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Abstract
We review the development of the time-dependent close-coupling method to
study atomic and molecular few body dynamics. Applications include electron
and photon collisions with atoms, molecules, and their ions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The time-dependent close-coupling method was first applied to calculate total cross sections
for the electron-impact single ionization of H [1, 2] and the photon-impact double ionization
of He [3], which are the simplest quantal three-body Coulomb breakup problems. As pointed
out by Bottcher [4], the time evolution of a wavepacket localized in space obviates the need
for answers to questions about the asymptotic form of the wavefunction in position space
or its singularities in momentum space. The time-dependent close-coupling method is a
wavepacket solution of the same set of close-coupled partial differential equations used in the
time-independent electron–atom scattering method of Wang and Callaway [5, 6].

In the last decade the original time-dependent close-coupling method on a 2D numerical
lattice has been applied to calculate total and differential cross sections for electron-impact
single ionization and photon-impact double ionization of many atomic systems. Recently, the
time-dependent close-coupling method on a 3D numerical lattice has been applied to calculate
total cross sections for the electron-impact double ionization of He [7] and H− [8] and the
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photon-impact triple ionization of Li [9], which are the simplest quantal four-body Coulomb
breakup problems. The time-dependent close-coupling method on a 4D numerical lattice has
also been applied to calculate total cross sections for the electron-impact single ionization of
H+

2 [10] and H2 [11] and the photon-impact double ionization of H2 [12], which are variants
of quantal three-body Coulomb breakup problems involving a non-spherical nuclear field.

In the last decade a variety of non-perturbative theories have been developed to calculate
a number of atomic and molecular collision processes with unprecedented accuracy. Several
different numerical solutions of the quantal three-body Coulomb breakup problem are now
routinely used to confront detailed experimental measurements. The converged close-coupling
method has been reviewed for electron–helium scattering by Fursa and Bray [13] and for
electron and photon collisions with atoms by Bray et al [14]. The R-matrix approach has been
surveyed for a variety of atomic and molecular collision processes [15], while the inclusion of
a large number of pseudo-states was first described by Bartschat et al [16] and Gorczyca and
Badnell [17]. The exterior complex scaling method has been reviewed for electron ionization
of hydrogen by McCurdy et al [18] and for electron–hydrogen collisions by Bartlett [19].
In this paper we present a review of time-dependent close-coupling (TDCC) theory and its
application to electron and photon scattering from atoms and molecules. Unless otherwise
stated, all quantities are given in atomic units.

2. Time-dependent calculations on a 2D numerical lattice

2.1. Close-coupling equations for electron scattering from atoms

The time-dependent Schrödinger equation for electron scattering from a one-electron atom is
given by

i∂�( �r1, �r2, t)

∂t
= Hsystem�( �r1, �r2, t), (1)

where the non-relativistic Hamiltonian for the scattering system is given by

Hsystem =
2∑

i=1

(
−1

2
∇2

i − Z

ri

)
+

1

| �r1 − �r2| , (2)

�r1 and �r2 are the coordinates of the two electrons, and Z is the nuclear charge. The total
electronic wavefunction is expanded in coupled spherical harmonics for each total orbital
angular momentum, L, and total spin angular momentum, S:

�LS( �r1, �r2, t) =
∑
l1,l2

P LS
l1l2

(r1, r2, t)

r1r2

∑
m1,m2

C
l1 l2 L
m1m20Yl1m1(r̂1)Yl2m2(r̂2), (3)

where Cl1 l2 l3
m1m2m3

is a Clebsch–Gordan coefficient and Ylm(r̂) is a spherical harmonic. Upon
substitution of � into the time-dependent Schrödinger equation, we obtain the following set
of time-dependent close-coupled partial differential equations for each LS symmetry [1, 2]:

i
∂P LS

l1l2
(r1, r2, t)

∂t
= Tl1l2(r1, r2)P

LS
l1l2

(r1, r2, t) +
∑
l′1,l

′
2

V L
l1l2,l

′
1l

′
2
(r1, r2)P

LS
l′1l

′
2
(r1, r2, t), (4)

where

Tl1l2(r1, r2) =
2∑

i=1

(
−1

2

∂2

∂r2
i

+
li(li + 1)

2r2
i

− Z

ri

)
, (5)
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and the coupling operator is given in terms of 3j and 6j symbols by

V L
l1l2,l

′
1l

′
2
(r1, r2) = (−1)l1+l′1+L

√
(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
∑

λ

(r1, r2)
λ
<

(r1, r2)λ+1
>

(
l1 λ l′1
0 0 0

)(
l2 λ l′2
0 0 0

){
l1 l2 L

l′2 l′1 λ

}
. (6)

2.2. Close-coupling equations for photon scattering from atoms

The time-dependent Schrödinger equation for a two electron-atom in a strong time-varying
electromagnetic field is given by

i∂�( �r1, �r2, t)

∂t
= (Hatom + Hrad)�( �r1, �r2, t), (7)

where the non-relativistic Hamiltonian for the atom is given by

Hatom =
2∑

i=1

(
−1

2
∇2

i − Z

ri

)
+

1

| �r1 − �r2| , (8)

the Hamiltonian for a linearly polarized radiation field is given by

Hrad = E(t) cos ωt

2∑
i=1

ri cos θi, (9)

E(t) is the electric field amplitude, and ω is the radiation field frequency. Upon substitution
of � of equation (3) into the time-dependent Schrödinger equation of equation (7), we obtain
the following set of time-dependent close-coupled partial differential equations [3]:

i
∂P LS

l1l2
(r1, r2, t)

∂t
= Tl1l2(r1, r2)P

LS
l1l2

(r1, r2, t) +
∑
l′1,l

′
2

V L
l1l2,l

′
1l

′
2
(r1, r2)P

LS
l′1l

′
2
(r1, r2, t)

+
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l′1,l

′
2

WLL′
l1l2,l

′
1l

′
2
(r1, r2, t)P

L′S
l′1l

′
2
(r1, r2, t), (10)

where

WLL′
l1l2,l

′
1l

′
2
(r1, r2, t) = δl2,l

′
2
(−1)l2

√
(2l1 + 1)(2l′1 + 1)(2L + 1)(2L′ + 1)

× r1E(t) cos ωt

(
l1 1 l′1
0 0 0

) (
L 1 L′

0 0 0

) {
l1 l2 L

L′ 1 l′1

}

+ δl1,l
′
1
(−1)l1

√
(2l2 + 1)(2l′2 + 1)(2L + 1)(2L′ + 1)

× r2E(t) cos ωt

(
l2 1 l′2
0 0 0

) (
L 1 L′

0 0 0

) {
l2 l1 L

L′ 1 l′2

}
. (11)

Alternatively, the time-dependent wavefunction for a two-electron atom may be divided
into two parts:

�( �r1, �r2, t) = ψ0( �r1, �r2) e−iE0t + ψ( �r1, �r2, t), (12)

where ψ0 is the exact eigenfunction and E0 is the exact eigenenergy of the time-independent
atomic Hamiltonian. Substitution into the time-dependent Schrödinger equation of
equation (7) yields

i∂ψ( �r1, �r2, t)

∂t
= (Hatom + Hrad)ψ( �r1, �r2, t) + Hradψ0( �r1, �r2) e−iE0t . (13)
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In the weak-field perturbative limit, one may solve the somewhat simpler time-dependent
equation given by

i∂ψ( �r1, �r2, t)

∂t
= Hatomψ( �r1, �r2, t) + Hradψ0( �r1, �r2) e−iE0t . (14)

Upon substitution of coupled spherical harmonic expansions for both ψ and ψ0 into
equation (14), we obtain the following set of time-dependent close-coupled partial differential
equations [3]:

i
∂P LS

l1l2
(r1, r2, t)

∂t
= Tl1l2(r1, r2)P

LS
l1l2

(r1, r2, t) +
∑
l′1,l

′
2

V L
l1l2,l

′
1l

′
2
(r1, r2)P

LS
l′1l

′
2
(r1, r2, t)

+
∑
l′1,l

′
2

W
LL0

l1l2,l
′
1l

′
2
(r1, r2, t)P

L0S

l′1l
′
2

(r1, r2) e−iE0t . (15)

2.3. Numerical solutions

We solve the time-dependent close-coupled equations using a discrete representation of
the radial wavefunctions and all operators on a two-dimensional lattice. Our specific
implementation on massively parallel computers is to partition both the r1 and r2 coordinates
over the many processors. For electron scattering, both an explicit method given by

P LS
l1l2

(t + �t) = −2i�tHsystemP LS
l1l2

(t) + P LS
l1l2

(t − �t), (16)

and an implicit method given by

P LS
l1l2

(t + �t) =
∑
l′1,l

′
2

e
−i �t

2 V L

l1 l2 ,l′1 l′2
(r1,r2)

(
1 + i

�t

2
T̄ l′1(r1)

)−1 (
1 + i

�t

2
T̄ l′2(r2)

)−1

×
(

1 − i
�t

2
T̄ l′2(r2)

)(
1 − i

�t

2
T̄ l′1(r1)

) ∑
l′′1 ,l′′2

e
−i �t

2 V L

l′1 l′2 ,l′′1 l′′2
(r1,r2)

P LS
l′′1 l′′2

(t), (17)

where

T̄ l(r) = −1

2

∂2

∂r2
+

l(l + 1)

2r2
− Z

r
, (18)

have been employed to time propagate the close-coupled partial differential equations. The
explicit method involves one matrix multiplication per time step. Norm conservation is exact
if we adjust the time step to be less than one divided by the eigenvalue with largest absolute
value of the discrete Hamiltonian operator. The implicit method may employ much larger
time steps than the explicit method, but the matrix inversion steps are much slower than the
matrix multiplication steps on massively parallel computers.

2.4. Initial conditions and cross sections for electron scattering from atoms

Since the Hamiltonians in the previous section do not contain explicit spin interaction operators,
the spin dependence of the final cross sections is found in the initial conditions or in the
extraction of scattering probabilities.

The initial condition for the solution of the TDCC equations (equation (4)) for electron
scattering from a one-electron atom may be given by

P LS
l1l2

(r1, r2, t = 0) = Pnl(r1)Gk0l′(r2)δl1,lδl2,l′ , (19)

where Pnl(r) is a bound radial wavefunction for a one-electron atom and the Gaussian

wavepacket, Gk0L(r), has a propagation energy of k2
0
2 . Probabilities for all the many collision
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processes possible are obtained by t → ∞ projection onto fully antisymmetric spatial and
spin wavefunctions. For electron single ionization of the hydrogen atom, the partial collision
probability is given by

P l1l2L,s1s2S(t) =
∑
k1

∑
k2

|R(12, t) + (−1)SR(21, t)|2, (20)

where

R(ij, t) =
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1(ri)Pk2l2(rj )P

LS
l1l2

(r1, r2, t). (21)

The Pkl(r) are continuum radial wavefunctions for the hydrogen atom, s1 = s2 = 1
2 , and

S = 0 or S = 1.
For two electron systems, in which the spatial and spin dependence of the time-dependent

wavefunction may be separated, the initial condition for the solution of the TDCC equations
for electron scattering from a one-electron atom may also be given by

P LS
l1l2

(r1, r2, t = 0) =
√

1
2 (Pnl(r1)Gk0l′(r2)δl1,lδl2,l′ + (−1)SGk0l′(r1)Pnl(r2)δl1,l′δl2,l). (22)

Probabilities for all the many collision processes possible are obtained by t → ∞ projection
onto spatial product wavefunctions. For electron single ionization of the hydrogen atom, the
partial collision probability is now given by

Pl1l2L,s1s2S(t) =
∑
k1

∑
k2

|R(12, t)|2. (23)

We note that the collision probability for electron excitation of the hydrogen atom to an
nl bound state is almost identical to equation (20) or equation (23). Simply eliminate one of
the sums over electron momenta and change one of the Pkl(r) radial wavefunctions to Pnl(r).
An alternative method for calculating single ionization probabilities is to sum over all bound
state excitation probabilities, including doubly excited bound states, and subtract from a total
probability of 1.

By careful monitoring of the excitation and ionization probabilities a number of useful
checks may be carried out on the overall convergence of the TDCC calculations. As the time
of wavefunction propagation proceeds, one should observe that the collision probabilities will
find their asymptotic limit. For electron ionization near threshold, equal energy outgoing
electrons at small angular separation will interact strongly for large distances, which is the
worst case scenario for the quantal three-body Coulomb breakup problem. Thus, both a
large numerical lattice (to thousands of Bohr radii) and a long propagation time are found to
be critical in obtaining collision probability convergence. Fortunately, we have not found it
necessary to make the lattice boundary size anywhere near the experimental distance from
interaction cell to detector. By monitoring the collision probabilities, we may also check the
lattice mesh spacing (generally a small fraction of a Bohr radius) and the l1l2 partial wave
convergence for a given LS total symmetry.

Finally, the total cross section for the electron single ionization of the hydrogen atom is
given by

σsion = π

4k2
0

∑
L,S

(2L + 1)(2S + 1)PLS
sion, (24)

where PLS
sion is found by summing over all l1l2 partial collision probabilities.
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2.5. Initial conditions and cross sections for photon scattering from atoms

The initial condition for the solution of the TDCC equations (equation (15)) for single photon
scattering from a two-electron atom is given by

P LS
l1l2

(r1, r2, t = 0) = 0. (25)

The expansion functions P
L0S
l1l2

(r1, r2) and energy E0 are obtained by relaxation of the time-
dependent Schrödinger equation for a two-electron atom in imaginary time. For photon double
ionization of the helium atom, the partial collision probability is given by

Pl1l2L,s1s2S(t) =
∑
k1

∑
k2

|R(12, t)|2. (26)

The total cross section for the photon double ionization of the helium atom is given by

σdion = ω

I

∂PLS
dion

∂t
, (27)

where I is the radiation field intensity and PLS
dion is found by summing over all l1l2 partial

collision probabilities.

2.6. Approximate two-electron Hamiltonians

The time-dependent close-coupling method has been applied to calculate the total cross section
for electron-impact ionization of a target electron in the outer subshells of a multi-electron
atom or ion. For one active electron outside closed subshells, e.g. the 2s orbital in Li (1s22s),
the TDCC method yields cross sections from the initial doublet term for the various electron
scattering processes. For other cases, such as the 2s or 2p orbital in Be (1s22s2p), the
TDCC method yields configuration-averaged cross sections for the various electron scattering
processes. To handle multi-electron atomic systems, the single particle operator in the time-
dependent close-coupling equations is now given by

Tl1l2(r1, r2) =
2∑

i=1

[
−1

2

∂2

∂r2
i

+ V
li
PP (ri)

]
, (28)

where V l
PP (r) is an l-dependent core pseudo-potential, and the subshell occupation number

of the active electron now multiplies the expression for the scattering cross sections.
Our method for determining the pseudo-potentials, V l

PP (r), is best illustrated through the
example of Li (1s22s). The 1s orbital is first obtained by solving the Hartree–Fock equations
for Li+(1s2). The core orbital is then used to construct the radial Hamiltonian:

h(r) = −1

2

∂2

∂r2
+ V l

HX(r), (29)

where

V l
HX(r) = l(l + 1)

2r2
− Z

r
+ VH (r) − αl

2

(
24ρ

π

)1/3

. (30)

VH (r) is the direct Hartree potential and ρ is the probability density in the local exchange
potential. The excited-state spectrum is then obtained for each l by diagonalizing h(r) on
the lattice. The parameter αl is varied to obtain experimental energy splittings for the first
few excited states. For l = 0, the inner node of the 2s orbital is smoothly removed and
V 0

PP (r) is obtained by inverting the radial Schrödinger equation with the newly constructed 2s
pseudo-orbital. For l > 0, V l

PP (r) = V l
HX(r). The introduction of pseudo-potentials removes
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Figure 1. Electron-impact single ionization of H(1s). Solid line: time-dependent close-coupling
method [25], dashed curve: converged close-coupling method [26], dot-dashed curve: exterior
complex scaling method [26], open circles: experiment [26] (1 kb = 10−21 cm2).

the problem of unphysical de-excitation from the active orbital to closed subshells with the
same angular momentum, i.e. 2s → 1s for Li. The new radial Hamiltonian

h(r) = −1

2

∂2

∂r2
+ V 0

PP (r), (31)

is then diagonalized on the lattice to obtain an l = 0 excited pseudo-state spectrum.

2.7. Applications in electron scattering from hydrogenic atoms

One of the first applications of the time-dependent close-coupling (TDCC) method on a 2D
lattice was to calculate total cross sections for electron-impact single ionization of the hydrogen
atom in its ground state [1, 2]. The TDCC results were found to be in excellent agreement with
converged close-coupling (CCC) [20], hyperspherical close-coupling [21], and R-matrix with
pseudo-states (RMPS) [22] calculations, as well as with absolute experimental measurements
[23]. The TDCC method was extended to calculate energy and angle differential cross
sections for the single ionization of hydrogen in its ground state [24, 25]. For example, at an
incident energy of 17.6 eV with the 4.0 eV excess energy shared equally between the outgoing
electrons, the TDCC results for triple differential cross sections with the angle θ12 between
the outgoing electrons held fixed are in excellent agreement with CCC and exterior complex
scaling calculations, as well as experimental measurements [26], see figure 1.

The TDCC method was used to calculate total cross sections for electron-impact single
ionization of the hydrogen atom in its 2s, 2p and 3s excited states [27, 28]. The TDCC
results were found to be in excellent agreement with CCC [20] and RMPS [28] calculations,
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Figure 2. Electron-impact single ionization of H(ns). Crosses: time-dependent close-coupling
method [2], open squares: time-dependent close-coupling method [27], solid squares: time-
dependent close-coupling method [28], solid triangles: converged close-coupling method [22],
solid lines: R-matrix with pseudo-states method [28], dashed and dot-dashed lines: distorted-
wave method [28], solid circles: experiment [23], solid diamonds: experiment [29] (1 Mb =
10−18 cm2).

and within the relatively large error bars of experimental measurements [29], see figure 2.
However, the disagreement between the non-perturbative TDCC and RMPS results and the
perturbative distorted-wave results increased with principal quantum number of the excited-
state. With a more diffuse initial quantum state and a lower ionization potential, the quantal
three-body Coulomb breakup problem becomes more difficult.

The TDCC method was used to calculate total cross sections for electron-impact single
ionization of He+ in its ground state [30] and Li2+ in its ground state [31] and its 2s and 4s
excited states [28]. For He+ the TDCC results were found to be in excellent agreement with
CCC [32] calculations and absolute experimental measurements [33]. For Li2+ the TDCC
results were found to be in excellent agreement with RMPS [28] calculations for the ground
and excited states, and with absolute experimental measurements [34] for the ground state.
The agreement between the non-perturbative TDCC and RMPS results and the perturbative
distorted-wave results was found to improve for both ground and excited state ionization as
one moves to higher charge states along the H isoelectronic sequence. This is in keeping
with a three-body interaction that becomes dominated by a Z-dependent electron–nucleus
interaction.

The TDCC method was used to calculate total cross sections for positron-impact transfer
ionization of the hydrogen atom in its ground state [35]. The TDCC results were found to
be in good agreement with standard close-coupling [36, 37] calculations. The partial-wave
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convergence for positron–atom scattering was found to be much slower than for electron–atom
scattering, due in part to the additional process of positronium formation.

2.8. Applications in electron scattering from non-hydrogenic atoms

The TDCC method with core HX potentials was used to calculate total cross sections for
electron-impact single ionization of the helium atom in its 1s2 ground and 1s2s excited
configurations [38, 39]. As well as its importance in the understanding of fundamental atomic
physics, helium is an important diagnostic element in fusion plasma devices. The TDCC
results for the 1s2 ground configuration were found to be in excellent agreement with CCC
[40] and RMPS [41] calculations, as well as absolute experimental measurements [42]. On
the other hand, the TDCC results for the 1s2s excited configuration were found to be in good
agreement with CCC [43] calculations, but both non-perturbative results were a factor of 2
lower than experimental measurements [44]. The TDCC method was extended to calculate
energy and angle differential cross sections for the single ionization of helium in its ground
state [45]. We note that the TDCC method has also been used to study doubly excited states
of helium and their subsequent autoionization [46].

The TDCC method with core HX potentials was used to calculate total cross sections
for electron-impact single ionization of Li+ in its 1s2 ground and 1s2s excited configurations
[47, 48]. The TDCC results for the 1s2 ground configuration were found to be in very
good agreement with RMPS [47] calculations and absolute experimental measurements
[49–51]. The recent TDCC and RMPS [48] calculations for the 1s2s excited configuration are
in excellent agreement, and thus can serve as a benchmark for future absolute experimental
measurements.

The TDCC method with core HX pseudo-potentials was used to calculate total cross
sections for electron-impact single ionization of the lithium atom in its 1s22s ground and
1s22p excited configurations [52, 53]. Lithium is also an important diagnostic element for
controlled fusion, and there has been some interest in its use as a liquid metal wall in tokamaks.
The TDCC results for the 1s22s ground and 1s22p excited configurations are in excellent
agreement with CCC [53] and RMPS [53] calculations. However, all three non-perturbative
calculations for the 1s22s ground configuration are substantially lower than experimental
measurements [54]. The TDCC method was used to calculate total cross sections for electron-
impact single ionization of Be+ in its 1s22s ground configuration [55]. The TDCC results
are in excellent agreement with CCC [56] and RMPS [55] calculations, but again all three
non-perturbative calculations are substantially lower than experimental measurements [57].
Perturbative distorted-wave calculations [55] are found to lie almost halfway between the
non-perturbative calculations and experiment. The TDCC method was used to calculate total
ionization cross sections for B2+ in its 1s22s ground configuration [58]. The TDCC results
are in good agreement with CCC [59] and RMPS [58] calculations, as well as experimental
measurements [58].

The TDCC method was used to calculate total cross sections for electron-impact excitation
and ionization of the beryllium atom and other atomic ions in the Be isonuclear sequence
[60, 61]. Recently, beryllium has been proposed as a first wall component for the plasma
facing material in the planned international thermonuclear experimental reactor (ITER). The
TDCC results for the 1s22s → 1s22p, 1s23l and 1s24l (l = 0−2) transitions in Be+ are in very
good agreement with CCC [56] and RMPS [60] calculations, while generally smaller than
standard R-matrix [60] calculations for the non-dipole transitions at intermediate energies.
The TDCC results for the 2s → 3l and 4l (l = 0 − 2) transitions in Be3+ were also found to
be in very good agreement with RMPS [60] calculations and generally smaller than standard
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R-matrix [60] calculations. The TDCC results for ionization of Be in its 1s22s2 and 1s22s2p
configurations, of Be+ in its 1s22s and 1s22p configurations, and of Be2+ in its 1s2 and 1s2s
configurations, were found to be in very good agreement with CCC [62, 56] and RMPS [61]
calculations. The TDCC method was used to calculate total ionization cross sections for C2+

in its 1s22s2 ground and 1s22s2p excited configurations [63]. The TDCC results are in good
agreement with CCC [63] and RMPS [63] calculations, while agreement with experimental
measurements [63] is found when a 40%–60% mixture of ground and excited configurations
is assumed in the ion beam.

The TDCC method was used to calculate total cross sections for electron-impact single
ionization of the carbon atom in its 1s22s22p2 ground configuration [64], of the O+ atomic
ion in its 1s22s22p3 ground configuration [65], and of the neon atom in its 1s22s22p6 ground
and 1s22s22p53s excited configurations [64, 66]. For all atoms, individual LS term-selective
ionization cross sections may be obtained by multiplying the configuration-average results
by the appropriate branching ratio and ionization potential scaling factor. The TDCC results
for the ionization of carbon in its 1s22s22p2 3P ground LS term are in good agreement with
experimental measurements [67]. The TDCC results for the ionization of O+ in its 1s22s22p3

ground configuration are also in good agreement with experimental measurements [65]. On the
other hand, the TDCC results for neon in its 1s22s22p6 ground configuration are substantially
above experimental measurements [68]. We attribute the disagreement between theory and
experiment for neon to LS term-dependent effects in the ejected electron continuum. The
TDCC results for neon in its 1s22s22p53s excited configuration are in very good agreement
with RMPS [66] calculations and within the error bars of experimental measurements [68],
since LS term-dependent effects in the ejected electron continuum are small for the excited
state ionization.

The TDCC method was used to calculate total cross sections for electron-impact single
ionization of Mg+, Al2+ and Si3+ in their 1s22s22p63s ground configuration [69] and of
Mo+ in its 1s22s22p63s23p63d104s24p64d5 ground configuration [70]. The TDCC results
for all three Na-like atomic ions are in good agreement with CCC [69] and RMPS [69]
calculations. All three non-perturbative calculations are substantially above one set of
experimental measurements [71] for Mg+ and Al2+, but are in good agreement with a more
recent set of experimental measurements [72] for Mg+. The TDCC results for Mo+ are
found to be 25% lower than perturbative distorted-wave [70] calculations, but experimental
measurements [73, 74] are another 45% lower than the non-perturbative TDCC predictions.
The discrepancy between theory and experiment remains unexplained.

2.9. Applications in photon scattering from atoms

One of the first applications of the time-dependent close-coupling method on a 2D lattice
was to calculate total cross sections for photoionization with excitation and the double
photoionization of the helium atom in its 1s2 1S ground state [75]. The TDCC results for
1s2 1S → nl 2l (n = 2 − 3) photoionization with excitation are in good agreement with many-
body perturbation theory [76] calculations and experimental measurements [77]. The TDCC
results for double photoionization are in good agreement with hyperspherical close-coupling
[78], converged close-coupling [79], and R-matrix with pseudo-states [80, 81] calculations,
as well as experimental measurements [82, 83]. Near threshold, recent large-scale TDCC
results for the double photoionization of helium in its ground state [84] are in excellent
agreement with experimental measurements [85] and confirm the validity of an E1.056 power
law dependency for the cross section. The TDCC method was extended to calculate energy
and angle differential cross sections for the double photoionization of helium in its 1s2 1S
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Figure 3. Photon-impact double ionization of He. Solid line: time-dependent close-coupling
method [86], solid circles: experiment [90] (1 b = 10−24 cm2).

ground state [86–88] and 1s2s 1,3S excited states [89]. For example, with the 20.0 eV excess
energy shared equally between the outgoing electrons, the TDCC results for triple differential
cross sections are in excellent agreement with absolute experimental measurements [90], see
figure 3.

The TDCC method was used to calculate total cross sections for photoionization with
excitation and double photoionization of H− in its 1s2 1S ground state [91] and Li+ in its 1s2 1S
ground and 1s2s 1,3S excited states [92]. The TDCC results for the double photoionization
of H− are in excellent agreement with RMPS [80] calculations. The TDCC results for the
photoionization with excitation and double photoionization of Li+ in its 1s2 1S ground state
are in good agreement with CCC [93] calculations, while the TDCC results for the double
photoionization of Li+ in its 1s2s 1S excited state are somewhat higher than B-spline R-matrix
[94] calculations. The TDCC method was recently used to calculate triple differential cross
sections for the double photoionization of Li+, Be2+ and B3+ in their ground states [95]. The
TDCC method with core HX pseudo-potentials was extended to calculate total and angle
differential cross sections for the double photoionization of the beryllium atom in its 1s22s2

ground configuration [96].
The TDCC method was used to calculate total probabilities for two-photon double

ionization processes in He and H− [97], and then was extended to calculate energy and
angle differential cross sections for the two-photon complete fragmentation of the helium
atom [98]. We also note that the TDCC method has been recently used to calculate the
double ionization of He by fast bare ion collisions [99]. These calculations provide theoretical
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support for future experimental measurements using short wavelength free-electron lasers and
heavy-ion accelerators.

3. Time-dependent calculations on a 3D numerical lattice

3.1. Close-coupling equations for electron scattering from atoms

The time-dependent Schrödinger equation for electron scattering from a two-electron atom is
given by

i∂�( �r1, �r2, �r3, t)

∂t
= Hsystem�( �r1, �r2, �r3, t), (32)

where the non-relativistic Hamiltonian for the scattering system is given by

Hsystem =
3∑

i=1

(
−1

2
∇2

i − Z

ri

)
+

3∑
i<j=1

1

| �ri − �rj | . (33)

The total electronic wavefunction is expanded in coupled spherical harmonics for each total
orbital angular momentum, L, and total spin angular momentum, S:

�LS( �r1, �r2, �r3, t) =
∑
l1,l2

∑
L,l3

P LS
l1l2Ll3

(r1, r2, r3, t)

r1r2r3

×
∑
M,m3

C
L l3 L
Mm30

∑
m1,m2

C
l1 l2 L
m1m2M

Yl1m1(r̂1)Yl2m2(r̂2)Yl3m3(r̂3). (34)

Upon substitution of � into the time-dependent Schrödinger equation, we obtain the
following set of time-dependent close-coupled partial differential equations for each LS
symmetry [7, 8]:

i∂P LS
l1l2Ll3

(r1, r2, r3, t)

∂t
= Tl1l2l3(r1, r2, r3)P

LS
l1l2Ll3

(r1, r2, r3, t)

+
∑

l′1,l
′
2,L

′,l′3

3∑
i<j=1

V L
l1l2Ll3,l

′
1l

′
2L

′l′3
(ri, rj )P

LS
l′1l

′
2L

′l′3
(r1, r2, r3, t), (35)

where

Tl1l2l3(r1, r2, r3) =
3∑

i=1

(
−1

2

∂2

∂r2
i

+
li(li + 1)

2r2
i

− Z

ri

)
, (36)

and the coupling operators are given in terms of 3j and 6j symbols by

V L
l1l2Ll3,l

′
1l

′
2L

′l′3
(r1, r2) = (−1)l1+l′1+Lδl3,l

′
3
δL,L′

√
(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
∑

λ

(r1, r2)
λ
<

(r1, r2)λ+1
>

(
l1 λ l′1
0 0 0

)(
l2 λ l′2
0 0 0

){
l1 l2 L

l′2 l′1 λ

}
, (37)

V L
l1l2Ll3,l

′
1l

′
2L

′l′3
(r1, r3) = (−1)l2+Lδl2,l

′
2

√
(2l1 + 1)(2l′1 + 1)(2l3 + 1)(2l′3 + 1)(2L + 1)(2L′ + 1)

×
∑

λ

(−1)λ
(r1, r3)

λ
<

(r1, r3)λ+1
>

(
l1 λ l′1
0 0 0

) (
l3 λ l′3
0 0 0

)

×
{
L l3 L
l′3 L′ λ

} {
l1 l2 L

L′ λ l′1

}
, (38)
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and

V L
l1l2Ll3,l

′
1l

′
2L

′l′3
(r2, r3) = (−1)l

′
1+l2+l′2+L+L′+Lδl1,l

′
1

×
√

(2l2 + 1)(2l′2 + 1)(2l3 + 1)(2l′3 + 1)(2L + 1)(2L′ + 1)

×
∑

λ

(−1)λ
(r2, r3)

λ
<

(r2, r3)λ+1
>

(
l2 λ l′2
0 0 0

) (
l3 λ l′3
0 0 0

)

×
{
L l3 L
l′3 L′ λ

} {
l1 l2 L

λ L′ l′2

}
. (39)

3.2. Close-coupling equations for photon scattering from atoms

The time-dependent Schrödinger equation for a three-electron atom in a weak time-varying
electromagnetic field is given by

i∂ψ( �r1, �r2, �r3, t)

∂t
= Hatomψ( �r1, �r2, �r3, t) + Hradψ0( �r1, �r2, �r3) e−iE0t , (40)

where the non-relativistic Hamiltonian for the atom is given by

Hatom =
3∑

i=1

(
−1

2
∇2

i − Z

ri

)
+

3∑
i<j=1

1

| �ri − �rj | (41)

and the Hamiltonian for a linearly polarized radiation field is given by

Hrad = E(t) cos ωt

3∑
i=1

ri cos θi . (42)

Upon substitution of coupled spherical harmonic expansions for both ψ and ψ0 into
equation (40), we obtain the following set of time-dependent close-coupled partial differential
equations [9]:

i∂P LS
l1l2Ll3

(r1, r2, r3, t)

∂t
= Tl1l2l3(r1, r2, r3)P

LS
l1l2Ll3

(r1, r2, r3, t)

+
∑

l′1,l
′
2,L

′,l′3

3∑
i<j=1

V L
l1l2Ll3,l

′
1l

′
2L

′l′3
(ri, rj )P

LS
l′1l

′
2L

′l′3
(r1, r2, r3, t),

+
∑

l′1,l
′
2,L

′,l′3

3∑
i=1

W
LL0

l1l2Ll3,l
′
1l

′
2L

′l′3
(ri, t)P

L0S
l′1l

′
2L

′l′3
(r1, r2, r3) e−iE0t , (43)

where

WLL′
l1l2Ll3,l

′
1l

′
2L

′l′3
(r1, t) = (−1)l2+l3+L+L′+L+L′

δl2,l
′
2
δl3,l

′
3

×
√

(2l1 + 1)(2l′1 + 1)(2L + 1)(2L′ + 1)(2L + 1)(2L′ + 1)

× r1E(t) cos ωt

(
l1 1 l′1
0 0 0

) (
L 1 L′

0 0 0

) {
L l3 L
L′ 1 L′

} {
l1 l2 L

L′ 1 l′1

}
,

(44)
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WLL′
l1l2Ll3,l

′
1l

′
2L

′l′3
(r2, t) = (−1)l1+l2+l′2+l3+L+L′

δl1,l
′
1
δl3,l

′
3

×
√

(2l2 + 1)(2l′2 + 1)(2L + 1)(2L′ + 1)(2L + 1)(2L′ + 1)

× r2E(t) cos ωt

(
l2 1 l′2
0 0 0

) (
L 1 L′

0 0 0

) {
L l3 L
L′ 1 L′

} {
l1 l2 L

1 L′ l′2

}
,

(45)

and

WLL′
l1l2Ll3,l

′
1l

′
2L

′l′3
(r3, t) = (−1)l3+l′3+L+1δl1,l

′
1
δl2,l

′
2
δL,L′

√
(2l3 + 1)(2l′3 + 1)(2L + 1)(2L′ + 1)

× r3E(t) cos ωt

(
l3 1 l′3
0 0 0

) (
L 1 L′

0 0 0

) {
L l3 L
1 L′ l′3

}
. (46)

3.3. Numerical solutions

We solve the time-dependent close-coupled equations using a discrete representation of
the radial wavefunctions and all operators on a three-dimensional lattice. Our specific
implementation on massively parallel computers is to partition the r1, r2 and r3 coordinates
over the many processors. Both explicit and implicit methods have been employed to time
propagate the close-coupled partial differential equations.

3.4. Initial conditions and cross sections for electron scattering from atoms

The initial condition for the solution of the TDCC equations (equation (35)) for electron
scattering from a two-electron atom may be given by

P L
l1l2Ll3

(r1, r2, r3, t = 0) =
∑
l′1,l

′
2

P̄ L′
l′1l

′
2
(r1, r2)Gk0l

′
3
(r3)δl1,l

′
1
δl2,l

′
2
δl3,l

′
3
δL,L′ , (47)

where P̄ L′
l′1l

′
2
(r1, r2) with L′ = 0 and l′1 = l′2 = l are the ground-state radial wavefunctions for the

two-electron atom, obtained by relaxation of the two-electron TDCC equations in imaginary
time. Probabilities for all the many collision processes are obtained by t → ∞ projection
onto fully antisymmetric spatial and spin wavefunctions. As an example, for electron double
ionization of the ground state of the helium atom, the partial collision probability is given by

Pl1l2Ll3L,s1s2Ss3S(t) =
∑
k1

∑
k2

∑
k3

∣∣∣∣
∑
L′

δL,L′QaR(123, t)

−
∑
L′

(−1)l2+l3+L+L′√
(2L + 1)(2L′ + 1)

{
l2 l1 L

l3 L L′

}
QbR(132, t)

−
∑
L′

(−1)l1+l2−L′
δL,L′QcR(213, t)

+
∑
L′

(−1)l1+l2+L
√

(2L + 1)(2L′ + 1)

{
l2 l1 L

l3 L L′

}
QcR(312, t)

+
∑
L′

(−1)l2+l3+L′√
(2L + 1)(2L′ + 1)

{
l1 l2 L

l3 L L′

}
QbR(231, t)

−
∑
L′

√
(2L + 1)(2L′ + 1)

{
l1 l2 L

l3 L L′

}
QaR(321, t)

∣∣∣∣
2

, (48)
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where

R(ijk, t) =
∫ ∞

0
dr1

∫ ∞

0
dr2

∫ ∞

0
dr3Pk1l1(ri)Pk2l2(rj )Pk3l3(rk)P

L
l1l2L′l3(r1, r2, r3, t). (49)

The Pkl(r) are continuum radial wavefunctions for the He+ atomic ion, s1 = s2 = s3 =
1
2 ,Qa =

√
1
2δS,0 −

√
1
6δS,1,Qb =

√
2
3δS,1,Qc = −

√
1
2δS,0 −

√
1
6δS,1 and S = 1

2 .
To guard against the unwanted contribution to the partial collision probability coming

from the continuum correlation part of the two-electron bound wavefunctions, one may project
out the two-electron bound states from the three-electron time-propagated radial wavefunction
and then project onto all electron momenta ki . Alternatively, we found that a simple restriction
of the sums over the electron momenta ki , so that the conservation of energy,

Eatom +
k2

0

2
= k2

1

2
+

k2
2

2
+

k2
3

2
, (50)

was approximately conserved, greatly reduced contamination from the continuum piece of
the two-electron bound wavefunctions. In addition, this method of restricted momenta sums
should become more accurate as the lattice size increases. We note that the collision probability
for electron single ionization of the 1S ground state of helium leaving the He+ ion in an nl

bound state is almost identical to equation (48). Simply eliminate one of the sums over electron
momenta, change one of the Pkl(r) radial wavefunctions to Pnl(r), calculate the remaining
two continuum radial wavefunctions in a V (r) potential that screens the Coulomb field, and
apply the relevant equation for the conservation of energy.

The total cross section for electron double ionization of the helium atom is given by

σdion = π

2k2
0

∑
L,S

(2L + 1)(2S + 1)PLS
dion, (51)

where PLS
dion is found by summing over all l1l2Ll3 partial collision probabilities.

3.5. Initial conditions and cross sections for photon scattering from atoms

The initial condition for the solution of the TDCC equations (equation (43)) for single photon
scattering from a three-electron atom is given by

P LS
l1l2Ll3

(r1, r2, r3, t = 0) = 0. (52)

The expansion functions P
L0S
l1l2Ll3

(r1, r2, r3) and energy E0 are obtained by relaxation of the time-
dependent Schrödinger equation for a three-electron atom in imaginary time. Probabilities
for all the many collision processes are again obtained by t → ∞ projection onto fully
antisymmetric spatial and spin wavefunctions. The total cross section for photon triple
ionization of the lithium atom is given by

σtion = ω

I

∂PLS
tion

∂t
, (53)

where PLS
tion is found by summing over all l1l2Ll3 partial collision probabilities.

3.6. Applications in electron scattering from atoms

One of the first applications of the time-dependent close-coupling method on a 3D lattice was
to calculate total cross sections for electron-impact single and double ionization of the helium
atom in its ground state [7]. The TDCC results for single ionization, leaving He+ in the 1s
ground state, are in excellent agreement with previous TDCC with core HX potentials [38]
calculations and experimental measurements [42]. The TDCC results for single ionization,
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Figure 4. Electron-impact double ionization of H−. Solid squares: time-dependent close-
coupling method [8], open circles: crossed-beams experiment [104], open diamonds: crossed-
beams experiment [105] (1 Mb = 10−18 cm2).

leaving He+ in the 2p excited state, are halfway between hybrid distorted-wave/R-matrix
[100] calculations and experimental measurements [101, 102]. The TDCC results for double
ionization are in excellent agreement with experimental measurements [103] from threshold
to just below the peak of the cross section.

The TDCC method was used to calculate total cross sections for electron-impact double
ionization of H− in its ground state [8]. The TDCC results are a factor of 5 below one set
of experimental measurements [104], but in very good agreement with a more recent set of
experimental measurements [105], see figure 4. We note that the TDCC method has also
been used to study triply excited states of He− and Li and their subsequent single and double
autoionization [106, 107].

3.7. Applications in photon scattering from atoms

One of the first applications of the time-dependent close-coupling method on a 3D lattice
was to calculate total cross sections for the double and triple photoionization of the lithium
atom in its 1s22s 2S ground state [9, 108]. The TDCC results for double photoionization are
in excellent agreement with experimental measurements [109], while the TDCC results for
triple photoionization are in reasonable agreement with experimental measurements [110].
The TDCC with core HX potentials method was also used to calculate double and triple
photoionization cross sections for the beryllium atom [108]. The TDCC method was extended
to calculate energy differential cross sections for the triple photoionization of the lithium atom
[111]. The energy differential cross section is generally below 10−3 barns (eV)−2 and will be
a challenge to measure for future advanced light source experiments.

4. Time-dependent calculations on a 4D numerical lattice

4.1. Close-coupling equations for electron scattering from molecules

The time-dependent Schrödinger equation for electron scattering from a one-electron
homonuclear diatomic molecule is given by
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i∂�( �r1, �r2, t)

∂t
= Hsystem�( �r1, �r2, t), (54)

where the non-relativistic Hamiltonian for the scattering system is given by

Hsystem =
2∑

i=1


−1

2
∇2

i −
∑
±

Z√
r2
i + 1

4R2 ± riR cos θi


 +

1

| �r1 − �r2| , (55)

R is the internuclear distance, and Z is the charge on each nucleus. The total electronic
wavefunction is expanded in rotational functions for each total angular momentum projection
about the internuclear axis, M, and total spin angular momentum, S:

�MS( �r1, �r2, t) =
∑

m1,m2

P MS
m1m2

(r1, θ1, r2, θ2, t)

r1r2
√

sin θ1
√

sin θ2
m1(φ1)m2(φ2), (56)

where m(φ) = eimφ√
2π

and M = m1 + m2. Upon substitution of � into the time-dependent
Schrödinger equation, we obtain the following set of time-dependent close-coupled partial
differential equations for each MS symmetry [10, 11]:

i∂P MS
m1m2

(r1, θ1, r2, θ2, t)

∂t
= Tm1m2(r1, θ1, r2, θ2)P

MS
m1m2

(r1, θ1, r2, θ2, t)

×
∑

m′
1,m

′
2

V M
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2)P

MS
m′

1m
′
2
(r1, θ1, r2, θ2, t), (57)

where

Tm1m2(r1, θ1, r2, θ2) =
2∑

i=1


K(ri) + K(ri, θi) +

m2
i

2r2
i sin2 θi

−
∑
±

Z√
r2
i + 1

4R2 ± riR cos θi


 ,

(58)

and K are kinetic energy operators. The coupling operator is given by

V M
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2) =

∑
λ

(r1, r2)
λ
<

(r1, r2)λ+1
>

∑
q

(λ − |q|)!
(λ + |q|)! P

|q|
λ (cos θ1)P

|q|
λ (cos θ2)

×
∫ 2π

0
dφ1

∫ 2π

0
dφ2m1(φ1)m2(φ2) eiq(φ2−φ1)m′

1
(φ1)m′

2
(φ2), (59)

where P
|q|
λ (cos θ) is an associated Legendre function.

4.2. Close-coupling equations for photon scattering from molecules

The time-dependent Schrödinger equation for a two-electron homonuclear diatomic molecule
in a weak time-varying electromagnetic field is given by

i
∂ψ( �r1, �r2, t)

∂t
= Hmolψ( �r1, �r2, t) + Hradψ0( �r1, �r2) e−iE0t , (60)

where the non-relativistic Hamiltonian for the molecule is given by

Hmol =
2∑

i=1


−1

2
∇2

i −
∑
±

Z√
r2
i + 1

4R2 ± riR cos θi


 +

1

| �r1 − �r2| . (61)



R56 Topical Review

The radiation field Hamiltonian, for linear polarization with respect to the internuclear axis,
is given by

Hrad = E(t) cos ωt

2∑
i=1

ri cos θi, (62)

while, for circular polarization with respect to the internuclear axis, is given by

Hrad = E(t)√
2

cos ωt

2∑
i=1

ri sin θi eiφi . (63)

Upon substitution of rotational function expansions for both ψ and ψ0 into equation (60), we
obtain the following set of time-dependent close-coupled partial differential equations [12]:

i
∂P MS

m1m2
(r1, θ1, r2, θ2, t)

∂t
= Tm1m2(r1, θ1, r2, θ2)P

MS
m1m2

(r1, θ1, r2, θ2, t)

+
∑

m′
1,m

′
2

V M
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2)P

MS
m′

1m
′
2
(r1, θ1, r2, θ2, t)

+
∑

m′
1,m

′
2

W
MM0

m1m2,m
′
1m

′
2
(r1, θ1, r2, θ2, t)P

M0S

m′
1m

′
2
(r1, θ1, r2, θ2) e−iE0t , (64)

where, for linear polarization:

WMM ′
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2, t) = E(t) cos ωt

2∑
i=1

ri cos θiδmi,m
′
i
, (65)

while, for circular polarization:

WMM ′
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2, t) = E(t)√

2
cos ωt

2∑
i=1

ri sin θi

∫ 2π

0
dφimi

(φi) eiφi m′
i
(φi). (66)

4.3. Numerical solutions

We solve the time-dependent close-coupled equations using a discrete representation of the
radial and angular wavefunctions and all operators on a four-dimensional lattice. Our specific
implementation on massively parallel computers is to partition both the r1 and r2 coordinates
over the many processors. Both explicit and implicit methods have been employed to time
propagate the close-coupled partial differential equations.

4.4. Initial conditions and cross sections for electron scattering from molecules

The initial condition for the solution of the TDCC equations (equation (57)) for electron
scattering from a one-electron homonuclear diatomic molecule may be given by

P MS
m1m2

(r1, θ1, r2, θ2, t = 0) = Pnlm(r1, θ1)Gk0l′m′(r2, θ2)δm1,mδm2,m′ , (67)

where Pnlm(r, θ) is a bound radial and angular wavefunction for a one-electron molecule.
Probabilities for all the many collision processes possible are obtained by t → ∞ projection
onto fully antisymmetric spatial and spin wavefunctions. The total cross section for the
electron single ionization of the H+

2 molecule is given by

σsion = π

4k2
0

∑
MSl′

(2S + 1)PMS
sion, (68)

where PMS
sion is found by summing over all m1m2 partial collision probabilities.
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Figure 5. Electron-impact single ionization of H+
2 . Solid squares: time-dependent close-coupling

method [10], solid diamonds: distorted-wave method [10], open circles: crossed-beams experiment
[112] (1 Mb = 10−18 cm2).

4.5. Initial conditions and cross sections for photon scattering from molecules

The initial condition for the solution of the TDCC equations (equation (64)) for single photon
scattering from a two-electron homonuclear diatomic molecule is given by

P MS
m1m2

(r1, θ1, r2, θ2, t = 0) = 0. (69)

The expansion functions P M0S
m1m2

(r1, θ1, r2, θ2) and energy E0 are obtained by relaxation of
the time-dependent Schrödinger equation for a two-electron molecule in imaginary time.
Probabilities for all the many collision processes possible are again obtained by t → ∞
projection onto fully antisymmetric spatial and spin wavefunctions. The total cross section
for the photon double ionization of the hydrogen molecule is given by

σdion = ω

I

∂PMS
dion

∂t
, (70)

where PMS
dion is found by summing over all m1m2 partial collision probabilities.

4.6. Applications in electron scattering from molecules

One of the first applications of the TDCC method on a 4D lattice was to calculate total
cross sections for electron-impact single ionization of the H+

2 molecular ion [10]. The TDCC
results for single ionization are lower than perturbative distorted-wave [10] calculations and
in excellent agreement with experimental measurements [112], see figure 5.

The TDCC method with core HX potentials was used to calculate total cross sections
for electron-impact single ionization of the H2 molecule [11]. The TDCC results for single
ionization are in very good agreement with RMPS [113] calculations near threshold. The
TDCC results from threshold to twice the peak cross section energy are lower than perturbative
distorted-wave [11] calculations and in excellent agreement with experimental measurements
[114].
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4.7. Applications in photon scattering from molecules

One of the first applications of the TDCC method on a 4D lattice was to calculate total cross
sections for the double photoionization of the H2 molecule [12]. The TDCC results for double
photoionization are in good agreement with exterior complex scaling [115] calculations and
experimental measurements [116, 117]. The TDCC method was extended to calculate energy
and angle differential cross sections for the double photoionization of H2 [118].

5. Summary

The time-dependent close-coupling method has been developed and successfully applied to a
wide variety of electron and photon collisions with atoms and molecules. The agreement with
scattering results obtained using converged close-coupling, hyperspherical close-coupling,
R-matrix with pseudo-states, and exterior complex scaling methods has generally been
excellent. The non-perturbative methods have been successfully used to map out the range
of accuracy of the more widely used perturbative quantal and semi-classical methods for
a number of collision processes. The non-perturbative methods have also been used to
benchmark experimental measurements, and in some cases to help decide between conflicting
experimental findings. In the future we plan to continue the development of the time-
dependent close-coupling method for application to a variety of atomic and molecular collision
phenomena.
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[26] Röder J, Baertschy M and Bray I 2003 Phys. Rev. A 67 010702
[27] Witthoeft M C, Loch S D and Pindzola M S 2004 Phys. Rev. A 70 022711
[28] Griffin D C, Ballance C P, Pindzola M S, Robicheaux F, Loch S D, Ludlow J A, Witthoeft M C, Colgan J,

Fontes C J and Schultz D R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L199
[29] Defrance P, Claeys W, Cornet A and Poulaert G 1981 J. Phys. B: At. Mol. Phys. 14 111
[30] Witthoeft M C, Pindzola M S and Colgan J 2003 Phys. Rev. A 67 032713
[31] Colgan J, Pindzola M S and Robicheaux F 2002 Phys. Rev. A 66 012718
[32] Bray I, McCarthy I E, Wigley J and Stelbovics A T 1993 J. Phys. B: At. Mol. Opt. Phys. 26 L831
[33] Peart B, Walton D S and Dolder K T 1969 J. Phys. B: At. Mol. Phys. 2 1347
[34] Tinschert K, Müller A, Hofmann G, Huber K, Becker R, Gregory D C and Salzborn E 1989 J. Phys. B: At.

Mol. Opt. Phys. 22 531
[35] Plante D R and Pindzola M S 1998 Phys. Rev. A 57 1038
[36] Mitroy J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L263
[37] Kernoghan A A, Robinson D J R, McAlinden M T and Walters H R J 1996 J. Phys. B: At. Mol. Opt.

Phys. 29 2089
[38] Pindzola M S and Robicheaux F 2000 Phys. Rev. A 61 052707
[39] Colgan J and Pindzola M S 2002 Phys. Rev. A 66 062707
[40] Fursa D V and Bray I 1995 Phys. Rev. A 52 1279
[41] Hudson E T, Bartschat K, Scott M P, Burke P G and Burke V M 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5513
[42] Montague R K, Harrison M F A and Smith A C H 1984 J. Phys. B: At. Mol. Phys. 17 3295
[43] Bray I and Fursa D V 1995 J. Phys. B: At. Mol. Opt. Phys. 28 L197
[44] Dixon A J, Harrison M F A and Smith A C H 1976 J. Phys. B: At. Mol. Phys. 9 2617
[45] Colgan J, Pindzola M S, Childers G and Khakoo M A 2006 Phys. Rev. A 73 042710
[46] Mitnik D M, Griffin D C and Pindzola M S 2002 Phys. Rev. Lett. 88 173004
[47] Pindzola M S, Mitnik D M, Colgan J and Griffin D C 2000 Phys. Rev. A 61 052712
[48] Berengut J C, Loch S D, Ballance C P and Pindzola M S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1331
[49] Lineberger W C, Hooper J W and McDaniel E W 1966 Phys. Rev. 141 151
[50] Peart B and Dolder K T 1968 J. Phys. B: At. Mol. Phys. 2 872
[51] Müller A, Hofmann G, Weissbecker B, Stenke M, Tinschert K, Wagner M and Salzborn E 1989 Phys. Rev.

Lett. 63 758
[52] Colgan J, Pindzola M S, Mitnik D M and Griffin D C 2001 Phys. Rev. A 63 062709
[53] Colgan J, Pindzola M S, Mitnik D M, Griffin D C and Bray I 2001 Phys. Rev. Lett. 87 213201
[54] Zapesochnyi I P and Alexsakhin I S 1969 Sov. Phys.—JETP 28 41
[55] Pindzola M S, Robicheaux F, Badnell N R and Gorczyca T W 1997 Phys. Rev. A 56 1994
[56] Bartschat K and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L109
[57] Falk R A and Dunn G H 1983 Phys. Rev. A 27 754
[58] Woitke O, Djuric N, Dunn G H, Bannister M E, Smith A C H, Wallbank B, Badnell N R and Pindzola M S

1998 Phys. Rev. A 58 4512
[59] Marchalant P J, Bartschat K and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L435
[60] Ballance C P, Griffin D C, Colgan J, Loch S D and Pindzola M S 2003 Phys. Rev. A 68 062705
[61] Colgan J, Loch S D, Pindzola M S, Ballance C P and Griffin D C 2003 Phys. Rev. A 68 032712
[62] Fursa D V and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L273
[63] Loch S D, Witthoeft M, Pindzola M S, Bray I, Fursa D V, Fogle M, Schuch R, Glans P, Ballance C P and

Griffin D C 2005 Phys. Rev. A 71 012716
[64] Pindzola M S, Colgan J, Robicheaux F and Griffin D C 2000 Phys. Rev. A 62 042705
[65] Loch S D, Colgan J, Pindzola M S, Westermann M, Scheuermann F, Aichele K, Hathiramani D and

Salzborn E 2003 Phys. Rev. A 67 042714
[66] Ballance C P, Griffin D C, Ludlow J A and Pindzola M S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4779
[67] Brook E, Harrison M F A and Smith A C H 1978 J. Phys. B: At. Mol. Phys. 11 3115

http://dx.doi.org/10.1088/0953-4075/30/17/017
http://dx.doi.org/10.1088/0953-4075/37/17/R01
http://dx.doi.org/10.1088/0953-4075/39/22/R01
http://dx.doi.org/10.1103/PhysRevLett.70.746
http://dx.doi.org/10.1103/PhysRevLett.74.2443
http://dx.doi.org/10.1088/0953-4075/29/15/005
http://dx.doi.org/10.1088/0022-3700/20/14/022
http://dx.doi.org/10.1103/PhysRevA.65.042721
http://dx.doi.org/10.1103/PhysRevA.74.012713
http://dx.doi.org/10.1103/PhysRevA.67.010702
http://dx.doi.org/10.1103/PhysRevA.70.022711
http://dx.doi.org/10.1088/0953-4075/38/12/L01
http://dx.doi.org/10.1088/0022-3700/14/1/013
http://dx.doi.org/10.1103/PhysRevA.67.032713
http://dx.doi.org/10.1103/PhysRevA.66.012718
http://dx.doi.org/10.1088/0953-4075/26/23/006
http://dx.doi.org/10.1088/0022-3700/2/12/314
http://dx.doi.org/10.1088/0953-4075/22/3/016
http://dx.doi.org/10.1103/PhysRevA.57.1038
http://dx.doi.org/10.1088/0953-4075/29/7/004
http://dx.doi.org/10.1088/0953-4075/29/10/017
http://dx.doi.org/10.1103/PhysRevA.61.052707
http://dx.doi.org/10.1103/PhysRevA.66.062707
http://dx.doi.org/10.1103/PhysRevA.52.1279
http://dx.doi.org/10.1088/0953-4075/29/22/025
http://dx.doi.org/10.1088/0022-3700/17/16/012
http://dx.doi.org/10.1088/0953-4075/28/6/008
http://dx.doi.org/10.1088/0022-3700/9/15/013
http://dx.doi.org/10.1103/PhysRevA.73.042710
http://dx.doi.org/10.1103/PhysRevLett.88.173004
http://dx.doi.org/10.1103/PhysRevA.61.052712
http://dx.doi.org/10.1088/0953-4075/40/7/002
http://dx.doi.org/10.1103/PhysRev.141.151
http://dx.doi.org/10.1088/0022-3700/1/5/315
http://dx.doi.org/10.1103/PhysRevLett.63.758
http://dx.doi.org/10.1103/PhysRevA.63.062709
http://dx.doi.org/10.1103/PhysRevLett.87.213201
http://dx.doi.org/10.1103/PhysRevA.56.1994
http://dx.doi.org/10.1088/0953-4075/30/3/003
http://dx.doi.org/10.1103/PhysRevA.27.754
http://dx.doi.org/10.1103/PhysRevA.58.4512
http://dx.doi.org/10.1088/0953-4075/30/12/003
http://dx.doi.org/10.1103/PhysRevA.68.062705
http://dx.doi.org/10.1103/PhysRevA.68.032712
http://dx.doi.org/10.1088/0953-4075/30/8/003
http://dx.doi.org/10.1103/PhysRevA.71.012716
http://dx.doi.org/10.1103/PhysRevA.62.042705
http://dx.doi.org/10.1103/PhysRevA.67.042714
http://dx.doi.org/10.1088/0953-4075/37/24/005
http://dx.doi.org/10.1088/0022-3700/11/17/021


R60 Topical Review

[68] Krishnakumar E and Srivastava S K 1988 J. Phys. B: At. Mol. Opt. Phys. 21 1055
[69] Badnell N R, Pindzola M S, Bray I and Griffin D C 1998 J. Phys. B: At. Mol. Opt. Phys. 31 911
[70] Ludlow J A, Loch S D and Pindzola M S 2005 Phys. Rev. A 72 032729
[71] Crandall D H, Phaneuf R A, Falk R A, Belic D S and Dunn G H 1982 Phys. Rev. A 25 143
[72] Peart B, Thomason J W G and Dolder K 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4453
[73] Man K F, Smith A C H and Harrison M F A 1987 J. Phys. B: At. Mol. Phys. 20 1351
[74] Hathiramani D et al 1996 Phys. Rev. A 54 587
[75] Pindzola M S and Robicheaux F 1998 Phys. Rev. A 58 779
[76] Chang T N 1980 J. Phys. B: At. Mol. Phys. 13 L551
[77] Wehlitz R, Sellin I A, Hemmers O, Whitfield S B, Glans P, Wang D, Lindle D W, Langer B, Berrah N,

Viefhaus J and Becker U 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L51
[78] Tang J Z and Shimamura I 1995 Phys. Rev. A 52 R3413
[79] Kheifets A S and Bray I 1996 Phys. Rev. A 54 R995
[80] Meyer K W, Greene C H and Esry B D 1997 Phys. Rev. Lett. 78 4902
[81] Gorczyca T W and Badnell N R 1997 J. Phys. B: At. Mol. Opt. Phys. 30 3897
[82] Levin J C, Armen G B and Sellin I A 1996 Phys. Rev. Lett. 76 1220
[83] Dörner R, Vogt T, Mergel V, Khemliche H, Kravis S, Cocke C L, Ullrich J, Unverzagt M, Spielberger L,

Damrau M, Jagutzki O, Ali I, Weaver B, Ullmann K, Hsu C C, Jung M, Kanter E P, Sonntag B, Prior M H,
Rotenberg E, Denlinger J, Warwick T, Manson S T and Schmidt-Böcking H 1996 Phys. Rev. Lett. 76 2654
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