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The computational techniques needed to generate a two-body Generalized Sturmian basis are described.
These basis are obtained as a solution of the Schrödinger equation, with two-point boundary conditions.
This equation includes two central potentials: A general auxiliary potential and a short-range generating
potential. The auxiliary potential is, in general, long-range and it determines the asymptotic behavior of
all the basis elements. The short-range generating potential rules the dynamics of the inner region. The
energy is considered a fixed parameter, while the eigenvalues are the generalized charges. Although the
finite differences scheme leads to a generalized eigenvalue matrix system, it cannot be solved by standard
computational linear algebra packages. Therefore, we developed computational routines to calculate the
basis with high accuracy and low computational time. The precise charge eigenvalues with more than 12
significant figures along with the corresponding wave functions can be computed on a single processor
within seconds.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Sturmian functions were introduced by Shull and Löwdin [1]
as a complete basis set to deal with atomic systems. Later Roten-
berg [2,3] gave them the name Sturmian to emphasize their con-
nection with the Sturm–Liouville theory. Glöckle and co-workers
used Weinberg states (which are actually Sturmian functions) in
scattering problems [4]. In 1968, Goscinski [5] presented a rig-
orous mathematical generalization of this basis set. He regarded
Sturmians as solutions to the Schrödinger equation with a con-
stant and externally defined energy, and considered the magnitude
of the potential (the “charges”) as the eigenvalues [5,6].

The advantages of the Sturmian functions are considerable, es-
pecially comparing their efficiency as a basis set with the hy-
drogenic eigenvectors of the Schrödinger equation. The functions
constituting a Sturmian basis set are thickly crowded on a spatial
region. That region can be adjusted to be the desired region of in-
terest through the adequate choice of the energy parameter. The
peculiarity of the bound-state hydrogenic wave functions, on the
other hand, is that the innermost zeros of the functions are insen-
sitive to the principal quantum number n. This accounts for the
fact that these functions do not form a complete set; the contin-
uum is required to describe the region between the origin and the
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limiting first zero. The bound-hydrogenic functions are also widely
spread in space, because the maximum value position behaves pro-
portional to n2.

Negative energy Sturmian functions, which asymptotically de-
crease exponentially, were shown to be efficient in obtaining
atomic bound states for few-electron atoms as well as in molec-
ular systems. These functions have been widely used to perform
ab initio calculations of N-electron atomic and molecular sys-
tems (see, for example, [7] and references within). Their use im-
proves substantially the convergence of the expansion for many
configuration–interaction calculations, as shown, for instance, in [1,
8,9].

Positive energy Sturmians, on the other hand, can be potentially
useful for scattering problems, because one can generate functions
having the same energy as the physical scattering particle (the
same wavenumber) and the same asymptotic boundary. For exam-
ple, all the functions in a Sturmian basis set can have outgoing—or
incoming—wave conditions. However, the positive Sturmian func-
tions form a continuum basis set with an infinite and continuum
spectrum [10,11]. Even though a finite basis size can be developed
such that the spectrum discretizes, regularization of the wave-
functions often leads to potentially divergent functions, unless the
energy itself becomes complex. This make them impractical to be
used on scattering problems.

Complex energy Sturmian function can be obtained by per-
forming a complex scaling rotation. As an example of applications
of complex-rotated positive energy Sturmian functions in scatter-
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ing problems, we can mention the works performed by the Pi-
raux group using the J-matrix method. They have been employ-
ing these functions within time-independent and time-dependent
approaches to solve the Schrödinger equation in calculations of
single and double photoionization of He [12] as well as ionization-
excitation of neutral atoms [13].

The Sturmian functions obtained as discrete solutions of the
Schrödinger equation with a pure Coulomb interaction are called
Coulomb Sturmian functions (CSF). These are by far the most
widely used Sturmian functions, to such an extent that this is the
only kind of functions employed in all the papers cited up to this
point. Basis sets obtained for general potential are very scarce be-
cause there are only a few two-body potentials that admit closed-
form analytical solutions. Some examples of them were discussed
by Rawitscher [14], and by Macek and Ovchinnikov [15,16].

Our purpose is to generate a discrete set of wavefunctions hav-
ing a unique behavior at large distances. The set should have only
asymptotically outgoing (or incoming) waves, all with the same
wave number corresponding to the physical scattering energy. We
also require the functions to be regular at the origin, and to differ
from each other by the number of nodes within the inner region.
However, energy is not the only parameter that determines the
asymptotic behavior of the wavefunctions. One can impose an out-
going behavior to the CSF basis set, but since each one of these
basis elements belongs to a different charge eigenvalue, their indi-
vidual asymptotic behavior is different.

In an attempt to generalize the use of Sturmian basis functions,
we introduced Generalized Sturmian functions (GSF) (see, for ex-
ample, [14,17,18]), in which two potentials are included into the
Schrödinger equation. One potential—called the auxiliary potential—
is, in general, a long-range one that determines the asymptotic
behavior of all the basis set. The other is a short-range potential—
called the generating potential—which accounts for the dynamics of
the inner region, where the two particles interact strongly with
each other.

Examples of the application of GSF for accurate three-body sys-
tems calculations, and the usefulness of this basis in scattering
problems are thoroughly presented in Randazzo’s PhD thesis [19],
and are also well illustrated in other papers published by our
group. It is beyond the scope of the present work to discuss these
cases.

The only paper that provides a systematic way of obtaining
a GSF basis [14] discusses the case of a Woods–Saxon potential,
checking the numerical procedure for the limit of a square well
potential for which the continuum functions and the correspond-
ing eigenvalues are known.

We found many difficulties at the initial stage of our research,
particularly in the GSF generation. Although the GSF bases offers
many advantages, they were not used extensively, possibly because
of those very difficulties. We present here a general computational
method for generating the GSF basis set, for any combination of
auxiliary and generating potentials. The impracticability of the cal-
culations, the scarcity of appropriate literature and the lack of
public available subroutines needed in the computation, have led
us to present the numerical details and technicalities, to explain
the routines used, and to make public our own computational pro-
grams.

2. General theory of Sturmian basis

The Generalized Sturmian radial functions are the solutions of
the Schrödinger equation (in atomic units):

[
−1 d2

2
+ l(l + 1)

2
+ U (r) − E

]
Snl(r) = −βnl V (r)Snl(r) (1)
2 dr 2r
where U (r) is the auxiliary potential (e.g. Coulomb), and V (r) is
the short-range generating potential, which vanishes in the outer
region r > R S . In contrast to the traditional time-independent
Schrödinger equation, where the charge is fixed and its solution
leads to the energy eigenvalues, in Eq. (1) the energy E is a fixed
parameter, and the charges become the eigenvalues βnl . Besides,
two boundary conditions supplement the equation. In every case
along the paper, we are seeking for solutions having a regular
boundary condition at the origin

Snl(r = 0) = 0. (2)

If the auxiliary potential U (r) is a Coulomb potential, then, in addi-
tion, the Kato cusp condition should also be imposed, as discussed
in [20].

In the outer region, where the second boundary condition is
imposed, the auxiliary potential vanishes. The solutions of this
Sturmian equation represent a particle of energy E moving under
the influence of a potential U (r). The radial Sturmian equation (1)
reduces to[
−1

2

d2

dr2
+ l(l + 1)

2r2
+ U (r) − E

]
Snl(r) = 0 for r > R S . (3)

The solutions Snl(r) will present all the same asymptotic be-
havior, that is, the asymptotic equation does not involve the eigen-
value.

Eq. (1) together with the boundary conditions (2) and (3), de-
fine a Sturm–Liouville problem. Therefore, their solutions conform
a complete basis set, obeying a potential-weighted orthogonality
relation:

∞∫
0

Sn′l(r)V (r)Snl(r)dr = 0 for n′ �= n. (4)

Two important issues should be noticed related to this orthogonal-
ity relation. The first is that due to the fact that the generating po-
tential V (r) is of short-range, the integration (4) can be performed
numerically in a finite spatial region for any value of the energy E ,
without any additional special requirement over the Snl(r) func-
tions. The second issue to notice is that the integral is defined
without taking the complex conjugate of the function Sn′l(r). Un-
der this particular choice of the scalar product, the overlaps be-
tween the functions converged for any energies and potentials.

Let us now illustrate that the Snl(r) functions have the same
asymptotic behavior, with different examples, beginning with the
case of negative energies E < 0. For a short-range auxiliary poten-
tial U (r) (i.e., U (r) also vanishes in the outer region) the asymp-
totic solutions of (3) behave like

lim
r→∞ Snl ∝ e−κr, (5)

where κ = √−2E . Since E is a fixed parameter, all the basis func-
tions have the same asymptotic behavior.

In the case of a Coulombic auxiliary potential U (r) = −Z/r, the
solutions of (1) have an asymptotic condition consisting of an ex-
ponentially decaying factor exp(−κr) multiplied by a logarithmic
factor

lim
r→∞ Snl ∝ e−κr+ Z

κ ln(2κr), (6)

which is the same for all basis elements.
At this point we would like to emphasize the difference be-

tween our Generalized Sturmian functions with the Coulombic
auxiliary potential, and the Coulomb Sturmian functions. The CSF
are solutions of
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[
−1

2

d2

dr2
+ l(l + 1)

2r2
− E

]
SCnl (r) = βnl

1

r
SCnl (r), (7)

i.e., the same Eq. (1) with U (r) = 0 and V (r) = −1/r. The dis-
cretized character of the solutions imposes βnl = nκ . In this case,
the asymptotic behavior of the CSF is

lim
r→∞ SCnl ∝ e−κr+n ln(2κr) = (2κr)ne−κr (8)

which changes from one CSF element to another, due to the pres-
ence of the factor n.

For the cases in which the energy is positive, the free auxiliary
potential (U (r) = 0) produces the following asymptotic conditions.
For a short-range generating potential (V (r) = 0 for r > R S ),

lim
r→∞ Snl ∝ e±ikr, (9)

where k = √
2E and the sign describes outgoing (+) or incoming

(−) waves. The Coulomb case (V (r) = −Z/r) produces functions
with the asymptotic condition

lim
r→∞ Snl ∝ e±i(kr+ Zn

k ln(2kr)), (10)

where Zn = βn Z . All the functions oscillate with the same wave-
number k (determined externally by the fixed energy), but each of
them has a different logarithmic phase, depending on the eigen-
value. For the CSF, the charge Zn is complex, and Eq. (10) leads
to divergent wavefunctions, except for particular cases in which
the parameter k is also complex. Introducing complex energies be-
comes a procedure similar to the complex-rotation method, in the
sense that the outgoing functions vanish asymptotically. However,
these two methods are not equivalent. Issues like the relationship
between complex-rotation of the coordinate and the energy, and
Generalized Sturmian set obtained with complex rotated coordi-
nate, are subject of current investigations [21]. As far as we know,
Generalized Sturmian functions for complex energies do not exist
in the scientific literature.

3. Numerical methods

3.1. Finite differences scheme

We solve Eq. (1) by using a finite differences scheme. To this
aim, we first discretize the solution Snl(r):

Snl(ri) ≡ Si, i = 1 . . . N, (11)

in the uniform radial grid ri = i × �r (the quantum numbers l and
n are suppressed for brevity). The functions Si are then defined up
to a given radius R = N × �r. Within the finite difference scheme,
we can approximate the second order derivative in Eq. (1) up to
O (�r2) by:

d2 Snl(ri)

dr2
= 1

�r2
[Si+1 − 2Si + Si−1] + O

(
�r2). (12)

Therefore, in this three-point stencil, Eq. (1) reads:

−1

2

1

�r2
Si+1 − 1

2

1

�r2
Si−1 +

[
1

�r2
+ l(l + 1)

2�r2i2
+ Ui − E

]
Si

= −βV i Si + O
(
�r2), (13)

where V i ≡ V (ri) and Ui ≡ U (ri). We write this finite recurrence
relation in matrix form as

[H − EI]s = −βVs, (14)

where s is the vector with elements Si , I is the identity matrix, and
V is the diagonal matrix with elements Vii = V i . The symmetric
tridiagonal matrix H has off-diagonal elements
Hi,i−1 = Hi,i+1 = −1

2

1

�r2
, (15)

while the diagonal ones are

Hii ≡ hi = 1

�r2
+ l(l + 1)

2�r2i2
+ Ui . (16)

The boundary condition given by Eq. (2) is naturally fulfilled by
the functions, since the grid starts at i = 1, and that means S0 = 0.
Within this scheme, we are also able to set the boundary condi-
tions for the outer part of the functions, by choosing the appro-
priate values of HN,N , the last diagonal element in Eq. (16). For
example, box boundary conditions, which means that the function
S(r) = 0 for r > R , can simple be imposed to the system, with-
out any change of the diagonal elements. For any other asymptotic
behavior, the last diagonal element of the matrix H is modified
assuming that this asymptotic condition was already reached at
ri = R . Defining

CN ≡ SN+1

SN
(17)

then, the first term in the LHS of Eq. (13) becomes, for the last
matrix element

−1

2

1

�r2
SN+1 = −1

2

1

�r2
SN CN . (18)

Thus, an approximate solution with the exact boundary condition
can be obtained from Eq. (13) making the substitution:

hN → hN − 1

2

1

�r2
SN CN . (19)

For example, if the Coulombian outgoing asymptotic boundary
condition (10) is desired, then

CN = SN+1

SN
= ei(krN+1+ Z

k ln(2krN+1))

ei(krN+ Z
k ln(2krN ))

= ei(k�r+ Z
k ln(2k�r)). (20)

In previous works [17,18,20,22] we tested the quality of the
configuration–interaction method based on the GSF basis. There,
we aimed to obtain the eigenfunctions with high accuracy. There-
fore, a finite difference scheme of the order O (�r4), leading to
a pentadiagonal matrix eigenvalue problem, was used. In gen-
eral, increasing the order or the approximation used for the spa-
tial derivatives is very efficient since it produces eigenvalues with
much higher accuracy, with a small computational increase of the
computational time [19].

3.2. Eigenvalues calculation by standard diagonalization routines

Eq. (14) is a generalized eigenvalues problem, and in principle,
it should be solved by standard computational linear algebra rou-
tines like for example, the subroutine zggevx from lapack [23].
Unfortunately, this procedure does not work. We implemented
the lapack subroutines in our codes—obtaining wrong eigenvalues
and eigenvectors—for many different combinations of auxiliary and
generating potentials. Perhaps the reason of this failure lies in the
short-range character of the right side of the generating potential
V (r). The size of the matrix in Eq. (14) should be large enough for
the auxiliary potential U (r) to vanish smoothly, and to ensure that
the boundary conditions are already fulfilled at the last element
of the matrix. Otherwise, Eq. (17) will not accurately represent the
desired asymptotic behavior. But, extending the matrices to large
distances means that many elements in the right side of Eq. (14)
are zeroes, making the calculations unstable.

Since the generalized eigenvalues solver did not work, we also
tried the use of the standard subroutines for the eigenvalues solver.
In order to do that, we multiplied both sides of Eq. (14) by the
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inverse of the diagonal potential matrix (i.e. by V−1), obtaining the
eigensystem:

V−1[H − EI]s = −βs. (21)

The three-point stencil for this equation is:

−1

2

1

�r2 V i+1
Si+1 − 1

2

1

�r2 V i−1
Si−1

+
[

1

�r2
+ l(l + 1)

2�r2i2
+ Ui − E

]
1

V i
Si

= −β Si + O
(
�r2), (22)

where

V i±1 ≡ √
V i V i±1 (23)

was introduced in order to keep the symmetry of the matrix.
The presence of V−1 in the diagonal elements of the matrix

makes the eigensystem very unstable, and requires that we restrict
the numerical calculation to a region in which the potential V (r) is
not too small. There is an additional problem associated with the
use of standard diagonalization routines, and it relates to the com-
putational requirements. For an acceptable accuracy, sometimes
several thousand points are required in the spatial discretization.
Although the matrix is banded, an enormous memory space must
be allocated for storing the eigenvalues, as required in most of the
lapack routines. For scattering solutions, the replacement of the
last matrix element in Eq. (19) leads to a non-Hermitian tridiago-
nal matrix, a case for which there are not public routines available.

For those reasons, we had to develop our own computational
routines, presented in detail in the following subsections.

3.3. Eigenvalues calculation by a complex-orthogonal transformation

A fast and accurate algorithm for solving the tri-diagonal eigen-
value problem (22) based on the theory explained by Luk and
Qiao [24] was implemented. We used the implicit QR method with
the Wilkinson shift [25] and replaced all unitary transformations
by complex-orthogonal transformations. The theoretical aspects of
the algorithm are discussed in that paper, and in the references
therein. However, they present a simple case of a 4 × 4 matrix,
without any guarantee that the algorithm will be appropriate for
large systems. Moreover, since we made several modifications to
the procedure outlined there, we consider it necessary to provide
the details of the computational techniques implemented by us.

Basically, the diagonalization algorithm consists of performing
successive transformations of the form

A(j+1) = W(j)A(j)(W(j))T
, (24)

to a complex-symmetric tri-diagonal matrix A at any step j, where
A(1) = A, W(j) are complex-orthogonal matrices

W(1) =

⎛
⎜⎜⎜⎝

c1 s1 0 0 · · · 0 0
−s1 c1 0 0 · · · 0 0

0 0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎠ ;

W(2) =

⎛
⎜⎜⎜⎝

1 0 0 0 · · · 0 0
0 c2 s2 0 0 · · · 0
0 −s2 c2 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎠ ;

...
W(N−1) =

⎛
⎜⎜⎜⎝

1 0 0 0 · · · 0 0
0 1 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 cN sN

0 0 0 0 0 −sN cN

⎞
⎟⎟⎟⎠ , (25)

and the coefficients ci and si are chosen appropriately in order
to annihilate the non-diagonal terms of the matrix A. Due to the
particular form of the rotation matrices W, it is not necessary to
perform the multiplication (24) for the full N × N matrix. It is pos-
sible to perform the transformations with reduced 2 × 2 matrices

G(j) =
(

c j s j
−s j c j

)
, (26)

as is explained in detail in Appendix A.
The (N −1) transformations (24) are repeated many times (usu-

ally, about ten times for each eigenvalue) until the off-diagonal
element annihilates, or becomes smaller than some convergence
criterion, which in our case is set at

|Ai+1,i| �
√

2
(|Ai,i| + |Ai+1,i+1|

)
εM , (27)

where εM is the machine precision.
It is worth noting that the computational procedures described

in Appendix A not follow exactly the algorithm outlined in [24].
Another point to underline refers to the order in which the eigen-
values are obtained. The algorithm described here does not pro-
duce the eigenvalues in an established order. However, throughout
the successive iterations they appear in groups of eigenvalues that
follow a certain order within the group (this is not strict and we
do not fully understand the reason for that). This order is related
to the magnitude of the generating potential V . In general, the ten-
dency is for the higher eigenvalues to pop up first, if the potential
V (r) decreases with r (i.e., with the index of the matrix). There-
fore, we found it more effective to invert the order of the matrix
elements, in such a way that r1 = N × �r, r2 = (N − 1) × �r, . . . ,
rN = �r.

3.4. Eigenvectors calculation

The QR algorithm presented in [24] is able, in principle, to pro-
duce also the eigenvectors. The usual form is to produce the same
transformations done to the tri-diagonal matrix, to a unit matrix,
that at the end of the procedure, will contain, in its columns, the
different eigenvectors.

In previous work [17,18] we used a different approach, consist-
ing of the relaxation of a random vector, until it converges to the
desired eigenvalue of the matrix A. The random vector r is succes-
sively multiplied, by

r ← [
(A − λ j1)

]−1
r, (28)

where λ j is the eigenvalue for which the corresponding eigenvec-
tor is sought. These iterations converge to the eigenvector corre-
sponding to the eigenvalue closer to λ j . The actual eigenvalue is
calculated, and it replaces the original λ j . We repeat the operation
until the change in the eigenvalue is smaller than a particular tol-
erance. The advantage of this procedure is that it adapts easily to
a simple replacement in the degree of approximation of the spatial
derivatives, allowing the calculation of the eigenvalues with higher
accuracy (for example, by using a five-point stencil in Eq. (21)). De-
tails of the general inversion algorithm are given in [26], and for
the particular implementation in the generation of the GSF basis,
in [19]).

In the present work, we developed another iterative algorithm
that allows to obtain, very fast, very accurate eigenvalues. For any
eigenvalue, the corresponding eigenvector is computed by using
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a predictor–corrector method. The procedure includes a numeri-
cal (outwards) integration from the origin to a particular matching
point, and another integration (inwards) from the asymptotic re-
gion to the matching point. At this particular matching point the
logarithmic derivatives are calculated for both solutions, and it-
erations are performed until the difference between both values
becomes negligible. The full procedure is explained in the follow-
ing sections.

3.5. Iterative solution of the Sturmian equation

We use finite difference techniques to find the numerical solu-
tions Sn(r) for n = 1 . . . N to the radial equation (1). For simplicity,
we drop the index l corresponding to the angular quantum num-
ber here and in the following. We solve the equation on a finite
grid covering the region r = 0 to a boundary r = R , where the
boundary conditions are assumed to be applicable. We can choose
to calculate the desired regular solution (Sn(0) = 0) by starting
the numerical integration with the appropriate functional form
Sn(r → 0) = rl+1. However, numerical errors near the origin intro-
duce small admixtures of the irregular solution into the solution
being sought. Integrating outward from the origin can amplify the
errors, producing a divergent function. Therefore, we also start an
inward numerical integration, from a practical infinity r∞ located
in the asymptotic region, toward the origin. That insures that er-
rors from the small admixtures of the irregular function decrease
as the integration proceeds from point to point.

The numerical method used for the solution integration is
explained in detail in W. Johnson’s book [27]. It consists of a
predictor–corrector Adams–Moulton method for the integration.
We use a seven-point scheme, which (together with the interpola-
tion procedure) achieves a high order of accuracy (of about (�r)8).
The same procedure is implemented for the inward integration.
We modified the Johnson’s subroutines outsch and insch, allow-
ing their use with complex functions.

The procedure is completed with a matching process, which
consists of equating the logarithmic derivatives ηn of the outward
function Sout

n and of the inward function S inw
n at the boundary

point r = R , i.e.,

ηout
n = ηinw

n , (29)

where

ηout
n ≡ 1

Sout
n

∂ Sout
n

∂r

∣∣∣∣
r=R

(30)

and

ηinw
n ≡ 1

S inw
n

∂ S inw
n

∂r

∣∣∣∣
r=R

. (31)

If the absolute value of the discrepancy

�ηn = ηinw
n − ηout

n (32)

between the two derivatives is higher than a desired parameter, we
change the eigenvalue (according to a particular recipe explained
below), and iterate until the convergence is achieved. The matching
procedure varies according to the particular boundary condition
desired, so we will deal separately with the different cases. With-
out loss of generality, we will assume that the auxiliary potential
is asymptotically a Coulombic potential, of the form

lim
r→∞ U (r) = − Z

r
. (33)
3.5.1. Bound levels
The solutions Sn(r) of Eq. (1) with an auxiliary potential (33)

and negative energy E , which are not exponentially divergent, have
the asymptotic behavior given in Eq. (6). If the charge Z ∈ R, the
asymptotic behavior is also real, and therefore, the radial flux will
be zero: these are stationary eigenvectors. The eigenvalue spec-
trum in this case is discrete and infinite.

The outward integration starts with an expansion of the solu-
tion, assuming that Sn(r → 0) = rl+1. The particular point-by-point
scheme used in the propagation of the solution is not crucial,
but if accuracy is needed, it must be a high-order scheme. The
integration is continued toward the outer classical turning point.
Assuming that at this point the generating potential is null (which
is a reasonable assumption, since it is a short-range potential), the
turning point rt is obtained by calculating the point in which

U (rt) + l(l + 1)

2r2
t

+ βn V (rt) = E (34)

is satisfied.
In the region beyond the classical turning point, the equa-

tion is integrated inward, again using a point-by-point integration
scheme, starting from a practical infinity r∞ , with an approximate
solution obtained from an asymptotic series. Since a bound state
function behaves asymptotically as e−κr , we choose the value of
r∞ in such a way that

κr∞ =
√

−2
(

E − U (r∞)
)
r∞ ≈ 40. (35)

By choosing that, we ensure that the function has already reached
the exponentially decreasing boundary condition, and we are still
in a position to avoid numerical problems in the integration. The
value of the function Sn(r∞) is roughly 10−12 of its maximum.

In order to start the propagations (both the outward and the in-
ward propagation), an initial eigenvalue βn is estimated. We use as
the initial value, the eigenvalue given by the algorithm introduced
in Section 3.3. The following steps for the iteration are

1. Use the outward integration routine to obtain values of the ra-
dial wave function Sout

n from the origin to r∞ , and normalized
it according to

∞∫
0

Sout
n V (r)Sout

n dr = 1. (36)

Since V (r) is a short range potential, the upper limit of the in-
tegration should be replaced by the point where the potential
vanishes.

2. Check the number of nodes of the solution. It must be (n −
l − 1), otherwise, change the eigenvalue by roughly a 10% and
start the iteration again.

3. Calculate the turning point (Eq. (34)).
4. Use the inward integration routine to calculate the radial

wavefunction S inw
n from r∞ to rt . Scale the inward solution

in order to make the wavefunction continuous, i.e., S inw
n (rt) =

Sout
n (rt).

5. Calculate the correction �βn determined by the difference be-
tween the slopes of the two curves in the matching point rt ,
as given in Eq. (B.10) of Appendix B.

6. Convergence check: The process is repeated until the two
curves meet with the same derivative.

In general, only a few iterations are needed for any eigenvec-
tor, depending on the quality of the initial eigenvalue given by the
tridiagonalization, and the accuracy desired in the final results. We
will discuss detailed results in Section 4.
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3.5.2. Continuum levels with outgoing/incoming boundary conditions
The first step here is the calculation of the asymptotic wave-

function, providing the auxiliary potential and the initial eigen-
value (which, again, is obtained from the tridiagonalization ex-
plained above). For the Coulomb potential, we use the fcoul rou-
tine written by Salvat [28], which provides the regular and irregu-
lar radial Schrödinger Coulomb functions F ( Z

k , r) and G( Z
k , r), and

their derivatives, where Z
k is the Sommerfeld parameter. Since in

our calculation the energy is a fixed parameter, we will drop the
indexes related to Z or k in the following formulas.

The asymptotic solution is written—in terms of the Coulomb
functions—as

P (r � R A) = cos δF (r) + sin δG(r), (37)

where δ is the phase shift, which is calculated by assuming arbi-
trarily that at the point R A the function satisfies Sn(R A) = 1, i.e.:

cos δ = F (R A) + iG(R A)

F (R A)2 + G(R A)2
,

sin δ = G(R A) − i F (R A)

F (R A)2 + G(R A)2
. (38)

The asymptotic point is initially set as R A = N × �r = R (see
Eq. (11) and the following definitions). This is the point at which
the boundary condition was set in the initial tridiagonalization.
Since the auxiliary potential cannot be strictly zero at this point,
we allow our program to calculate the wavelength λ of the con-
tinuum function (37) and set R A = R + 4λ. In any case, we must
ensure that R A > R S , where R S is the range of the generating po-
tential V (r). The matching point is set as RM = R A/2.

The rest of the algorithm is similar to that described in the pre-
vious section for bound levels. Using the initial eigenvalue, we start
the outward integration towards the matching point, and scale
the solution in order to obtain Sout

n (RM) = S inw
n (RM). It must be

pointed out that the inward integration is performed for the full
Generalized Sturmian radial equation (1), which includes both aux-
iliary and generating potentials. The inward integration starts at
R A with the assumption of a purely Coulomb function (37), but as
the integration propagates inward, the short-range potential modi-
fies that behavior.

In the same way as for the bound levels, the degree of mis-
match of the solutions at the matching point allows to estimate
the change �βn (using Eq. (B.10)) needed for the next iteration
step, until convergence is achieved in the slopes of the outward
and inward functions.

3.5.3. Continuum levels with stationary boundary conditions
Although the general algorithm for obtaining the eigenvalues

is similar to the previous cases, there are some technicalities that
deserve a special mention.

The first step calculates the appropriate phase shift that satis-
fies, at R = N × �r:

Sn(R) = cos δF (R) + sin δG(R) = 0. (39)

The solution is

sin δ = 1

1 + (
G(R)
F (R)

)2
,

cos δ = − sin δ
G(R)

F (R)
. (40)

Since the condition Sn(R) = 0 is required, there are some nu-
merical difficulties to deal with in this special case. First, it is not
possible to match the logarithmic derivative at the point r = R .
Then, we start the iterations by matching the outward and inward
solutions at a nearby point RM = R + λ/8 (we want to avoid the
possibility that either the real or the imaginary part of the solu-
tion vanishes). The following procedure is the same as outlined for
the bound and stationary cases.

We found that the matching of the outward and inward solu-
tions at RM does not guarantee that the total solution will be zero
at r = R . Therefore, we perform an additional iteration procedure,
in which the eigenvalue βn is changed by a small amount until the
value at R is satisfactory small (Sout

n (R) < ε). We define a parame-
ter

μn = 100Re(βnε), (41)

and for every iteration step we decrease its value by a half, chang-
ing the eigenvalue

βn ← βn(1 ± μn) (42)

where the sign is determined in the following way:

1) sign = 1.
2) If Re(βn)Re(Sout

n (R) − Sn(R)) < 0 then sign = −1.

3) If dSout
n

dr |R > 0 then sign = − sign.

It means that first, the sign is calculated as the sign of the product
Re(βn) times Re(Sout

n (R) − Sn(R)), where Sn(R) is the value of
the asymptotic function at R , given in Eq. (39) and Sout

n (R) is the
value of the outward integrated function at the same point. Then,
we test the shape of derivative of Sout

n (R). If the outward function
is an increasing function, we invert the previous calculated sign.

4. Results

4.1. Bound levels

We will start to illustrate the results produced by our computa-
tional methods for bound state cases, where the energy parameter
E is negative. In all the following examples we use l = 0 without
loss of generality. Let us analyze the Coulombian case in which
E = −2.0 a.u., because it results in analytic integer charges.

Fig. 1 displays the first 20 functions corresponding to the case
of a Coulombian auxiliary potential

U (r) = − Z

r
(43)

where Z = 0, and a Yukawa auxiliary potential

V (r) = −e−αr

r
(44)

with α = 0. Therefore, the Schrödinger equation (1) leads to[
−1

2

d2

dr2
− E

]
Sn(r) = −βn

(
−1

r

)
Sn(r). (45)

Hence, the Sturmian functions Sn become the bound solutions of
the Schrödinger equation[
−1

2

d2

dr2
− βn

(
1

r

)]
Sn(r) = E Sn(r) (46)

for a charge Z = βn and a negative energy E .
The figure illustrates the main features of the Coulomb Stur-

mian functions, i.e., they are concentrated in a desired spatial re-
gion, according to the assigned energy parameter. The maximum
value of the functions are located at a position roughly propor-
tional to n, and the functions are completely different at low r
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Fig. 1. First Sturmian functions Sn0 for an auxiliary potential U (r) = 0, a generating
potential V (r) = −1/r, and an energy E = −2.0 a.u.

Table 1
Eigenvalues βn corresponding to the eigenfunctions displayed in Fig. 1. The param-
eters used are N = 15 000, R = 15 a.u., and ε = 10−19.

n βn (a.u.) (from tridiagonalization) βn (a.u.) (iterated)

1 2.0000010000036230 2.0000000000000004
2 4.0000020000378882 4.0000000000000027
3 6.0000030000019908 5.9999999999999991
4 8.0000039999879586 8.0000000000000000
5 10.000005000006629 10.000000000000000
6 12.000006000016795 11.999999999999998
7 14.000007000851765 14.000000000000000
8 16.000008036012492 15.999999999999998
9 18.000010008979984 18.000000000000004

10 20.000029747422087 20.000000000000007
11 22.000282563822449 21.999999999999989
12 24.002623323374774 23.999999999999996
13 26.017292717385022 26.000000000000011
14 28.077799058971706 27.999999999999996
15 30.244131003759417 30.000000000000014
16 32.572306361097951 32.000000000000007
17 35.088636277394251 34.000000000000014
18 37.796936652335653 36.000000000000014
19 40.693198062114490 38.000000000000014
20 43.772489603945814 40.000000000000007

values. Hydrogenic functions, on the other hand, have the same
shape at low r, and are spread around a wide spatial range. The
last maximum of the hydrogenic function (Hn,l = H20,0) is lo-
cated at r ≈ 700 a.u. Its corresponding CSF function is the last
wave displayed here (Sn,l = S20,0), whose maximum is located at
r ≈ 18 a.u.

For the Schrödinger equation (46) with E = −2 a.u., the charges
are even integer values βn = 2n. The resulting βn from the tridi-
agonalization routine are given in the second column of Table 1,
where it can be seen that the routine provides an accuracy of
10−5 for the lower charges, but misses many of the higher eigen-
values. We used a numerical grid having N = 15 000 points, and
with the boundary condition CN = e−k�r imposed at R = 15 a.u.
This R value is too low for the higher functions, specially for those
with n > 15, where the asymptotic decaying condition is reached
for r > 15 a.u. That is the main reason for the accuracy problems
at the higher eigenvalues. We applied the correction algorithm
explained in Section 3.5, and displayed the results in the third col-
umn of the table. With relatively very low computation resources,
we can obtain all the eigenvalues with more than 15 significant
figures.

In order to illustrate how the iterative algorithm works, we
show the convergence of the eigenvalues corresponding to the
fourth function Snl = S40. We show in Table 2 the partial results
for the successive iteration steps, starting the procedure from the
Table 2
Convergence of the fourth Sturmian function Snl = S40, for an auxiliary potential
U (r) = 0, a generating potential V (r) = −1/r, and an energy E = −2.0 a.u. The pa-
rameters used are N = 500, R = 10 a.u., and ε = 10−12.

Iteration step β4 (a.u.) �η4 �β4 (a.u.)

1 8.00159998727414 −9.326E−03 −1.681E−03
2 7.99991860322833 4.667E−04 8.582E−05
3 8.00000441966577 −2.566E−05 −4.659E−06
4 7.99999976082981 1.372E−06 2.522E−07
5 8.00000001300532 −7.520E−08 −1.365E−08
6 7.99999999935320 4.021E−09 7.391E−10
7 8.00000000009229 −2.204E−10 −4.002E−11
8 8.00000000005227 1.197E−11 2.172E−12
9 8.00000000005444 −6.482E−13 −1.177E−13

Fig. 2. Convergence of the fourth Sturmian function Snl = S40 for an auxiliary po-
tential U (r) = 0, a generating potential V (r) = −1/r, and an energy E = −2.0 a.u.
The curves correspond to the first iteration steps displayed in Table 2.

eigenvalue given by the tridiagonalization routine. In order to ap-
preciate the convergence, we display the differences in the log-
arithmic derivatives �η4 = ηinw

4 − ηout
4 , and the correction factor

�βn given by the formula (B.10). It is important to note that the
results displayed in this table were obtained with a much coarser
grid having N = 500 points, otherwise, it would not be easy to ap-
preciate the power of the iterative correction method.

Although every successive iteration step changes the eigenvalue
function at a larger significant figure, it has a dramatic effect in
the corresponding eigenfunction. Since the numerical solution is
a mixture of a bound decreasing solution with a small compo-
nent of a divergent function, we can always find a large r point
at which the divergent part becomes dominant. However, our it-
erative method sets this point away in a very effective way, as is
shown in Fig. 2.

4.2. Outgoing boundary conditions

As an example of outgoing boundary conditions, we calculate
the case in which there is a free auxiliary potential U (r) = 0 and
the generating potential is a Hulthén potential

V (r) = − e(−r/α)

(1 − e(−r/α))
. (47)

This potential has analytical solutions, where the eigenvalues
are

βn = n(n − 2i
√

(2E)α)

2α2
. (48)

The result of the first 15 eigenfunctions are displayed in Fig. 3
(both the real and imaginary part of the functions), for an energy
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value E = 0.6 a.u., and a parameter α = 1.5. The first tridiagonal-
ization is performed imposing the outgoing boundary conditions at
R = 15 a.u. At this value we also assigned the arbitrary normaliza-
tion Sn(R) = 1 + i0. As shown in the figure, this is a good choice
for the R value since the asymptotic boundary condition is already
reached at r � 10 a.u. For the corrective iterations, the asymptotic
outgoing boundary conditions are imposed at Ra = R + 4λ, where
λ = 2π/k. From this point we start the inward integration, match-
ing the logarithmic derivative at Rm = R/2 = 7.5 a.u. We do not
show here the analytical results, since they are indistinguishable
from our numerical calculations.

The numerical results of the eigenvalues are compared with the
analytical values (48) in Table 3. The results show once more an
excellent agreement with the analytical values, and we can gener-
ate even better results by giving a larger R value. As was pointed
out in Section 3.2, there is a serious limitation in the standard di-
agonalization methods, for the maximum R value (since we need
to invert the generating potential in the procedure of the matrix
construction). Using our computational method, we are able to im-
pose the outgoing boundary conditions at much further places, in
which the generating potential is practically zero. For this particu-
lar calculation, we used Ra = 15R = 225 a.u.

The accuracy of these eigenvalues is of about 11 significant fig-
ures, and although this is an excellent achievement, it is lower
than the accuracy obtained for the bound states.

The convergence power of the iterative algorithm is displayed in
Table 4, where, again, we use a very coarse grid of N = 100 points,
otherwise, the changes would not be perceptible. We display here
the real part of the eigenvalues, and the relative discrepancies (in

Fig. 3. First Sturmian functions Sn0 for an auxiliary potential U (r) = 0, a generating
Hulthén potential V (r) = −exp(−r/α)/(1 − exp(−r/α)), for α = 1.5, an energy E =
0.6 a.u., and outgoing boundary conditions.
percent) between the logarithmic derivatives of the inward and
outgoing integrations, and the correction factors.

Unlike the previous case, we will not illustrate the convergence
of the functions corresponding to the eigenvalues displayed in Ta-
ble 4 because they are too similar. In Fig. 4, we will, instead,
show how similar are the continuum Sturmian functions, even for
big changes in the eigenvalues. We calculated the functions cor-
responding to charges β4 ranging from 2.8 to 4.0, which covers
a range of ±20% of the analytic charge β4. Although there are
large differences between the charges, the functions are insensitive
to them. That illustrates the huge effort needed in the adjusting
procedure for continuum states, and explain the relatively low ac-
curacy (compared to the bound states).

Table 4
Convergence of the fourth Sturmian function Snl = S40 iterations, for an auxil-
iary potential U (r) = 0, a generating Hulthén potential V (r) = −exp(−r/α)/(1 −
exp(−r/α)), for α = 1.5, an energy E = 0.6 a.u., and outgoing boundary conditions.
The parameters used are N = 100, R = 15 a.u., and ε = 10−8.

Iteration step Re(β4) (a.u.) |�η4| (%) |�β4| (a.u.)

1 3.4635190 9.742E−04 0.287
2 3.5167349 1.125E−04 5.552E−02
3 3.5687958 3.592E−05 1.711E−02
4 3.5517540 1.021E−05 4.876E−03
5 3.5566216 2.939E−06 1.405E−03
6 3.5552604 8.461E−07 4.041E−04
7 3.5556279 2.432E−07 1.162E−04
8 3.5555328 6.998E−08 3.343E−05
9 3.5555562 2.013E−08 9.613E−06

10 3.5555508 5.789E−09 2.765E−06

Fig. 4. Convergence of the fourth Sturmian function Snl = S40, for an auxil-
iary potential U (r) = 0, a generating Hulthén potential V (r) = −exp(−r/α)/(1 −
exp(−r/α)), for α = 1.5, and an energy E = 0.6 a.u. The curves correspond to dif-
ferent eigenvalues in the range ±20% of β4.
Table 3
Eigenvalues βn corresponding to the eigenfunctions displayed in Fig. 3. The parameters used are N = 15 000, R = 15 a.u., and ε =
10−19.

n βn (a.u.) (iterated) Analytic

1 (0.22222222222228,−0.73029674333998) (0.22222222222222,−0.73029674334022)
2 (0.88888888889177,−1.46059348668004) (0.88888888888889,−1.46059348668044)
3 (1.99999999999392,−2.19089023003007) (2.00000000000000,−2.19089023002066)
4 (3.55555555555657,−2.92118697334976) (3.55555555555556,−2.92118697336088)
5 (5.55555555558341,−3.65148371663824) (5.55555555555556,−3.65148371670111)
6 (8.00000000003550,−4.38178046004462) (8.00000000000000,−4.38178046004133)
7 (10.8888888889295,−5.11207720336655) (10.8888888888889,−5.11207720338155)
8 (14.2222222221204,−5.84237394677867) (14.2222222222222,−5.84237394672177)
9 (17.9999999998399,−6.57267068992702) (18.0000000000000,−6.57267069006199)

10 (22.2222222221056,−7.30296743330756) (22.2222222222222,−7.30296743340221)
11 (26.8888888886373,−8.03326417677695) (26.8888888888889,−8.03326417674244)
12 (31.9999999993362,−8.76356092011071) (32.0000000000000,−8.76356092008266)
13 (37.5555555557964,−9.49385766323422) (37.5555555555556,−9.49385766342288)
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Table 5
Convergence of the fourth Sturmian function Snl = S40 iterations, for an auxiliary
potential U (r) = −Z

r , a generating Yukawa potential V (r) = −exp(−αr)/r, for α =
0.01, an energy E = 2.0 a.u. and box boundary conditions. The parameters used are
N = 1300, R = 10 a.u., and ε = 10−15. First iteration steps.

Iteration
step

β4 (a.u.) |�η4| (%) |�β4| (a.u.) S40(R)

1 3.3744134052266594 3.292E−02 1.027E−02 1.628E−02
2 3.3846881810737082 6.025E−03 1.923E−03 2.980E−03
3 3.3866110480548040 1.073E−03 3.437E−04 5.304E−04
4 3.3869547507530382 1.900E−04 6.091E−05 9.393E−05
5 3.3870156623370371 3.361E−05 1.078E−05 1.662E−05
6 3.3870264407058168 5.946E−06 1.907E−06 2.940E−06
7 3.3870283474330174 1.052E−06 3.373E−07 5.201E−07
8 3.3870286847228628 1.860E−07 5.966E−08 9.200E−08
9 3.3870287443871274 3.291E−08 1.055E−08 1.628E−08

10 3.3870287549413121 5.822E−09 1.867E−09 2.883E−09
11 3.3870287568082702 1.030E−09 3.303E−10 5.132E−10
12 3.3870287571385220 1.822E−10 5.842E−11 9.406E−11
13 3.3870287571969437 3.222E−11 1.033E−11 1.991E−11
14 3.3870287572072759 5.704E−12 1.829E−12 6.799E−12
15 3.3870287572091051 1.000E−12 3.208E−13 4.473E−12
16 3.3870287572094258 1.906E−13 6.111E−14 4.072E−12
17 3.3870287572094870 2.274E−14 7.291E−15 3.989E−12
18 3.3870287572094941 6.473E−15 2.076E−15 3.981E−12
19 3.3870287572094964 5.684E−15 1.823E−15 3.981E−12
20 3.3870287572094981 1.263E−15 4.051E−16 3.979E−12

4.3. Box boundary conditions

The box boundary conditions Snl(0) = Snl(R) = 0 have been
imposed on the example below. This is a case of a Coulombian
auxiliary potential U (r) = −Z

r for Z = 1, and a generating Yukawa
potential V (r) = −exp(−αr)/r, for α = 0.01. As explained in Sec-
tion 3.5.3, the stationary boundary condition requires a first group
of iteration steps in which the logarithmic derivatives are matched
at a certain point located beyond the box limit RM = R + λ

8 . We
set the box limit at R = 10 a.u., and the parameter E = 2.0 a.u.
Table 5 shows the convergence of the 4th function iterations, start-
ing from the initial value given by the tridiagonalization routine,
until the differences in the logarithmic derivatives fulfill the con-
vergence criterion |�ηn| < ε = 10−15. The last column of the Table
shows the value of the function at the point r = R , and although
is decreasing through the iterations, it is not null.

Once the first iteration converged, we started a second type of
iterations where the eigenvalue βn is finely adjusted, in order to
annihilate the value of the wavefunction at the boundary R , ac-
cording to the procedure explained in Section 3.5.3. The results of
the second iteration steps are displayed in Table 6.

4.4. Outgoing boundary conditions with complex energies

As an example of a Sturmian basis set with outgoing boundary
conditions and complex energies (complex rotation), we present
the case of a Coulomb auxiliary potential U (r) = − 1

r , and a gener-

ating Yukawa potential V (r) = − e−αr

r , for α = 0.1, and l = 1. In
part (a) of Fig. 5 the real part of the first 5 functions are dis-
played for a positive energy E = 2.0 a.u., and with outgoing waves
boundary condition imposed at R = 40 a.u. The auxiliary Coulomb
potential produces solutions with an asymptotic behavior

lim
r→∞ Snl ∝ e−ikr+i Z

k ln(2kr). (49)

As seen in the figure and explained in Section 2, this oscillatory
behavior is the same for all the basis functions, and for positive
energies, it does not diverge.

With the complex rotation, the purely outgoing waves vanish as
the electron coordinate goes to infinity, exactly like a bound state.
All continuum–continuum integrals are treated as a L2 integrable
case. We rotate the wavenumber k an angle θk , defined as
Table 6
Second iteration steps, corresponding to the basis calculated in Table 5.

Iteration step β4 (a.u.) S40(R)

1 3.3870287572094981 3.979E−12
2 3.3870287572106452 2.522E−12
3 3.3870287572117923 1.070E−12
4 3.3870287572129394 −3.919E−13
5 3.3870287572123656 3.365E−13
6 3.3870287572129394 −3.919E−13
7 3.3870287572126525 −2.749E−14
8 3.3870287572125091 1.545E−13
9 3.3870287572126525 −2.749E−14

10 3.3870287572125810 6.394E−14
11 3.3870287572126525 −2.749E−14
12 3.3870287572126165 1.832E−14
13 3.3870287572126525 −2.749E−14
14 3.3870287572126347 −1.691E−15
15 3.3870287572126259 4.626E−15
16 3.3870287572126347 −1.691E−15
17 3.3870287572126303 1.565E−15
18 3.3870287572126347 −1.691E−15
19 3.3870287572126325 −6.530E−16

Fig. 5. Real part of the first 5 Sturmian functions Sn1, for an auxiliary Coulomb
potential U (r) = − 1

r , a generating Yukawa potential V (r) = − e−αr

r , for α = 0.1
and with outgoing waves boundary conditions. (a) Positive energy E = 2.0 a.u.,
corresponding to a wavenumber k = 2.0 a.u. (b) Complex energy E = 1.9962 +
i0.17464 a.u., corresponding to a wavenumber kr = 2.0 a.u., rotated an angle θk =
2.5◦ . (c) Complex energy E = 1.9847 + i0.70531 a.u., corresponding to a wavenum-
ber kr = 2.0 a.u., rotated an angle θk = 5◦ .

k = kr

cos(θk)
eiθk . (50)

Using this definition, the real part of the wavenumber (kr ) is al-
ways the same, regardless of the angle of rotation. The energy
parameter E is calculated from this definition as

E = Er

cos2(θk)
eiθE (51)

where θE = 2θk , and the real part of the energy is defined as

Er = k2
r

2
. (52)

We illustrate how the complex rotation works in Fig. 5, where
in part (b) the energy is rotated 5◦ (i.e., θk = 2.5◦), and in part
(c) θk = 5◦ . In these cases the outgoing boundary conditions are
imposed at R = 40 a.u. The functions shown in the figure are nor-
malized with the same conditions as the bound levels, determined
in Eq. (36).

5. Conclusions

In this work, we presented an efficient recipe to numerically
generate a Generalized Sturmian basis set, defined for any kind
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of generating and auxiliary potentials; and for negative, positive
and complex energies. A complete discussion on how to impose
the appropriate boundary conditions and a detailed description of
the algorithms utilized are also provided. This complements our
previous publications [17,18,20,22], where we presented the basic
fundamentals of the theory and illustrated the use of this kind of
basis set in atomic scattering applications.

The starting point of the construction is the generation of the
charge eigenvalues by discretizing the Sturmian equation in a uni-
form grid. This transforms the problem into a finite-difference re-
currence relation. The boundary conditions at the origin and at
large distances—on the configuration space—required to define a
Sturm–Liouville problem, are imposed on the recurrence relation.
In all our applications we use regular wavefunctions which set the
boundary condition at the origin. Asymptotically, we developed a
method to allow a standing—an incoming—or an outgoing-wave
behavior for positive-energy Sturmian functions. Those boundary
conditions are applied by including a modification in the last di-
agonal elements of the Hamiltonian matrices. The same conditions
can be imposed to complex-energy functions, taking into account
that the rotation in the complex plane implies an exponential de-
crease of the functions, at large distances.

For standing-wave boundary conditions, and also for negative-
energy functions, the Hamiltonian matrices are real and, in gen-
eral, standard numerical routines can be employed. However, for
positive energies and incoming—or outgoing—wave behaviors, the
eigenvalue method employed must be able to deal with complex
matrices. For these cases we developed a fast and accurate al-
gorithm for obtaining the eigenvalues of a tri-diagonal complex
matrix. This method is based on an implicit QR method with the
Wilkinson shift, explained by Luk and S. Qiao [24]. Although this
method may, in principle, also generate the Sturmian eigenvectors,
it fails when the numerical grid includes spatial regions in which
the generating potential is too low.

For that reason, we introduced another iterative algorithm that
allows to obtain, very fast, very accurate eigenvalues and eigenvec-
tors. In this approach, eigenvalues are obtained by the QR method
first, and then they are used as a pre-conditioner for a further
predictor–corrector procedure. The method includes a numerical
outwards integration from the origin to a given matching point,
followed by an inwards integration from the asymptotic region to-
wards the origin. At the matching point the logarithmic derivatives
are calculated for both solutions, and iterations are performed un-
til both of them coincide. A careful selection of the matching point
is also needed to achieve excellent convergence properties in the
eigenvalues and eigenvectors.

In this paper we showed that the method implemented is
highly efficient for negative, positive, and even complex energies.
This is proven by comparing the eigenvalues derived with the the-
oretical results, for some cases in which the Sturmian equation can
be solved analytically.
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Appendix A. Description of the procedure for eigenvalues
calculation

In this appendix, we describe briefly the main steps used in
our QR algorithm, for the diagonalization of a complex-symmetric
tri-diagonal matrix A of size N × N . The elements of this matrix
are denoted di and ei , for the diagonal and off-diagonal elements,
respectively.

1. Starting from the last eigenvalue N
(a) loop for n = N to 1

i. Construct the trailing matrix L(n−1) , which is the last
2 × 2 principal sub-matrix of A

L(N−1) =
(

An−1,n−1 An−1,n

An,n−1 An,n

)
. (A.1)

ii. Diagonalize L(n−1) and select μ, the eigenvalue closer
to An,n .

iii. Determine x1 = d1 − μ, and x2 = e1.
iv. Loop for j = 1 to N − 1

A. Construct a reduced 2 × 2 principal sub-matrix of A

L(j) =
(

A j, j A j+1, j
A j+1, j A j+1, j+1

)
. (A.2)

B. Construct the transformation matrix G(j) (Eq. (26))

and its transpose (G(j))
T

in the following way:

if
(|x1| > |x2|

)
then

t ≡ x2

x1
; c j ≡ 1√

1 + t2
; s j ≡ t.c

else

t ≡ x1

x2
; s j ≡ 1√

1 + t2
; c j ≡ t.s

endif.

C. Perform the transformation

L(j) ← G(j)L(j)GjT
. (A.3)

D. From the new values of L(j) , reconstruct the new
matrix A(j+1) with

A(j+1)

j, j = L(j)
1,1; A(j+1)

j, j+1 = L(j)
1,2;

A(j+1)

j+1, j = L(j)
2,1; A(j+1)

j+1, j+1 = L(j)
2,2 (A.4)

and

A(j+1)

j+2, j = c jA
(j)
j+1, j + s jA

(j)
j+1, j+2;

A(j+1)

j+2, j+1 = c jA
(j)
j+1, j+1. (A.5)

E. Redefine x1 and x2 in the following way

x1 = A(j+1)

j, j−1,

x2 = s jA
(j)
j+1, j+2. (A.6)

F. Reassign

di = A(j+1)

j, j ,

ei = A(j+1)

j, j+1. (A.7)

G. End of the loop (1(a)iv).
v. Check convergence (27) of the off-diagonal element eN .

vi. If convergence is not achieved, go back to (1(a)i).
(b) Set n = (N − 1) and continue the loop (1a).

2. Perform a selection of the eigenvalues (keep only those that
are within the desired range).

3. Sort the eigenvalues.
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Appendix B. Correction formula for eigenvalue calculation

At any step of the iteration outlined in Section 3.5, an outward
integration is carried out from the origin to a matching point (for
bound states it is rt ), and an inward integration from r∞ to rt . The
results of these two integrations are written as Sout

n and S inw
n . The

degree of mismatch between both functions, as measured by the
difference between the logarithm derivatives ηn of these functions,
is used to estimate an improved trial eigenvalue. In the present
appendix, we will explain how to calculate the increment �βn ,
needed to replace each eigenvalue βn by

βn ← βn + �βn. (B.1)

If we let P1(r) and Q 1(r) represent the radial wave function
Sn(r) and its derivative for the eigenvalue β1

n , and let P2(r) and
Q 2(r) represent the same two quantities for β2

n , then the General-
ized Sturmian radial equation (1) is written for any case as

−1

2

dQ 1

dr
+ l(l + 1)

2r2
P1(r) + U (r)P1(r) − E P1(r)

= −β1
n V (r)P1(r), (B.2)

−1

2

dQ 2

dr
+ l(l + 1)

2r2
P2(r) + U (r)P2(r) − E P2(r)

= −β2
n V (r)P2(r). (B.3)

Multiplying Eq. (B.2) by P2 and Eq. (B.3) by P1, and subtracting, it
follows that

−1

2

(
dQ 1

dr
P2 − dQ 2

dr
P1

)
= −(

β1
n − β2

n

)
P1 V P2. (B.4)

The left side of Eq. (B.4) is

−1

2

(
dQ 1

dr
P2 − dQ 2

dr
P1

)
= −1

2

d

dr
(Q 1 P2 − Q 2 P1), (B.5)

so,

d

dr
(Q 1 P2 − Q 2 P1) = 2

(
β1

n − β2
n

)
P1 V P2. (B.6)

We integrate Eq. (B.6) from r = 0 to r = ∞, in two steps. First, us-
ing the outward functions P out

1 and P out
2 from r = 0 to the match-

ing point r = rt , and then, using the inward functions P inw
1 and

P inw
2 from r = ∞ to r = rt . Taking into account that we are seeking

regular solutions (Eq. (2)) and with the same asymptotic condi-
tions, the integration resumes as(

Q out
2 P out

1 − Q out
1 P out

2

)∣∣
rt

− (
Q inw

2 P inw
1 − Q inw

1 P inw
2

)∣∣
rt

= 2
(
β2

n − β1
n

)[ rt∫
0

P out
1 V P out

2 +
∞∫

rt

P inw
1 V P inw

2

]
. (B.7)

If we demand that the functions P out
j (rt) = P inw

j (rt) for j = 1,2

and assuming that β2
n is the exact eigenvalue and P2(r) is the ex-

act eigenvector (and, hence, Q out
2 (rt) = Q inw

2 (rt)), then
P2(rt)
(

Q inw
1 (rt) − Q out

1 (rt)
) = 2

(
β2

n − β1
n

) ∞∫
0

P1 V P2. (B.8)

Since we assumed that P2 is exact, the correction to the calculated
eigenvalue must fulfill

β1
n + �βn = β2

n . (B.9)

Replacing the result given in (B.8), we obtain

�βn = Sn(rt)(
dS inw

n
dr − dSout

n
dr )|r=rt

2(
∫ rt

0 Sout
n (r)V (r)Sout

n (r) + ∫ ∞
rt

S inw
n (r)V (r)S inw

n (r))
.

(B.10)
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