
A Distributed Computing Method for Crystal Structure
Prediction of Flexible Molecules: An Application to

N-(2-Dimethyl-4,5-dinitrophenyl) Acetamide

Victor E. Bazterra,†,‡ Matthew Thorley,‡ Marta B. Ferraro,† and Julio C. Facelli*,‡

Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, UniVersidad de
Buenos Aires, Ciudad UniVersitaria, Pab. I (1428), Buenos Aires, Argentina, and

Center for High Performance Computing, UniVersity of Utah, 155 South
1452 East Rm 405, Salt Lake City, Utah 84112-0190

Received June 23, 2006

Abstract: In this paper, we describe a new distributed computing framework for crystal structure

prediction that is capable of performing crystal structure searches for flexible molecules within

any space group and with an arbitrary number of molecules in the asymmetric unit. The distributed

computing framework includes a series of tightly integrated computer programs for generating

the molecule’s force field, sampling possible crystal structures using a distributed parallel genetic

algorithm, locally minimizing these structures and classifying, sorting, and archiving the most

relevant ones. As an example, we report the results of its application to the prediction of the

crystal structure of the elusive N-(2-dimethyl-4,5-dinitrophenyl) acetamide, a molecule for which

its crystal structure proved to be one of the most difficult cases in the last CSP2004 blind test

for crystal structure prediction.

Introduction
The crystal structure prediction (CSP) of organic compounds
can be described as the process of creating a list of crystal
structure candidates, which are likely to be found experi-
mentally, using only the molecular composition and con-
nectivity as input information. The prediction of crystal
structures for organic molecules is of great importance in
many industries like pharmaceuticals, agrochemicals, pig-
ments, dyes, explosives, and so forth, because many of the
macroscopic properties of their products are highly dependent
on their crystal structures. The existence of different crystals
for the same compound, a phenomenon called polymor-
phism,1,2 generally implies a significant variation of the
substance’s macroscopic properties, such as solubility, bio-
availability, vapor pressure, crystal size and color, and so
forth, depending on the predominant polymorph present in
the material. Therefore, knowledge in advance of a plausible
set of possible crystal structures provides important informa-

tion that can be used for controlling the manufacturing
process of solid organic compounds with the desired proper-
ties.3

Since the 1990s, a diverse group of methods have been
developed for CSP.4 The collective accomplishments of this
research community have been summarized in the reports
from the three blind tests for CSP conducted under the
auspices of the Cambridge Crystallographic Data Center.4-6

While the results of these workshops show gradual improve-
ment in the predictive capability of the existing methods,
there is general agreement that improvements are still
necessary in both the force fields needed to better represent
the molecular interactions and the optimization techniques
used to search the complex energy landscape of molecular
crystals.4 This paper describes our recent developments to
improve the latter aspect of CSP when taking advantage of
the great progress in parallel computing realized in recent
years.

Although the methods used for CSP vary, all of them
follow four general procedures:4 (1) the definition of a
molecular model, which may or may not allow the simul-
taneous change of the molecular conformation during the
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crystal structure searches, (2) an algorithm for searching
plausible packing arrangements of the molecules in the
crystal structure, (3) a method for ranking the structures
according to their relative energies, usually defined by an
empirical force field, and (4) a method for the classification
and archival of the most relevant structures.

The molecular models can be classified into two groups
known asrigid and flexible.6 Within the rigid models, which
are the most widely used today, the conformation of the
molecule is kept fixed during the crystal structure search
process. Usually, the molecular conformations considered
are selected a priori by analyzing the molecule’s conforma-
tional energy profile calculated for the isolated molecule
using ab initio methods. This approach is a reasonable
approximation when the intermolecular interactions are much
smaller than the energy modes associated with the internal
degrees of freedom of the molecule. However, this is not
the case for flexible molecules for which the intermolecular
interaction energies are often of the same order of magnitude
than the rotational barriers around single bonds. Methods
that allow the concurrent relaxation of the molecular
geometry through the global search of the crystal structure
are needed for many important applications in which flexible
molecules should be considered.

The search for possible packing arrangements of the
molecules in a crystal is generally implemented by a global
optimization algorithm. Many search techniques have been
used for this step, ranging from grid-based searches to
stochastic methods like Monte Carlo simulated annealing and
genetic algorithms (GAs). Following our previous work, here
we continue using our modified GA approach,4,7,8 which
provides a convenient path to parallel implementations that
can take advantage of modern computer equipment. It should
be noted that our modified GA always includes a local
minimization step for all of the structures considered in the
GA evolution; that is, only locally minimized structures are
included in the GA populations.

In principle, there are two approaches that could be used
for CSP; either the search is constrained to run on a relatively
small number of space groups one at a time or the search
can be run totally unconstrained. The first approach leads to
a significant reduction of the search space, and its usefulness
lies in the fact that 92.7% of the organic crystals belong to
only 18 of 230 space groups9 and that 91.7% of the known
organic crystal structures have only one molecule (Z′ ) 1)
in their asymmetric unit. The disadvantage of this approach
is that it is not able to find structures that may not be in the
most common symmetry groups. Searches without symmetry
constraints, based on theP1 space group with a variable
number of molecules in their unit cell, have been reported,
but they are extremely difficult because the significant
increase in the search space greatly reduces their ability to
produce a representative sampling of the possible packing
arrangements.9 In spite of the drawbacks of the unconstrained
searches, in our computer programs, we have implemented
both methodologies for completeness. Our preliminary
findings of their relative performance of the constrained and
unconstrained searches of the crystal structure ofN-(2-

dimethyl-4,5-dinitrophenyl) acetamide confirm the lack of
predictive powder of unconstrained searches.

The ranking of the structures generated by the search
algorithm is generally done according to their calculated
energy. This criterion is based on the assumption that the
crystallization process is under thermodynamic control.
Although there is evidence that this is not always the case,10,11

it is reasonable to assume that any metastable crystal structure
should have a crystal energy close to the global minimum.12

Alternative criteria for ranking crystal structures are some-
times used, for instance, taking into account the three-
dimensional regularities commonly observed in the crystal
structures deposited in the Cambridge Structural Database.13

An extensive comparison of the methods currently available
for CSP can be found in the Supporting Information of ref
4.

The comparison and classification of the resulting crystal
structures is generally accomplished by sorting them by
energy and eliminating from the list those structures that can
be superimposed within a given tolerance, this can be done
using programs likeCRYCOM14 or COMPACK.15 Crystal
structures with more than one molecule in the asymmetric
unit may exhibit higher symmetry than required for the space
group in which their search was performed; the additional
symmetry elements in these structures can be found using
theADDSYMalgorithm inPLATON16 or the symmetry finder
in Cerius2.17

This paper describes a distributed computer framework
where several independent computer programs have been
integrated to provide a comprehensive environment for CSP.
Within this environment it is possible to (1) search for crystal
structures within any symmetry group and with an arbitrary
number of molecules and molecular types per asymmetric
unit; (2) search structures using either the rigid or flexible
molecule models; (3) automatically generate the molecule’s
force field using existing force field libraries; (4) increase
the sampling power and the complexity of molecules
amenable to CSP studies using the parallel and distributed
computing capabilities of the system; and (5) automatically
compare, sort, and archive the most relevant structures in a
user database.

As an example, we show that this method can correctly
predict the structure ofN-(2-dimethyl-4,5-dinitrophenyl)
acetamide, a well-recognized “problem” case in the crystal
prediction literature.

Computational Methods
Modified Genetic Algorithm for Crystal Structure Pre-
diction (MGAC). GAs are a family of search techniques
rooted on the ideas of Darwinian evolution.18 Operators
analogous to crossover, mutation, and natural selection are
employed to perform a search able to explore and learn the
multidimensional parameter space and to determine which
regions of the space provide good solutions to a problem
and in which the search should be intensified. To improve
their convergence, GAs are commonly coupled with local
optimizations at each generation, a practice that has been
followed in this work. Therefore, it is important to emphasize
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that all the crystal structures reported here correspond to local
minima of the potential energy surface.

Crystal Structure Model. When using GAs for the pre-
diction of crystal structures, these structures have to be en-
coded in agenomethat can be manipulated by the genetic
operators as well as used to calculate the energy of the crystal
structure they represent. For organic crystals, the molecular
geometries are highly constrained by strong covalent bonds,
leading to a considerable reduction of the number of param-
eters that are allowed to change during the global search.
This means that it is not necessary to include the molecule’s
bond lengths and bond angles in the global optimization be-
cause their values in the crystal structure are always close
to those in the isolated molecule. Therefore, they can be ob-
tained by performing only local optimizations in which these
parameters are allowed to change. Because the rotational
barriers around single covalent bonds are comparable to the
intermolecular interaction energies, their associated dihedral
angles can be significantly affected by the intermolecular
interactions leading to values in the crystal that are quite
different than those in the isolated molecule. Therefore, these
dihedral angles must be included in the global optimization
to allow the exploration of conformations which may become
energetically favorable for the certain packing motifs.

For each molecular species, we define a molecular frame
anchored to the rigid structure of the molecule in which the
positions of all the atoms can be determined. Using this
molecular frame, we define thegenomefor a crystal structure
with n molecules in the asymmetric unit, by specifying in
the crystal frame the position of the origin of the molecular
frames,R1...Rn, and the orientation of the molecular axis
relative to the crystal frame,Θ1...Θn. These orientations are
given by the corresponding Euler angles. For rigid molecules
using these parameters, the symmetry group, and the mo-
lecular geometry, it is possible to calculate the position of
all the atoms in the unit cell. For flexible molecules, as
discussed above, thegenomeneeds to be augmented byk
scalars,Φ1...Φk, that give the values of thek single-bond
dihedral angles, measured in the molecular frame, that are
allowed to change during the global optimization. It is very
important to understand that the inclusion of these dihedral
angles in thegenomeallows the GA to sample regions of
the conformation space with quite different dihedral angles
than those used as starting parameters. While these regions
may not be energetically favorable for the isolated molecule
they may be favorable for certain packing configurations.
Note that regardless of which dihedral angles are included
in thegenome, all the intramolecular geometry parameterss
bond lengths, bond angles, and dihedral anglessare always
locally optimized in every GA generation.

The MGAC program only considers the lattice angles (R,
â, γ) as independent parameters in the GA optimization. The
lattice lengths (a, b, c) are treated as dependent parameters
derived from the position of the molecules in the unit cell.
In this respect, MGAC uses an approach similar to the one
in Polymorph Predictor.9 The lattice lengths are determined
as follows: Given the molecular coordinates and the lattice
angles that define the crystal structure, the initial estimates
of the values of lattice lengths are chosen such that they

define the smaller space that encloses all the molecules in
the asymmetric unit. To reduce the chance of producing very
short intermolecular distances between molecules in the unit
cell and their neighbors, which can lead to spurious results
when locally optimized, the asymmetric unit is extended to
guarantee a minimal intermolecular distance (by default,
3 Å). Note that this arbitrary determination of the initial
values of the lattice parameters does not have any effect on
the final crystal structures as they undergo a local minimiza-
tion in which all the inter- and intramolecular parameters
are optimized. This last step allows that the effects of
molecular interactions be included in the local refinement
of the entire crystal structure.

Modified Genetic Algorithm. Except for the addition of
the lattice angles, the crystal structure encoding given in the
last section resembles the one used to describe molecular
clusters. A very efficient GA scheme for molecular cluster
optimization has been previously proposed by Niesse et
al.,19,20and following this precedence, we have implemented
in MGAC the one-point-crossoVer, two-point-crossoVer,
n-point-crossoVer, uniform-crossoVer, arithmetic-crossoVer,
inVersion-crossoVer, geometric-crossoVer, andgaussian mu-
tation genetic operators.20 All of these operators are used in
MGAC when acting on the molecular parameters. For the
lattice angles, theinVersion-crossoVer was removed from the
operator list to preserve the crystal system, such that the
resulting group of operators always transforms a triclinic
structure into another triclinic and so forth.

Starting from a set of crystal structures randomly created
(the initial generation or population), one can use these
operators to construct a new set of crystal structure candidates
for the next generation. The program verifies that the lattice
angles define a linear independent set of lattice vectors in
three dimensions, eliminating any spurious quasi-planar or
linear structures. Any structure that does not meet this test
is eliminated and replaced by a new one randomly generated.
This procedure is repeated until a complete new population
is generated. At each GA evolution, all the new structures
(by default, the number of new structures is half of the
population size) are relaxed to the corresponding local
minima using the local optimization techniques available in
CHARMM.21,22The local optimization, in which all the inter-
and intramolecular degrees of freedom are allowed to change,
is performed within the desired space group and produces a
new set of candidate solutions that compete with the pre-
existing solutions for their permanence in the population.
This competition is implemented by combining both sets of
solutions into a larger population from which the worst
candidates are eliminated until the number of structures
equals the desired population size. The fitness of the solution
is given by the total energy of the crystal structure evaluated
after the local optimization. This defines the population from
which the next generation can be obtained by repeating the
procedure just described above. This evolution is repeated
either for a predetermined number of generations or until
the diversity of the population reaches such uniformity that
the GA procedure becomes a random search.

The algorithm described above can be used to perform
constrained searches in any of the 230 space groups with an
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arbitrary number of molecules and molecule types on the
asymmetric unit. Therefore, MGAC can be used by system-
atically searching solutions in different symmetry groups,
normally restricting the search to the most common ones or
by unconstrained searches, a methodology that has not yet
been proved effective in CSP.

To reach the high sampling power required for these
studies, we have used a global parallelization scheme of the
genetic algorithm implemented in MGAC. In every genera-
tion, the parallelization scheme relies on the simultaneous
run of the local optimization of the crystal structures
belonging to the same population. The parallelization was
done using our adaptive parallel genetic algorithm,APGA.23

APGA was designed to perform efficiently on a heteroge-
neous cluster of computers and to provide a great degree of
adaptability and performance in distributed systems. This
level of parallelization allows making the execution time of
MGAC approximately independent of the population size
when a sufficient number of processors is available for the
calculations.

TheMGACpackage is written in C++, usingBASH24 for
scripting,MPICH25 for parallel programming,GALib26 for
the GA implementation, andxerces-c27 for parsing input and
outputXML28 files.

Force Field Generator.An automatic force field genera-
tor, charmmgen,was implemented on the basis ofantecham-
ber.29 Given the molecular composition and connectivity, this
program calculates the molecule’s force field parameters on
the basis of the general amber force field, GAFF,30 or any
other force field library with a similar functional form. In
this work, we have used the default parameters of GAFF,30

which is a general force field with parameters for most
organic and pharmaceutical molecules containing H, C, N,
O, S, P, and halogens. It uses a simple functional form in
which the energy is defined by

wherereq andθeq are equilibrium structural parameters;kr,
kθ, andVn are the force constants;n is the multiplicity; and
γ is the phase angle for the torsional angle parameters. The
A, B, andq parameters describe the nonbonded potentials.
In this work, we calculated the atomic charges,qi, using the
restrained electrostatic potential approach implemented in
the RESP program.31 This program fits the atomic charges
to reproduce the electrostatic potential generated by the
molecule’s charge distribution, which was calculated using
the Gaussian 0332 package at the HF/6-31G* level. The
atomic charges used forN-(2-dimethyl-4,5-dinitrophenyl)
acetamide were calculated at the optimized geometry (HF/
6-31G* level) of the isolated molecule, but it was verified
that they do not change in any appreciable way for other
conformations of the molecule.

All the crystal energy calculations and local optimization
are performed using CHARMM21,22 with the GAFF30 pa-
rameters. At least two unit cells were included in the

simulation box in every direction, short range nonbonded
interactions were summed up to a cutoff of 14 Å, and the
electrostatic interactions were calculated using the Ewald
technique.

Analysis of the Resulting Structures.Once a series of
MGAC runs has been performed, it is necessary to sort and
compare the crystal structures generated in these runs to find
the n unique ones with the lowest energies. Because of
numerical fluctuations, the set of structures generated by the
MGAC runs has many similar structures with small energy
differences that correspond to the same physical structure.
Therefore, it is necessary to detect and remove these duplicate
crystal structures from the final list. There are several well-
established methodologies for comparing three-dimensional
crystal structures, such as a comparison of their computed
powder patterns,33,34 and theCRYCOM14 or COMPACK15

programs, but because the source codes of these programs
are not available, they could not be easily integrated into
our computer framework. Therefore, we have implemented
an alternative method that was easily integrated into our
crystal prediction environment.

Our approach is similar to the one implemented in
COMPACK,15 based on the comparison of the structures of
two finite clusters, but because MGAC preserves the atomic
labels of the molecules, we avoid the expensive computa-
tional step of building a classification tree to sort the atomic
labels of the molecules in the two fragments.

Our method uses two spherical clusters ofn and m
molecules, withm > n, that represent the three-dimensional
structures of the two crystal structures under comparison.
We call these two clusters the reference and compared
fragments, respectively. The number of molecules in each
cluster needs to be sufficiently large to completely character-
ize the environment surrounding the central molecule of each
fragment, which should be one of the molecules in the
asymmetric unit. By default, the values ofn andm are set
to 16 and 24, respectively, but it should be emphasized that
the comparisons are always done using the same number of
molecules in each fragment, that is, matching the reference
cluster with only a fraction of the molecules in the compared
cluster. Our experience shows that very small changes in
crystal structures can produce a different set of molecules
in the list of then ones closest to the central molecule. This
can lead to the classification of two similar crystals as
different ones because a dissimilar set of molecules has been
included in the two finite clusters. Hence, it is convenient
to have a larger compared cluster to ensure that all the
molecules in the smaller reference fragment are included in
the compared cluster. Because within MGAC we preserve
the atomic labeling of the individual molecules, the compara-
tor program can easily search for the best rotation and
translation to superimpose the chosen central molecules of
each fragment. This is done by minimizing the root-mean-
square (RMS) deviations of their atomic coordinates, exclud-
ing the hydrogen atoms, using the overlapping points
algorithm develop by Kabsch.35,36 If the resulting RMS is
higher than a given threshold (by default 0.5 Å), there is no
match between the selected pair of central molecules and a
new set may be chosen (see below). If the RMS is lower

E ) ∑
bonds

kr(r - req)
2 + ∑

angles

kθ(θ - θeq) +

∑
dihedrals

Vn

2
[1 + cos(nφ - γ)] + ∑

i<j [ Aij

Rij
12

-
Bij

Rij
6

+
qiqj

εRij]
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than the threshold, the comparator searches for the best
superposition between the reference fragment and a subset
of n molecules in the compared fragment. If the resulting
RMS is lower than a given value (by default, 1.0 Å), the
two crystals are considered similar. If any of these compari-
sons, that is, between the central molecules and/or between
the fragments, do not show a match and both crystal
structures have only one molecule in their asymmetric unit,
they are considered different. Otherwise, the comparator
program repeats the process described above, constructing
a new compared cluster for a different central molecule. This
process continues until all possible molecules in the asym-
metric unit of the compared crystal structure have been used
as central molecules of the compared cluster. If no match is
found, the entire process is repeated, but applying the
inversion operation to the compared fragments. Finally, if
no match is found when using the inversion operation, the
two crystals are considered different.

The crystal comparator, namedMOLCRY, has been written
in C++ andPython37 as an extension of the Computational
Crystallography Toolbox.38 We have implemented in C++
those sections of the code that are computationally intensive,
and Python code is used to interface the different parts of
the code into a coherent application. Furthermore, Python
was used to develop a set of Web services to automatically
process and store the crystal structures produced by MGAC
(see below) into a user data base.

When the crystal comparator is used, it is possible to create
the list of then unique crystal structures with lowest energy
for a given set of MGAC runs. This is accomplished by
comparing any candidate to be added to the list against a
subset of the structures already in it. This subset of structures
is chosen such that their crystal structures do not differ in
energy by more than a given amount (by default, 16 kJ/mol)
of the new candidate structure. This limits the number of
comparisons needed per candidate, assuring that the time
required for building the list scales linearly with its size.

Web Services for Crystal Analysis.In order to automate
and standardize the process of classification and comparison
of the crystal structures, we have created Web services that
perform the comparison and classification of the structures.
These services provide also an interface to a user database
in which the crystal structures studied in our laboratory can
be maintained. These services were developed in Python
using representational state transfer or REST39 architecture
and theDjangoWeb framework.40 REST was implemented
on top of the hypertext transfer protocol or HTTP.41 This
procedure greatly reduces the human time required for the
analysis process, opening the possibility of using this
framework for high-throughput CSP work. A detailed
technical description of the implementation of these Web
services is given as part of the Supporting Information.

Results and Discussion
The crystal structure ofN-(2-dimethyl-4,5-dinitrophenyl)
acetamide has been recently used as a test case for flexible
molecules in the last Cambridge blind test, CSP2004.4 The
crystal structure of this molecule became one of the most
difficult to predict by all the crystal prediction methodologies

presented in the CSP2004. Actually, none of the 18
participants in the CSP2004 found its experimental structure
within the first three best candidates, which was the criterion
used in CSP2004 for success.

While the structure of this compound is now known,4 all
the calculations reported here have been done as if perform-
ing a blind test; that is, no information of the experimental
structure was used a priori in our calculations. A series of
20 MGAC runs for each of the 14 most common space
groups in organic moleculessP1, P1h, P21, C2, Pc, Cc, P21/
c, C2/c, P212121, Pca21, Pna21, Pbcn, Pbca, and Pnmas
were executed for structures with one and two molecules
per asymmetric unit. Each GA run produced 130 generations
with 30 crystal structures each, using a crossover probability
of 1.0 and a mutation probability of 0.001. This procedure
gave a total of 560 MGAC runs in which approximately 1.1
million crystal structures were evaluated for this molecule.
This required an approximated total of 80 000 CPU hours
from the computational resources that were available at the
CHPC Arches Metacluster42 and the NCSA Teragrid clus-
ter.43 The first 200 different structures, sorted by energy, were
extracted from the collection of all the structures (including
repeated ones) generated by the combined runs. When
MOLCRY running on a PC AMD Athlon 64 X2 2.2 GHz
was used, this entire selection process was done in 240 min.
From this list, 11 planar crystal structures were removed,
and the resulting 189 structures were analyzed for missing
symmetries usingPLATON’s ADDSYMalgorithm.16

In Table 1, we present the 20 crystal structures with the
lowest energy (the extended list of the 189 crystal structures
is provided as Supporting Information). The experimental
crystal structure was found ranked third by energy. Note that
according to the criterion used in the CSP blind tests this
should be considered a successful prediction. The comparison
between this structure and the experimental one is given in
Figure 1 and Table 2, showing the excellent agreement
between them. Figure 2 depicts the first three crystal
structures in Table 1 and their corresponding simulated
powder diffraction patterns. It is apparent that, in spite of
their close energies, they are quite different structures. This
makes the agreement between the third structure and the
experimental one even more remarkable. Clearly, our results
suggest that future experimental work in searching for these
polymorphs is highly desired.

It should be noted that the experimental crystal structure
was found in a search constrained to theP21 space group
with Z′ ) 2, and not in theP21/c with Z′ ) 1 as it is known
experimentally. The systematic absence of the experimental
structure in the search constrained to theP21/c space group
suggests that it is harder for the MGAC algorithm to find
this crystal structure in its own symmetry group than in a
less restricted search atP21. To try to better understand this
behavior, a separated series of 20 constrained GA runs in
P21/c with Z′ ) 1, P21 with Z′ ) 2, andP1 with Z′ ) 4 was
executed using MGAC. Note that in any of these three
searches it is possible to find the experimental crystal
structure. For each kind of search, we averaged the lowest
energy reached by each of them at each generation. These
average values and their corresponding standard deviations
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are shown in Figure 3. It is interesting to observe that the
optimizations withZ′ ) 2, while starting at a higher energy,
after 70 generations find better solutions than those withZ′
) 1. This is a remarkable behavior because it would be
expected that the increase in the dimension of the configu-
rational space forP21 would make it harder to find low-
energy structures. Clearly this is what happens in the case
of the search inP1, where the increased difficulty of finding
low-energy structures is clearly noticeable by its slow
convergence. MGAC is more efficient, at least for this
molecule, when there are two molecules per asymmetric unit,
and we speculate that this might indicate that the hypervol-
ume of the attractive basin of the minimum corresponding
to the experimental structure is much smaller for the search

constrained toP21/c and therefore less probable to find in
the P21/c configurational space than inP21.

The successful prediction of the experimental crystal
structure ofN-(2-dimethyl-4,5-dinitrophenyl) acetamide pre-
sented in this paper clearly contrasts with the results
presented at the CSP2004. First, none of 18 participants
found the experimental structure between the “top three”
predictions, and only four participants found it in their
extended list (up to 135 structures). Moreover, the best
predicted structure exhibits a larger deviation from the
experimental structure (RMS of 0.5 Å)4 than the best
structure reported here (RMS of 0.158 Å). This level of
agreement shows that both the search methodology and the
force field used in this study perform well for this molecule
and most likely in similar compounds.

The energy range of the 189 structures collected in the
final list is only ∼9.6 kJ/mol (Figure 4). This means that
there are∼20 crystal structures per kJ/mol, but as shown in
Figure 4, their distribution as a function of energy is not

Table 1. First 20 Lower-Energy Crystal Structures of N-(2-Dimethyl-4,5-dinitrophenyl) Acetamidea

ranking
a
Å

b
Å

c
Å R â γ

volume
Å3

space
group addsym

energyb

kJ mol

1 4.842 14.142 15.118 90.00 102.53 90.00 1011 P21/c 0.00
2 14.865 8.097 16.749 90.00 90.00 90.00 2016 Pbca 0.39
3 12.554 4.799 19.406 90.00 118.58 90.00 1027 P21 P21/c 1.14
4 4.849 9.659 11.953 109.99 96.84 96.94 514 P1h 1.82
5 8.262 12.971 9.590 90.00 95.65 90.00 1023 P21/c 2.03
6 10.247 11.064 9.470 90.00 105.71 90.00 1034 P21/c 2.38
7 5.030 13.115 15.861 90.00 107.79 90.00 996 P21/c 2.40
8 4.915 14.318 7.319 90.00 102.79 90.00 502 P21 2.40
9 8.105 16.598 8.179 90.00 112.34 90.00 1018 P21/c 2.83

10 3.955 16.617 7.809 90.00 98.58 90.00 508 P21 3.47
11 9.037 15.783 7.481 90.00 112.19 90.00 988 P21/c 3.59
12 8.422 9.536 15.112 90.00 121.81 90.00 1031 Pc P21/c 3.73
13 11.821 4.825 19.397 90.00 111.96 90.00 1026 P21 P21/c 3.76
14 7.324 14.988 9.524 90.00 99.36 90.00 1032 Pc P21/c 4.10
15 8.310 8.748 14.823 94.40 95.98 100.99 1047 P1h 4.17
16 8.420 8.814 14.460 86.82 82.59 79.64 1046 P1h 4.23
17 9.408 14.723 14.990 90.00 90.00 90.00 2076 P212121 4.46
18 4.773 14.640 15.048 90.00 92.83 90.00 1050 P21/c 4.58
19 9.201 7.995 14.330 90.00 100.15 90.00 1038 P21 4.59
20 4.828 14.921 14.448 90.00 95.12 90.00 1037 P21 4.67

a The third-ranked structure matches the experimental known structure for this molecule. b Relative energies with respect to the lower crystal
structure energy of -309.5077 kJ/mol.

Figure 1. Superposition between experimental (blue) and
predicted (orange) crystal fragments (16 molecules) of N-(2-
dimethyl-4,5-dinitrophenyl) acetamide crystal structures. The
total RMS for this superposition is 0.158 Å.

Table 2. Comparison between the Experimental and
Predicted Crystal Structures of
N-(2-Dimethyl-4,5-dinitrophenyl) Acetamidea

experimental predicted difference

a (Å) 12.569 12.554 -0.33%
b (Å) 4.853 4.799 -1.1%
c (Å) 19.672 19.406 -1.3%
R 90.00 90.00
â 119.95 118.58 -1.1%
γ 90.00 90.00
vol (Å3) 1040 1026 -1.3%
mRMS (Å) 0.076
RMS (Å) 0.158
a mRMS and RMS represent the best molecular and total root

mean square.
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homogeneous. Even in this narrow range of energies, it is
easy to appreciate the fast growth of the number of crystal
structures close in energy to the global minimum. This shows
that there are a large number of configurations with
significant low energies to be considered as acceptable
candidates for a minimum. Unfortunately, this can contribute
to a rapid stagnation of the GA population and suggest that
techniques like multiple independent runs (as used in this
work), multiple concurrent populations, or random im-
migrants are necessary to obtain the desired convergence of
the GA.

Conclusions
This paper reports the implementation and testing of a new
distributed computing environment for CSP based on our
previous work on GA. The environment allows the search
of crystal structures for either rigid of flexible molecules
without any restriction in the symmetry group or number of

molecules in the asymmetric unit. The computational envi-
ronment allows for the automatization of many processes,
like the generation of the molecule’s force field, execution
of multiple GA runs, and the comparison and archival of
relevant structures necessary for CSP studies.

As an example, we have shown that the method can predict
(using the CSP2004 criterion) the crystal structure ofN-(2-
dimethyl-4,5-dinitrophenyl) acetamide, which none of the
methods presented at CSP2004 were able to predict correctly.
Moreover, our predicted structure agrees much better with
the experimental one than any of those found in the extended
lists of the CSP2004 blind test.

Another important conclusion that can be drawn from the
difficulties encountered in predicting the crystal structure of
this molecule is that the prediction of the crystal structures
of flexible molecules requires advance search procedures
with extensive sampling capabilities as much as it requires

Figure 2. Comparison of the structures and powder diffraction spectra of the three lowest-energy structures of N-(2-dimethyl-
4,5-dinitrophenyl) acetamide found in this study.

Figure 3. Average of the lowest energy per generation for
20 runs in three settings: P21/c (Z′ ) 1), P21 (Z′ ) 2), and
P1 (Z′ ) 4).

Figure 4. Energy histogram of the first 189 different crystal
structures for the N-(2-dimethyl-4,5-dinitrophenyl) acetamide
molecule.
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greater accuracy in the modeling of the intra- and intermo-
lecular energies.44,45Using the computer framework described
here, we are performing more extensive tests of the MGAC
method including a larger set of molecules and different force
fields. The MGAC software will be available, under open-
source licensing agreements, later in 2007.

Acknowledgment. The Center for High Performance
Computing provided computer resources in the Arches cluster
for this project. The Arches cluster was partially funded by
a grant from the NIH-National Center for Research Resource
(# 1S10RR017214-01). Additional computer resources were
provided by NSF Teragrid MCA05T018 grant. The software
for this work used the GAlib genetic algorithm package,
written by Matthew Wall at the Massachussets Institute of
Technology. MBF greatly acknowledge financial support
from Universidad de Buenos Aires (UBACYTX035) and
form the Argentinean CONICET (PIP5119/05). We thank
two anonymous referees for providing critical comments on
how to improve the presentation of our results.

Supporting Information Available: We provide a
table with the data from the best 189 unique crystal structures
of N-(2-dimethyl-4,5-dinitrophenyl) acetamide found in this
study and the details of the implementation of Web services
for crystal structure analysis and archival. This information
is available free of charge via the Internet at http://
pubs.acs.org.

References

(1) Threlfall, T. L. Analysis of Organic Polymorphs A Review.
Analyst1995, 120, 2435.

(2) Dunitz, J. D.; Bernstein, J. Disapparing Polymorphs.Acc.
Chem. Res.1995, 28, 193.

(3) Erk, P.; Hengelsberg, H.; Haddow, M. F.; Gelder, R. v. The
Innovative Momentum of Crystal Engineering.CrystEng-
Comm2004, 6, 474.

(4) Day, G. M.; Motherwell, W. D. S.; Ammon, H. L.;
Boerrigter, S. X. M.; Valle, R. G. D.; Venuti, E.; Dzyab-
chenko, A.; Dunitz, J. D.; Schweizer, B.; Eijck, B. P. v.;
Erk, P.; Facelli, J. C.; Bazterra, V. E.; Ferraro, M. B.;
Hofmann, D. W. M.; Leusen, F. J. J.; Liang, C.; Pantelides,
C. C.; Karamertzanis, P. G.; Price, S. L.; Lewis, T. C.;
Nowell, H.; Torrisi, A.; Scheraga, H. A.; Arnautova, Y. A.;
Schmidt, M. U.; Verwer, P. A Third Blind Test of Crystal
Structure Prediction.Acta Crystallogr., Sect. B2005, 61, 511.

(5) Motherwell, W. D. S.; Ammon, H. L.; Dunitz, J. D.;
Dzyabchenko, A.; Erk, P.; Gavezzotti, A.; Hofmann, D. W.
M.; Leusen, F. J. J.; Lommerse, J. P. M.; Mooij, W. T. M.;
Price, S. L.; Scheraga, H.; Schweizer, B.; Schmidt, M. U.;
Eijck, B. P. v.; Verwer, P.; Williams, D. E. Crystal Structure
Prediction of Small Organic Molecules: A Second Blind
Test.Acta Crystallogr., Sect. B2002, 58, 647.

(6) Lommerse, J. P. M.; Motherwell, W. D. S.; Ammon, H. L.;
Dunitz, J. D.; Gavezzotti, A.; Hofmann, D. W. M.; Leusen,
F. J. J.; Mooij, W. T. M.; Price, S. L.; Schweizer, B.;
Schmidt, M. U.; Eijck, B. P. v.; Verwer, P.; Williams, D. E.
A Test of Crystal Structure Prediction of Small Organic
Molecules.Acta allogr., Sect. B2000, 56, 697.

(7) Bazterra, V. E.; Ferraro, M. B.; Facelli, J. C. Modified
Genetic Algorithm to Model Crystal Structures. I. Benzene,
Naphthalene and Anthracene.J. Chem. Phys.2002, 116,
5984.

(8) Bazterra, V. E.; Ferraro, M. B.; Facelli, J. C. Modified
Genetic Algorithm to Model Crystal Structures: III. Deter-
mination of Crystal Structures Allowing Simultaneous Mo-
lecular Geometry Relaxation.Int. J. Quantum Chem.2004,
96, 312.

(9) Gdanitz, R. J. Ab Initio Prediction of Possible Molecular
Crystal Structures. InTheoretical Aspects and Computer
Modeling of the Molecular Solid State; Gavezzotti, A., Ed.;
John Wiley and Sons: New York, 1997; p 185.

(10) Gavezzotti, A. Ten Years of Experience in Polymorph
Prediction: What Next?CrystEngComm2002, 4, 343.

(11) Gavezzotti, A. Are Crystals Structures Predictable?Acc.
Chem. Res.1994, 27, 309.

(12) Day, G. M.; Chisholm, J.; Shan, N.; Motherwell, W. D. S.;
Jones, W. An Assessment of Lattice Energy Minimization
for the Prediction of Molecular Organic Crystal Structures.
Cryst. Growth Des.2004, 4, 1327.

(13) Apostolakis, J.; Hofmann, D. W. M.; Lengauer, T. Derivation
of a Scoring Function for Crystal Structure Prediction.Acta
Crystallogr., Sect. A2001, 57, 442.

(14) Dzyabchenko, A. V. Method of Crystal-Structure Similarity
Searching.Acta Crystallogr., Sect. B1994, 50, 414.

(15) Chisholm, J. A.; Motherwell, W. D. S. COMPACK: A
Program for Identifying Crystal Structure Similarity Using
Distances.J. Appl. Crystallogr.2005, 38, 228.

(16) PLATON, A Multipurpose Crystallographic Tool; Utrecht
University: Utrecht, The Netherlands, 2005.

(17) Cerius2; Accelrys: San Diego, CA, 1997.

(18) Golberg, D. E.Genetic Algorithms in Search, Optimization
and Machine Learning; Addison-Wesley: New York, 1989.

(19) Niesse, J. A.; Mayne, H. R. Global Optimization of Atomic
and Molecular Clusters Using the Space-Fixed Modified
Genetic Algorithm Method.J. Comput. Chem.1997, 18,
1233.

(20) White, R. P.; Niesse, J. A.; Mayne, H. R. A Study of Genetic
Algorithm Approaches to Global Geometry Optimization of
Aromatic Hydrocarbon Microclusters.J. Chem. Phys.1998,
108, 2208.

(21) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D.
J.; Swaminathan, S.; Karplus, M. CHARMM: A Program
for Macromolecular Energy, Minimization, and Dynamics
Calculations.J. Comput. Chem.1983, 4, 187.

(22) MacKerell, A. D.; Brooks, J., B.; Brooks, C. L., III; Nilsson,
L.; Roux, B.; Won, Y.; Karplus, M. CHARMM: The Energy
Function and Its Parameterization with an Overview of the
Program. InThe Encyclopedia of Computational Chemistry;
Schleyer, P. v. R., Schreiner, P. R., Allinger, N. L., Clark,
T., Gasteiger, J., Kollman, P., Schaefer, H. F., III, Ed.; John
Wiley & Sons: Chichester, U. K., 1998; p 271.

(23) Bazterra, V. E.; Cuma, M.; Ferraro, M. B.; Facelli, J. C. A
General Framework to Understand Parallel Performance in
Heterogeneous Clusters: Analysis of a New Adaptive
Parallel Genetic Algorithm.J. Parallel Distrib. Comput.
2005, 65, 48.

(24) GNU BASH. http://www.gnu.org/software/bash/ (accessed
Oct 3, 2006).

208 J. Chem. Theory Comput., Vol. 3, No. 1, 2007 Bazterra et al.



(25) MPICH. http://www-unix.mcs.anl.gov/mpi/mpich (accessed
Oct 3, 2006).

(26) Wall, M. GAlib. http://lancet.mit.edu/ga/ (accessed Oct 10,
2006).

(27) The Apache Project: Xerces-C++ Parser. http://xml.
apache.org/xerces-c/ (accessed Oct 3, 2006).

(28) W3C Extensible Markup Language (XML). http://www.
w3.org/XML/ (accessed Oct 3, 2006).

(29) Wang, J. Antechamber. http://amber.scripps.edu/antechamber/
antechamber.html (accessed Oct 3, 2006).

(30) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.;
Case, D. A. Development and Testing of a General Amber
Force Field.J. Comput. Chem.2004, 25, 1157.

(31) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-
Behaved Electrostatic Potential Based Method Using Charge
Restraints for Deriving Atomic Charges: The RESP Model.
J. Phys. Chem.1993, 97, 10269.

(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross,
J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,
S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Gonzalez, C.; Pople, J. A.Gaussian 03,
revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

(33) Gelder, R. d.; Wehrens, R.; Hageman, J. A. A Generalized
Expression for the Similarity of Spectra: Application to
Powder Diffraction Pattern Classification.J. Comput. Chem.
2001, 22, 273.

(34) Karfunkel, H. R.; Rohde, B.; Leusen, F. J. J.; Gdanitz, R.
J.; Rihs, G. Continuous Similarity Measure between Non-
overlapping X-ray Powder Diagrams of Different Crystal
Modifications.J. Comput. Chem.1993, 14, 1125.

(35) Kabsch, W. A Solution for the Best Rotation to Relate Two
Sets of Vectors.Acta Crystallogr., Sect. A1976, 32, 922.

(36) Kabsch, W. A Discussion of the Solution for the Best
Rotation to Relate Two Sets of Vectors.Acta Crystallogr.,
Sect. A1978, 34, 827.

(37) Python Programming Language. http://www.python.org/ (ac-
cessed Oct 3, 2006).

(38) Computational Crystallography Toolbox CCTBX. http://
cctbx.sourceforge.net/ (accessed Oct 3, 2006).

(39) Fielding, R. T. REST. http://www.ics.uci.edu/∼fielding/pubs/
dissertation/top.htm (accessed Oct 3, 2006).

(40) Django. http://www.djangoproject.com/ (accessed Oct 3,
2006).

(41) W3C: HTTP. http://www.w3.org/Protocols/ (accessed Oct
3, 2006).

(42) Arches Metacluster. http://www.chpc.utah.edu/docs/manuals/
user_guides/arches/ (accessed Oct 3, 2006).

(43) NCSA TeraGrid IA-64 Linux Cluster. http://www.
n c s a . u i u c . e d u / U s e r I n f o / R e s o u r c e s / H a r d w a r e /
TGIA64LinuxCluster/ (accessed Oct 3, 2006).

(44) Eijck, B. P. v.; Mooij, W. T. M.; Kroon, J. Ab Initio Crystal
Structure Predictions for Flexible Hydrogen-Bonded Mol-
ecules. Part II. Accurate Energy Minimization.J. Comput.
Chem.2001, 22, 805.

(45) Ouvrard, C.; Price, S. L. Toward Crystal Structure Prediction
for Conformationally Flexible Molecules: The Headaches
Illustrated by Aspirin.Cryst. Growth Des.2004, 4, 1119.

CT6002115

A Distributed Computing Method J. Chem. Theory Comput., Vol. 3, No. 1, 2007209


