. 2 shows the

aximum error delivered by each method in the first derivative

alculation over the whole range 
g ′ (x ) = Max | dg n 

dx 
− dg a 

dx 
| , where

 

n and g a means the numerical and analytical functions, respec-

ively. The maximal errors are displayed as a function of the num-

er of points N in the numerical grid. As seen in the figure, the er-

ors are in correspondence with the N 

−3 (for the finite differences)

nd N 

−4 (for FC) slopes. The Fourier continuation is a pseudospec-

ral method, therefore, it is global in nature. In contrast, the finite
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Fig. 2. Maximum error in the first derivatives of g(x ) = x 1 / 3 e sin (x ) , produced by us- 

ing the FC and the FD methods. The dashed lines show the N −3 and N −4 slopes. 

Table 1 

Phantom optical properties. 

μs [ cm 

−1 ] μa [ cm 

−1 ] g n m 

58 0.35 0.8 1.56 
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Fig. 3. Maximum error for the manufactured scalar flux (18) as a function of the 

evolution time. Continuous lines are for the vacuum medium, and dashed lines for 

the diffusive medium. 
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t  

n  
ifference method, is a local method, in which the derivatives at

ach point are calculated using only a few neighboring points. 

.2. Manufactured solution 

The first test of our FC–DOM method is performed by using a

anufactured solution. That means, we propose a given analytical

olution of the RTE representing the light intensity as: 

 

a (x, y, ˆ �, t) = e −[ x −t ] 2 −[ y −t ] 2 

×{ cos (2 πk [ x + y − 2 t]) + 1 } , (18) 

hich is a cosine wave having wavelength λ = 1 /k, traveling along

he direction x = y . From this intensity, we are able to calcu-

ate the analytical expression for the corresponding “manufactured

ource” q (r , ˆ �, t) . The “manufactured solution” test problem then

roceeds by solving the RTE equation for this source q , comparing

he numerical calculated intensity I n with the analytical solution I a 

18) . The reasons for comparing fluxes rather than intensities are

wofold. First, the former are in general the experimental physical

bservables in optical tomography, and second, they provide global

nformation of the solutions by integrating over all the directions.

ince the analytical solution is independent on the directions ˆ �,

he analytical scalar flux is given by φa (x, y, t) = 2 π I a (x, y, t) . We

nalyzed two different problems. The first one, corresponds to a

acuum medium, in which μs = μa = 0 . In the second case, the

haracteristics of the diffusive media corresponds to the tissue–like

hantom used in the experiments of Klose et al. [19] , which is also

tudied in Section 4.3 , and summarized in Table 1 . In this table, g

s the anisotropy factor that enters in Eq. (2) , and n m 

is the refrac-

ive index of the medium. The dimensions of the phantom are 4

ength units in both the x and y directions, and we use k = 1 . 

Both the FC and FD derivative methods were incorporated into

he DOM scheme, and then, into the final computational program

hat solves the time dependent RTE equation. For the numerical

olution of these manufactured problems we use M = 32 discrete

irections, a space interval of dx = dy = 0 . 1 and time steps with

t = 10 −4 . The use of more discrete directions produced no signif-

cant effects in the global errors. Fig. 3 shows the maximum error

n the fluence, 
φ(t) = Max | φa (r , t) − φn (r , t) | , as a function of

he time t . 

There are some features to notice from these results. First, at

ny time, the overall error given by the FC–DOM method is smaller
han the FD–DOM. This is consistent to the fact that FC allows the

alculation of the space derivatives with much better accuracy than

he finite differences method. Second, the errors in the vacuum

odel calculations, are higher than in the diffusive media problem.

t is well known that non–scattering media require special treat-

ents for instabilities and numerical oscillations. It is worth noting

hat in the FD–DOM calculations occasionally there appear unphys-

cal negative intensities that renders the finite difference approxi-

ation unstable. In order to make the method stable, we include

 fixup, replacing these negatives values by zero. Finally, the er-

ors are higher at the initial and final times. Both methods, and

pecially the FD–DOM yield the higher errors at the boundary re-

ions. The propagation in time evolves the intensity function from

n initial location surrounding the origin, to regions centered at

 x − t, y − t] . Therefore, the maximal global errors change in time,

ccording to the intensity of the radiation at the boundaries. For

he range of time in which most of the radiation is contained in-

ide the scattering medium (2–3 a.u.), the intensity at the bound-

ries is negligible, and therefore, the errors are much lower. 

.3. Comparison with experimental results 

This section compares results produced by our algorithm with

xperimental data obtained from radiation on several tissue phan-

oms considered in Klose et al. [19] . The measurements reported

n that reference utilize phantoms composed of clear epoxy resin,

ith some concentration of silicon–dioxide monospheres (adjust-

ng the scattering properties of the media), and a mixing of ink

varying the absorption properties). Since our method solves the

TE equation rather than the diffusion equation, it permits the

onsideration of highly scattering media that contain void–like re-

ions (with very low absorption and scattering coefficients). We

nalyze two different experimental arrangements. In the first, we

imulate an homogeneous rectangular cuboid. In the second ex-

eriment, the phantom also has a rectangular parallelepiped ge-

metry, but contains inside a cylindrical ring filled with water,

n order to mimic void–like regions in the tissue. In both exper-

ments, the phantom material was illuminated by a collimated in-

rared laser beam ( λ = 678 nm), at the midpoint of the z axis. The

ight fluences were measured at different positions along the x and

 boundaries (illustrated by short arrows, in Fig. 4 ). Three sets of

easurements were performed, according to the positions of the

ight source over the x axis (points labeled as A, B and C , in the

gure). 

The Fourier Continuation procedure extends the specific in-

ensity at the boundary of the domain, allowing to treat general

on–periodic boundary conditions, avoiding thus the Gibbs phe-
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Fig. 4. Experimental setup for the three different situations. The inward arrows to- 

ward the phantom shows the three different position for the source. The outward 

arrows represent detector positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (Color online). Calculated fluence rates φ( r ) ( Eq. (4) ) corresponding to the 

homogeneous phantom simulation. The three figures display the results corre- 

sponding to a source located at A (top), B (middle) and C (botton). The results are 

shown in a logarithmic scale. 
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nomenona due to the non periodicity of the function. The source

function and the optical parameters may also give rise to the Gibbs

ringing effect if not properly treated. For that reason, the functions

that approximate the source function and the optical parameters

are chosen to be smooth functions. All discontinuities can thus be

treated, yielding arbitrarily accurate approximations provided suf-

ficiently sharp smooth approximations of discontinuities (together

with adequately fine discretizations, which resolve the smooth ap-

proximation) are used. 

Since we solve the time dependent evolution of the radiation,

we evaluate the outgoing current of photons introducing a sig-

moid function T ( t ) which starts at zero and smoothly transitions

to one, keeping the final solution at a numerical asymptotic time.

The source function is represented by: 

q (r , ˆ �, t) = T (t) exp 

(
−| r − r 0 | 2 

2 σ 2 

)
, (19)

where the spread of the beam is taken from the experiment as

σ = 0 . 1 cm. The medium is highly scattering, therefore, all the di-

rectional initial information of the source, which might be of value

in other type of experimental settings, is lost after a number of

collisions a few millimeters away from the source. 

We solve for a number of time steps, until the solution reaches

its asymptotic behavior [32] , for which lim t→∞ 

∂ I/∂ t = 0 and then

evaluate the operator of Eq. (6) along the edges where the detec-

tors are positioned. 

Once the outgoing photon current is computed, a normalization

is performed in order to set the detector readings from the simu-

lation and the one from the experiment in the same scale. For the

detectors along the x axis we choose to normalize with respect to

the biggest value of each curve. Results obtained along the y axis

were normalized adjusting the point at the discretized grid which

was found to be the closest to some of the experimental detector

positions. 

4.3.1. Homogeneous phantom 

The first experimental arrangement reported in [19] uses an ho-

mogeneous phantom having the optical properties listed in Table 1 .

The size of the edges are 3 cm along the x and y axis. The sources

are located at three different positions r 0 : A = (1 . 5 , 0) cm, B =
(0 . 9 , 0) cm and C = (0 . 3 , 0) cm. 

The fluence rates calculated via Eq. (4) are displayed in Fig. 5 ,

for the three experimental settings, corresponding to the different

positions r 0 of the light source (A at top, B in the middle, and C at

the bottom). As is noticeable in the figure, the fluence for the first

case is symmetric, but the system looses this property as soon as
he source is located close to the boundary, giving rise to reflec-

ions that alter the light intensity with a particular angular depen-

ency. 

The radiation fluence of photons reaching the detectors located

t the boundaries are calculated by Eq. (6) . The results are shown

n Fig. 6 , for the 28 detectors located at the x border (top), and for

he 28 y detectors (bottom). Excellent agreement is found between

ur simulated results (lines) and the experimental data (in sym-
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Fig. 6. (Color online). Experimental transmitted radiance measured by Klose 

[19] (symbols), and simulated FC–DOM results, for the homogeneous phantom 

(lines). 
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Fig. 7. Inhomogeneous phantom, with a void–like ring region in which μa = μs = 

0 . The scattering coefficient smoothly transitions into the void region. 
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ols). The maximum for the outgoing photon current J + in exper-

ments B, and specially in C, are deviated from the source position.

his can be understood if one considers the radiation that is being

eflected and the radiation that is escaping at the left surface. As

he source gets closer to the edge, the angle from the incident radi-

tion with respect to the normal on that surface gets bigger. There-

ore, more radiation is reflected from points closer to the source,

hich might propagate to the right side of the media, contribut-

ng to the maximum. Contributions coming from scattered photons

lso are expected to be higher coming from the right, because the

adiation at the left might be escaping from the media. 

This experimental setting was simulated and analyzed by Klose

t al. [19] in a time independent framework, by means of first or-

er finite difference approximations to the spatial derivatives, and

 Gauss–Seidel method for the matrix inversion. Those authors also

onsidered a 2 D integration, but using an extended trapezoidal rule

n place of the Chebyshev quadrature used in the present work.

ur numerical results and Klose’s results are hardly distinguishable

n the same graph. 

.3.2. Inhomogeneous phantom 

The second phantom, which contains a water–filled void–like

ing, is treated in our simulations as an homogeneous body, ex-

ept for the cylindrical region with diameter d = 2 . 8 cm, in which

he absorption and scattering coefficients are given by μa = μs =
 . The lengths of the phantom in this experimental arrangement

long x and y are 4 cm. Three experiments were simulated, ac-

ording to the position r 0 of the source, labeled A = (2 . 0 , 0) cm,

 = (1 . 2 , 0) cm, and C = (0 . 4 , 0) cm. To preserve the high order of

he computational method, discontinuities in the optical parame-

ers of the medium must be avoided. Otherwise, Gibbs ringing ef-
ects will deteriorate the accuracy of the calculations. For that rea-

on, we implemented the window function introduced by Bruno

t al. [33] in another context, with some slight modifications. This

indow function provides a smooth transition into the void region,

nd thus helps avoid the appearance of the Gibbs oscillations due

o discontinuities in the optical parameters. A representation of the

nhomogeneous phantom is given in Fig. 7 , where the ring in the

iddle shows the void–like region. 

The fluence rates calculated for the second phantom are dis-

layed in Fig. 8 . The results show overall the same characteristics

s the previous calculations, but the effect of the void region is

learly noticeable. The photons are channeled inside this region,

roducing a feature that cannot be reproduced with the diffusion

pproximation. 

The radiation fluence of photons reaching the 38 detectors lo-

ated at the boundaries are shown in Fig. 9 . A very good agree-

ent was found between theory and experiment. The presence of

oid regions, like those encountered in the cerebrospinal fluid in

he head, or between organs in the body –the synovial fluid in fin-

er joints [13] or the trachea in the human neck [11] –, demands

he use of transport models. 

This experimental setting, as the one in the previous section,

as also simulated by finite differences in a time independent

ramework by Klose et al. [19] . 

.3.3. Ray effects 

In this section we present the last time independent benchmark

f this paper, which concerns an important and widely studied nu-

erical phenomenon in the discrete–ordinates literature. We com-

are our FC–DOM results with a thoroughly used time independent

enchmark in radiative transfer, which serves as a testbed for the

ell–known ray–effects phenomenon. 

The ray effects phenomenon has its origin in the discretization

f the angular variable ˆ �. The possible propagation directions in

iscrete ordinate methods are given by the M discrete directions
ˆ m 

. When localized sources are present, sharp gradients in the

pecific intensity are originated near the source. The fluxes are

nly allowed to propagate in the discrete directions, giving rise

o the spurious oscillations known as ray effects. We reproduce a

enchmark by Crosbie and Schrenker [34] , which is regarded as

xact [35,36] , using the method described in Section 4.3 . 

We consider a two dimensional square medium, of unit size,

hich is purely scattering with μt = μs = 1 . The scattering is

sotropic ( g = 0 ). Uniformly over the entire bottom surface, inci-
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Fig. 8. (Color online). Calculated fluence rates φ( r ) for the inhomogeneous phantom 

simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (Color online). Experimental transmitted radiance measured by Klose 

[19] (symbols), and simulated FC–DOM results, for the inhomogeneous phantom 

(lines). 

Fig. 10. (Color online). Exact photon current component along the y direction, J y (x ) 

(circles), and simulated results obtained with the FC–DOM method for different 

number of discrete directions, M = 32,64,128 (lines). 
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dent radiation is entering the domain. The other surfaces are sub-

ject to vacuum boundary conditions, which can be obtained by

considering the indexes of refraction n m 

= n a = 1 . 

The observable considered is the y component of photon cur-

rent ( Eq. 5 ), J y (x, y = 1) . In Fig. 10 we present the results for this

benchmark. As can be seen, ray effects are present for coarse dis-

cretizations of the angular variable, and diminishes whith increas-

ing number of directions. Due to the fact that ray effects have its

origin in the discretization of the angular variable, the FC–DOM

method doesn’t solve the ray effects phenomenon. 

In highly scattering media, the singular behavior responsible for

ray effects is rapidly attenuated away from the source, as the di-

rect intensity responsibly for the ray effects rapidly decays [35] ,

and radiation is redistributed in all directions. The Fourier Contin-

uation procedure only deals with the differential operator, and has

no effect in the angular discretization. Other strategies have to be

considered to overcome the ray effects phenomenon when needed.

Because biological tissue is a highly scattering media, in optical to-
ography, the media under study is predominantly highly scatter-

ng, and in many applications ray effects are not a problem. 

.4. Comparison with an analytical solution 

In this subsection we validate our time–dependent computa-

ional methods, calculating the fluence rate for an analytical prob-

em proposed and solved by Paasschens [31] . In this problem, an

nfinite isotropic and homogeneous two–dimensional media is il-

uminated by a point–like pulse q (r , ˆ �, t) = δ(r − r ) δ(t) . 
0 
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Fig. 11. Analytic solution, and numerical solutions obtained by FC–DOM and FD–

DOM for an homogeneous phantom, illuminated by a point–like pulse. 
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Table 2 

Convergence to analytic scalar flux. 


 
φFC ( r ) 
φFD ( r ) 

0.250 5 . 8 × 10 −3 1 . 5 × 10 −1 

0.125 1 . 8 × 10 −4 2 . 2 × 10 −2 

0.100 4 . 7 × 10 −5 1 . 1 × 10 −2 

Fig. 12. Phantom with a void region (in dark). 
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The solution of this problem, is 

(r, t) = 

e −ct μt 

2 π
δ(ct − r) + 

μ′ 
s 

2 πct 

(
1 − r 2 

c 2 t 2 

)−1 / 2 

× exp 

[ 
μ′ 

s 

√ 

c 2 t 2 − r 2 − ct μt 

] 
H(ct − r) , (20) 

here H ( x ) is the Heaviside step function, the parameter μ′ 
s = (1 −

) μs takes into account the anisotropy of the media, μt = μa + μ′ 
s ,

nd c is the speed of light in the medium. In the present calcu-

ation we simulate the same homogeneous phantom used in the

revious calculations, with parameters μ′ 
s = 11 . 6 /cm, μa = 0 . 35 ,

 = 0 . 8 , and a velocity c = 0 . 019 cm/ps. The first term in expres-

ion (20) represents the ballistic peak [31] , raising from the un-

cattered photons arriving at time t = r/c. This feature hardly ap-

ears in numerical simulations, unless a very fine mesh is used in

he calculations. Moreover, in highly scattering media, this contri-

ution is negligible a few millimeters away from the source. In real

ituations the laser pulse has a finite time extent, and a Gaussian

epresentation [37] , or other kind of well behaved functions are

ore reliable than the Delta function. 

For the numerical solution we have used vacuum boundary

onditions, in which the flux entering the domain through its

oundary equals zero: 

(r b , ˆ �, t) = 0 on �−. (21)

For practical purposes, in order to avoid Gibbs instabilities and

 large computational effort, the Dirac delta function correspond-

ng to the source, is approximated by a sharp Gaussian. The nu-

erical results given by our FC–DOM calculation, together with the

nalytic solution (20) , are shown in Fig. 11 . We also include in the

gure the results obtained by using the FD–DOM approach. In both

ases, the agreements with the analytical result are excellent. 

To give a quantitative idea of the convergence properties for

oth methods, we define the overall relative error with respect to

he analytic solution as 

φ(r) = 

√ ∫ t f 
t 0 

| φa (r, t) − φn (r, t) | 2 dt ∫ t f 
t 0 

φa (r, t) 2 dt 
, (22) 

here φa ( r, t ) is the analytic scalar flux, and φn ( r, t ) are the

uxes obtained from the numerical simulations with the FC and

D methods. The time t 0 = 70 ps and t f = 400 ps are chosen to

void the singular behavior at t = r/c, and effects associated to the

oundaries for the later times. In contrast to the qualitative agree-

ent shown in Fig. 11 , the errors are calculated without normal-

zation, and instead of the Gaussian function approximation, the

olution is evolved from t 0 to t f from an initial condition given by
he analytic solution at time t 0 (eq. (26) from reference [31] ). This

ives an exact approximation to the solution at t = t 0 , and avoids

umerical errors introduced in the approximation to the Dirac

elta function. We consider the error for 
φ( r, t ), with r = 1 . 27 cm

rom the pulse. In Table 2 we show the errors associated to the FC

nd FD methods for simulations with M = 16 discrete directions,

 = 3 . 3 × 10 5 time steps and a varying number of points for the

patial coordinates, where 
 = 
x = 
y . 

Table 2 clearly shows that the error resulting from use of the

C method is significantly smaller than that resulting from the FD

ethod, by orders of magnitude, for all the values of N tested. 

In order to test our computational method in a situation that

esembles a laboratory setting, we performed an additional simu-

ation of a more realistic physical problem. Here, we calculate the

utgoing photon flux ( Eq. (6) ) read at the boundary of a cuboid

hantom having the same dimension ( x = y = 3 cm), and the same

ptical parameters as before, but containing a fully cylindrical void

egion at the middle, as displayed in Fig. 12 . Note that the void

egion in this example is a cylinder, not a cylindrical ring. 

The radiation source is represented by the same Gaussian

unction (19) , with σ = 0 . 5 cm, and it is placed at r 0 = (1 . 5 , 0)

m. The detector is fixed at the point r d = (1 . 5 , 3 . 0) cm. Fres-

el boundary conditions are imposed. An analytical solution is

ot known for this problem. Therefore, the comparisons between

C and FD calculations were performed comparing these results

gainst a highly–refined, converged solution, which is considered

s a benchmark. This reference calculation was performed with a

pace discretization of dx = dy = 1 . 3 × 10 −2 cm. Since the length

ize of the phantom is 3 cm , this means that N x = N y = N = 230

rid points are utilized for the simulation. Concerning the time

ropagation, we used an explicit second–order Adams–Bashforth

ethod, with a time discretization step of dt = 10 −3 ps. The prop-

gation is carried out up to a final time of τ = 600 ps utilizing

 = 6 × 10 5 time steps. We found convergence for M = 32 discrete

ngles ˆ �m 

. Then, we compare the FC with the FD method, by

earching for calculations producing the same error order (relative

o the benchmark result). The outgoing photon currents J + result-
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Fig. 13. Normalized outgoing photon current at the detector position for three sim- 

ulations. The one taken as benchmark reference is FC–AB2. 

Table 3 

Convergence for 
J + (r d ) . 

Method T N CPU time (s) 
J + 

FC 6 × 10 3 38 38 4 . 8 × 10 −3 

FD 6 × 10 4 70 352 4 . 5 × 10 −3 
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ing from the benchmark calculation (FC–AB2), from the FC–DOM

and the FD–DOM, are displayed in Fig. 13 . 

In order to obtain a quantitative value of the differences, we

define the overall relative error as 


J + (r d ) = 

√ ∫ τ
0 |J 

b + (r d , t) − J 

n + (r d , t) | 2 dt ∫ τ
0 J 

b + (r d , t) 2 dt 
, (23)

where J 

b + (t) is the reference converged benchmark solution, and

J 

n + (r d , t) is the corresponding numerical test (FC or FD). For illus-

tration, we analyze one set of FC and FD calculations producing

the same relative errors. The sizes of both calculations, for M = 32

discrete directions, are summarized in Table 3 . 

As can be seen in the table, the finite differences method re-

quires roughly twice the number of grid points (per dimension),

and ten times the number of time steps, in order to reach the

same accuracy than our Fourier Continuation method. In wall time

terms, it means that the FC–DOM calculation tooks 38 seconds,

while the FD–DOM tooks almost 6 minutes. For higher order meth-

ods in time, it is expected that the FC–DOM method will surpass

the FD–DOM method even further. 

5. Conclusions 

In this work we have presented a novel approach for the treat-

ment of the radiative transfer equation. Our method is spectral,

dispersionless, and high order in the spatial variables. The pro-

posed approach produces time resolved fluences for a given ac-

curacy with considerable less effort than previous approaches. In

contrast to diffusion approximations, the proposed approach is

based on the transport equation for photons, and it therefore re-

mains physically accurate even in presence of vacuum regions. The

dispersionless property of the FC–DOM method plays a special role

in vacuum media, where the transport process under the Discrete

Ordinates approximation is essentially an advection problem along

the discrete rays. The FC–DOM method presented here meets the

accuracy and effectiveness requirements for optical tomography

problems. In this work we have used an explicit Euler scheme for

time propagation. Major advantages might be gained by combining

the FC method with higher order methods in time. 
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