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We report on the first time-dependent close-coupling calculation of dielectronic capture into a doubly
excited state of a two-electron atom. An incoming electron is represented by a Gaussian wave packet
which collides with singly ionized helium in its ground state. The close-coupling equations describe the
propagation of the total compound wave function on a two-dimensional radial lattice. By projecting this
wave function onto a doubly excited state of neutral helium, we can determine the probability amplitude
for dielectronic capture into one of these states and the subsequent autoionization from it.
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Revolutionary advances in experimental techniques
and theoretical methods along with spectacular increases
in computer power now provide opportunities for the
development of a much more profound understanding
of the atomic few-body problem. In recent years, a
number of quantal nonperturbative methods have been
developed which provide benchmark accuracy for elec-
tron-impact ionization of simple atoms and their ions
[1–4]. Of particular interest are cases in which the
incident electron has an energy equal to an autoionization
resonance. It is then impossible to distinguish electrons
that have been ejected directly from the atom from
those that are first excited to an autoionizing level and
subsequently ejected. As a result, these two processes
will interfere and interference can be sensitive to physical
effects not present in the �e, 2e� process far from reso-
nance [5,6]. This problem has been largely investigated
by using perturbative methods (see, for example [7] and
references therein). However, due to the delicate interplay
between three-body effects in the incident channel and
postcollisional Coulombic interactions between the three
free particles in the final state, a fully quantal treatment of
this problem is needed. Examples of the difficulties aris-
ing in a nonperturbative calculation of breakup processes
through resonant states have been pointed out in the model
calculations (involving only short-range interactions) in
Ref. [8].

Among the fully quantal nonperturbative theories, the
time-dependent close-coupling (TDCC) method has been
successfully employed for calculations of electron-impact
ionization [9–11]. However, before undertaking a TDCC
calculation of the resonant contributions to ionization, fur-
ther work is needed in order to learn how to treat reso-
nance problems within this theoretical framework. It is
in this spirit that we have undertaken the study of dielec-
tronic capture into doubly excited resonances that, after
autoionization, contribute to elastic scattering. This re-
quires the development of methods for generating accurate
wave functions for doubly excited autoionizing states and
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time-dependent close-coupling calculations of the capture
and the subsequent decay of autoionizing states.

In this work, we study dielectronic capture and autoion-
ization in two-electron systems by the direct solution of
the time-dependent close-coupling equations. In this Let-
ter we will present only results for capture into the 2s2 1S
autoionizing state of neutral He. For an electron colliding
with a He1 ion, the target electron is initially described by
the radial wave function f1s obtained from the diagonal-
ization of the one-electron Hamiltonian on the radial grid.
The projectile electron at an initial time t0, with an energy
Ei and a momentum ki �

p
2Ei, is represented in coordi-

nate space by a Gaussian wave packet of width w, centered
at a position s sufficiently far from the target electron,

gki �r� �
1

�w2p�1�4 e2��r2s�2���2w2�e2ikir . (1)

The corresponding width in momentum space is
Dk � 1�w, thus the k-dependent energy width is
DE � kiDk � ki�w.

The time-dependent wave function for a given LS sym-
metry is expanded in coupled spherical harmonics:

CLS� �r1, �r2, t� �
1

r1r2

X
�1,�2

PLS
�1,�2

�r1, r2, t�YL
�1 ,�2

�r̂1, r̂2� ,

(2)

where PLS
�1,�2

�r1, r2, t� are two-electron radial wave func-
tions and YL

�1,�2
�r̂1, r̂2� are the coupled spherical harmon-

ics. Upon substitution of Eq. (2) into the time-dependent
Schrödinger equation, we obtain the TDCC equations for
each LS symmetry. We found that two coupled chan-
nels ��1�2 � ss, pp� are sufficient to obtain correlated 1S
functions for He, since the dd channel gives a very small
contribution.

For the 1S symmetry, we start with an initial radial wave
function of the form
© 2002 The American Physical Society 173004-1



VOLUME 88, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 29 APRIL 2002
P00
00�r1, r2, t0� �

s
1
2

�f1s�r1� 3 gk�r2�

1 f1s�r2� 3 gk�r1�� . (3)

The formal expression for propagating the wave function
over one time increment Dt is

C��r1, �r2, t 1 Dt� � e2iHDtC��r1, �r2, t� . (4)

This compound wave function is allowed to evolve in
time using the numerical procedures described in previ-
ous TDCC papers (see, for example, Refs. [9,10]). The
resulting two-electron wave function fully describes the
correlation between the incoming and the target electron
for all times following the collision.

The probability amplitude for dielectronic capture into
a doubly excited state F at time t is determined from the
total wave function using the projection

CF�t� � j�F��r1, �r2, t0�jC��r1, �r2, t��j . (5)

In order to determine this capture amplitude, we must gen-
erate the doubly excited states on a numerical lattice. The
energies and wave functions of the He atom are calculated
by relaxation of the initial wave function (a simple product
of one-electron wave functions) in imaginary time t � it:

≠F� �r1, �r2, t�
≠t

� 2HF��r1, �r2, t� . (6)

With no constraints, this imaginary time propagation
will relax to the solution with the smallest eigenvalue of
H, thus, after many iterations (renormalizing the wave
function continuously), only the ground-level eigenfunc-
tion will survive. Higher energy eigenfunctions can be
determined by imposing constraints during the iteration
that require the desired states to be orthogonal to all lower
states. Although this procedure has been used for calcula-
tion of the the low-lying singly excited states (e.g., 1snl),
it does not work for the calculation of the doubly excited
states. However, the doubly excited, autoionization states
may be determined by imposing an additional constraint
on the relaxation that projects out the one-electron compo-
nents of the lower-energy wave functions.

For a numerical grid having a mesh spacing Dr �
0.2 a.u., the energies of the doubly excited 1S states
obtained using this modified relaxation technique are
within a few percent of the accepted values. These
results can be improved significantly by using a finer
radial mesh. However, our purpose here is to study the
dynamics of capture into a doubly excited state, rather
than obtain the most accurate values for the energies of
these states. Examples of the wave functions obtained
with this damped relaxation method are given in Fig. 1.
The figure shows the total probability jFj2, for the 1s2,
2s2, 2s3s, and 2p2 wave functions (for brevity, we will
drop the 1S specification in every state).

The results of our TDCC calculations of the probabil-
ity amplitude for dielectronic capture [Eq. (5)] into 2s2

at the resonance energy (Ei � e2s2 2 e1s � 31.6 eV) are
presented in Fig. 2. The different curves are obtained with
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FIG. 1. TDCC wave functions obtained with the constrained
damped relaxation method: (a) 1s2; (b) 2s2; (c) 2s3s; (d) 2p2.

different initial wave packets, having spatial widths w of
5, 10, 15, and 30 a.u. (DE � 8.2, 4.2, 2.8, and 1.4 eV),
respectively. In this figure, t � 0 corresponds to the time
when the center of the incoming wave packets arrives at
the origin.

We see that the probability amplitude C2s2 rises rapidly
as the incoming wave packet begins to overlap with the
target, with a slope that increases inversely with the width
w of the incoming packet. After C2s2 reaches a maximum,
it begins a gradual decline with a slope that is a direct
measure of the rate for autoionization from the 2s2 state to
the f1s ground state of He1.

The dynamical behavior of autoionization in two-
electron systems has been studied previously by moni-
toring the decay of the autoionizing state F in time
[12]. This requires the computation of the autocorrelation
function defined by

AF �t� � j�F��r1, �r2, t0�jF� �r1, �r2, t��j , (7)

where F� �r1, �r2, t� represents the initial wave function
evolved in time. This method has been used to study
autoionization in a one-dimensional two-electron model
[13], a two-dimensional two-electron model [12], and an
s-wave model [12,14].

By extending the autocorrelation method to include the
ss and pp channels, we can compare the decay of the
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FIG. 2. TDCC amplitudes CF�t� � C2s2 �t� at resonance en-
ergy �Ei � 31.6 eV�. The incoming wave packet has different
spatial widths w from 5 to 30 a.u. The thin dashed line is the
(scaled) A2s2 . The inset shows the oscillations of the amplitudes
around the asymptotic exponential decay (notice the different
scale).
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2s2 state obtained from the autocorrelation method with
the decay of the 2s2 state following dielectronic capture.
The TDCC result for A2s2�t� is also shown in Fig. 2 by
the thin dashed line along the C2s2 �t� curve with a width
of 30 a.u. In order to compare these two curves, we mul-
tiplied A2s2�t� with C2s2�t� at t � 0. As is shown in the
figure, the agreement between the two calculations is ex-
cellent. An exponential fit of the form exp�2 G

2 t� to the
data yields a value of G2s2 � 5.4 3 1023 a.u., compared
to the width determined by Bhatia and Temkin [15] of
4.6 3 1023 a.u. Our result can be improved by using a
finer radial mesh. To confirm this, we repeated both the
C2s2�t� and A2s2�t� calculations with w � 30 a.u., using a
mesh separation of Dr � 0.1 a.u. An autoionization width
of 4.9 3 1023 a.u. was obtained from both curves.

A careful examination of the C2s2�t� curves with differ-
ent widths indicates that there are oscillations with small
amplitudes in the decay of the autoionizing state. This is
shown more clearly in the inset in Fig. 2. This effect is
most pronounced for the curve corresponding to an ini-
tial wave packet with w � 5 a.u. �DE � 8.2 eV�. In en-
ergy space, this packet is sufficiently wide to coherently
populate both the 2s2 and the 2s3s states (separated by
4.56 eV); these two states both autoionize to a single con-
tinuum state and this produces the observed beating. The
period of these oscillations is about T � 37.3 a.u., corre-
sponding to v �

2p

T � 4.6 eV, confirming the origin of
these oscillations. A similar effect has been observed in
the calculation of intense field photoionization of He, in
which two autoionizing states are populated by a broad
laser pulse [16]. As expected, the oscillations decrease in
amplitude as the energy width of the packets decreases and
are completely absent for w � 30 a.u.

In order to obtain a quantitative measure in the variation
of the capture probability with energy, we calculated the
dielectronic capture for incoming wave packets with w �
30 a.u. at different incident energies, and some examples
are presented in Fig. 3 (solid lines). We notice that the
projection of the total wave function on the 2s2 state gives
an unusually high overlap at energies far from resonance.
This overlap rises and then falls off rapidly as the wave
packet moves out beyond those radii where the 2s2 has
any appreciable amplitude. The capture amplitude then
falls off exponentially at the characteristic rate determined
by the autoionizing width.

In order to gain an understanding of the shape of these
curves, we employed a simple analytic one-dimensional
model based on the perturbative approach for a discrete
state f�r� interacting with a single continuum state x�r�,
as developed by Fano [17]. The eigenfunction of the Ham-
iltonian matrix for eigenvalue e has the form

Q�e, r� � a�e�f�r� 1 xe�r� . (8)

The function ja�e�j2 has a Lorentzian shape centered at the
resonance energy [17]. We construct the time dependent
wave function
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FIG. 3. TDCC amplitudes for CF�t� � C2s2�t� at different in-
cident energies. Thin dashed lines: perturbative calculations.

Q�t, r� �
Z

A�e�Q�e, r�e2ie�t2t0� de , (9)

where the function A�e� is calculated from the initial con-
ditions

A�e� �
Z

Q�e, r�Q�t0, r� dr �
Z

Q�e, r�gki �r� dr .

(10)

The perturbative dielectronic capture amplitude DF�t� can
then be obtained by projecting the Q�t, r� function on to
the resonance state f�r�:

DF�t� � j�f�r�jQ�t, r��j �

Ç Z
A�e�a�e�e2ie�t2t0� de

Ç
.

(11)

We calculated DF�t� for different incident electron ener-
gies, using the values of GF and eF determined from the
TDCC calculations. These results are also displayed in
Fig. 3 by thin dashed lines; as can be seen, they are in
very good agreement with the TDCC results. According
to Eq. (11), at energies far from resonance, the long tail
of a�e� contributes to the integral (11) with a small and
roughly constant value. By moving this constant outside
the integral, the remaining equation represents the Fourier
transform of the Gaussian function A�e�, which is itself a
Gaussian; for energies far off resonance, this then explains
the shape of the capture amplitude as a function of time.

The curves of CF�t� at different energies allow us to
perform fits at times where the decay is clearly expo-
nential. Using these exponential fits, the curves were
extrapolated back to t � 0, and the resulting probability
amplitudes were employed to calculate maximum proba-
bilities for capture into the 2s2 state. The curve of the
maximum probability as a function of the incident energy
is in agreement with the Fourier transform of a Gaussian
173004-3
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FIG. 4. Snapshots of the total wave function probability
jC�r1, r2, t�j2 at different times during the e2 1 1s colli-
sion: (a) Ei � 25.0 eV (below the 2s2 resonance energy);
(b) Ei � 31.6 eV (close to the 2s2 resonance energy);
(c) Ei � 36.1 eV (close to the 2s3s resonance energy).

wave packet with w � 30 a.u. and Ei � 31.6 eV. Thus,
with a sufficiently narrow wave packet in energy space,
one should be able to use the TDCC technique to map out
the shape of a resonance.

One of the nice features of the time-dependent method
is that it allows one to study the formation and decay of
autoionizing states as a function of time. In Fig. 4, we
show “snapshots” of the probability density jC�r1, r2, t�j2
near the origin, at different times during the collision. In
this figure only, t � 0 is the time at the beginning of the
iterations (i.e., t0 � 0). In parts (a) of the figure, the
incoming electron has an energy Ei � 25.0 eV, far below
any resonance. As time evolves, the peak of the probability
density centered originally at 110 a.u. moves toward the
origin. The center of the packet arrives to the origin at
t � 83 a.u., and then bounces back. At t � 140 a.u., the
density is contained in the outgoing wave packet along the
coordinate axes (elastic scattering). At this time, there is
no trace of any 2s2 component, as expected from the very
small dielectronic capture amplitude at this energy.

In parts (b) of the figure, the incoming electron has an
energy Ei � 31.6 eV, close to the energy of the 2s2 reso-
nance. In this case, the packet arrives at the origin at t �
70 a.u. A significant fraction of the total wave function
is concentrated around the origin, and this is the part that
is captured into the 2s2 state. As is seen in subsequent
figures (b), the general shape of the total wave function
near the origin is not changing with time, only decreasing
in magnitude, as the doubly excited state decays.

A completely different picture is shown in Figs. 4(c),
where the incoming electron has an energy close to the
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2s3s resonance (Ei � 36.1 eV). The shape of the wave
function is clearly changing in time, oscillating between
the F2s3s and the F2p2 functions. An incident wave packet
with an energy width of DE � 1.4 eV cannot resolve the
2s3s and the 2p2 states (separated by 0.4 eV), and large-
period oscillations are found in the dielectronic capture
probabilities.

In conclusion, we have been able to carry out the first
fully quantal time-dependent study of the dielectronic
capture of an incident electron into a doubly excited state
followed by autoionization. With the procedure we have
outlined, the effects of numerical approximations can,
in principle, be made arbitrarily small. The theoretical
framework demonstrated here provides a basis for devel-
oping practical methods for treating resonances in the
�e, 2e� problem.
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