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Abstract
9

This paper presents a general model to define, measure and predict the efficiency of applications running on heterogeneous parallel
computer systems. Using this framework, it is possible to understand the influence that the heterogeneity of the hardware has on the11
efficiency of an algorithm. This methodology is used to compare an existing parallel genetic algorithm with a new adaptive parallel model.
All the performance measurements were taken in a loosely coupled cluster of processors.13
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction17

When developing parallel applications, performance mea-
surements of a given algorithm on a computational platform19
are of great importance. Through these measures, it is pos-
sible to understand how the application interacts with the21
computer system exposing not only the algorithm’s limita-
tions, but also suggesting possible improvements that may23
lead to a better utilization of the underlying hardware.

Numerous publications have discussed the importance of25
the parallel performance measurement and there are a num-
ber of different metrics defined for this purpose [8]. When27
evaluating the performance of any parallel application the
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most important parameter is the elapsed time (wall time)
which measures how long a user has to wait for the pro- 31
gram to complete its execution. From the measurements
of the elapsed time, other metrics can be defined with the 33
aim of measuring more subtle features that may affect its
parallel performance. Common machine independent per- 35
formance measurements are the speedup [4], the scaled
speedup (where the problem size increases with the number 37
of processors) [11] and the serial fraction [13]. For parallel
applications, the elapsed time accounts not only for the 39
computational work but also for any contributions arising
from synchronization, communication and I/O. These fac- 41
tors have been identified as the barriers to obtain perfect
scalability in homogeneous parallel systems. When the 43
algorithm is used in a heterogeneous parallel system, the
diversity of the hardware adds additional constrains that 45
degrade even more the scalability of the application. The
purpose of this paper is to present a framework in which 47
this degradation can be quantified.

In the last 10 years, heterogeneous distributed computer 49
resources have become a reliable and low cost solution to
the problem of massive computation. For example, loosely 51
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coupled clusters of processors [5] are becoming increasingly1
popular in most high performance computer centers. More
recently, developments in GRID infrastructure [5,10] are3
generating the protocols necessary to share computational
resources between geographically separated centers. In this5
context, many different computer systems with diverse num-
ber of processors, speeds, communication switches, I/O sub-7
system and OSs are loosely connected through high latency
networks making the diversity of resources an important9
factor in the overall performance of parallel programs ex-
ecuting in these environments. Unfortunately, most of the11
existing performance metrics have been applied to homoge-
neous parallel environments. Only a few reports have been13
published in the literature to address parallel performance in
heterogeneous environments [14,16–18,20]. These reports15
have introduced the concept of heterogeneity, defined by
the differential loads on a homogeneous group of machines17
[21], or by the differences between the resources associated
to the participating machines [3].19

The main objective of this paper is to describe a gen-
eral framework to understand parallel efficiency of hetero-21
geneous systems in which, as it is common practice in sci-
entific computing, the nodes are dedicated to a particular job23
running one program. Our performance evaluation frame-
work follows the concepts proposed in Ref. [9], depending25
on two models, one for the heterogeneous computer system
and the other for the algorithm running in that environment.27
But in contrast with the work in Ref. [9], which focus on the
sequential performance of heterogeneous architectures, we29
focus on parallel systems with homogeneous architectures,
i.e. computational clusters, for which the diversity arises31
from the different clock rate or performance of the different
nodes in the cluster.33

In Section 2, general models for a heterogeneous com-
puter system and for a parallel algorithm are introduced.35
Both models are combined in Section 3 to define perfor-
mance metrics for heterogeneous computers. The concept37
of idle time is introduced in Section 4 to take into account
the effects of interprocessor communication and synchro-39
nization. In the Section 5, we describe a new Parallel Adap-
tive Genetic Algorithm which uses a global parallelization41
scheme [2] designed to maximize load balance in heteroge-
neous environment by dynamically adjusting the processor43
loads. We demonstrate that this algorithm is a viable alter-
native to the Cantú-Paz algorithm [6,7] to overcome the per-45
formance limitations predicted by our model when it is used
in a heterogeneous system. In Section 6, the performance47
measurement of the new algorithm in a homogeneous and a
heterogeneous environment are compared showing that the49
achieved measurements agree well with the predictions of
our model.51

2. Heterogeneous computer and algorithm models

A heterogeneous computer system composed by a col-53
lection of n-processors with different speeds and intercon-

nected by a network will be described by a configuration 55
Cn given by {v1, . . . , vn} where vi is the relative speed of
the ith processor, i.e. the number of operations that a pro- 57
cessor can complete in a unit of time. Following Ref. [9]
we assume that the processors are nondecomposable, that 59
is, multiple algorithms cannot be executed on the same pro-
cessor simultaneously. This assumption is based on the fact 61
that in general, heterogeneous systems are operated as ca-
pacity computing resources in which some kind of scheduler 63
assigns processors to different jobs according to prescribed
rules that try to balance resource allocation while maximiz- 65
ing the resource utilization [12].

The network communications can be specified by the 67
pair-wise latency and the bandwidth between processors [9].
Since the network performance depends on many factors 69
and it is usually quite difficult to measure, in our model we
focus on the effects of the heterogeneity of the hardware and 71
use the concept of idle time Tid to take into account these
factors. Tid is defined as the amount of time that a proces- 73
sor is not executing an instruction of the running algorithm.
This quantifies the loss of performance due to the combined 75
effects of network latency and synchronization delays.

We will represent a parallel algorithm requiring K inde- 77
pendent computational operations running on n processors
by An(K). When this algorithm runs in the system Cn, it 79
distributes either by static or dynamic mechanisms the K

operations among the n available processors. Under these 81
circumstances, the elapsed time of a parallel program will
depend on the assigned processors for the job and the algo- 83
rithm strategy to distribute K operations in that particular
group of processors. In this paper, we present a stochastic 85
model of performance that takes into account the different
strategies that an algorithm can present under different sys- 87
tem loads. The distribution of K operations on the paral-
lel system is defined by the probabilities set {p1, . . . , pn}, 89
which gives the frequency at which the algorithm assigns
operations to the processor i. 91

3. Parallel performance metrics

3.1. Total and parallel elapsed time 93

In addition to the common factors that affect performance
in homogeneous environments, the parallel performance of 95
an algorithm on a heterogeneous computer system depends
on how well the distribution of the work required by the al- 97
gorithm match the ability of the processors to perform these
tasks. We will designate as a parallel system the combina- 99
tion of an heterogeneous computer system and a parallel
algorithm �n = {Cn; An(K)}. 101

For simplicity, we will consider first the performance
model of an ideal algorithm for which the communication 103
and synchronization times are negligible. The effects of these
delays will be included later using the concept of idle time. 105
This approach allows to clearly separate the performance
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issues associated with heterogeneity from those due to net-1
work and synchronization delays.

For an algorithm An(K) running Cn, the average elapsed3
time, Ti , spent on the ith processor of Cn is

Ti = Kpi/vi, (1)5

where pi is the frequency at which the algorithm assigns
operations to the processor i and vi is its relative speed.7

Always there is a processor of Cn that takes the longest
time to run the Kpi operations assigned to it. Therefore to9
complete all the steps in An(K), we have to wait until this last
processor finishes its tasks. The time used by this processor11
determines the elapsed time necessary to run An(K) on Cn.
Therefore for the parallel system �n = {Cn; An(K)}, the13
elapsed time is given by

Tn = max Ti = K max{pi/vi}, (2)15

while the total computer (CPU) time, T, used by the algo-
rithm in all the nodes that have been assigned to the job is17
the sum of all Ti

T =
∑

i

Ti = K
∑

i

pi/vi . (3)
19

The most important factor determining the performance
of an algorithm in heterogeneous parallel systems is how21
efficiently the algorithm uses the available resources. The
distribution set {p1, . . . , pn} determines this efficiency. The23
following two propositions give the distributions that max-
imize the efficiency of the algorithm and determine the re-25
lationship between the elapsed time and the total computer
time for an arbitrary parallelization strategy.27

Proposition 1. Given a parallel system Cn and a parallel
algorithm An(K) with a probability set pi = vi/

∑
k

vk ,
29

for any other algorithm Bn(K) with a different probability
set, the execution of the algorithm Bn(K) requires a longer31
parallel elapsed time than An(K) (see proof in appendix).

Proposition 2. Given a parallel computer Cn and a parallel33
algorithm An(K), it is always true that T �Tn �T/n. The
equalities T = Tn and Tn = T/n are true when pi = �ij35
for a given 1�j �n and when pi = vi/

∑
k

vk , respectively

(see proof in appendix).37

In other words, Proposition 1 states that the most efficient
algorithm has a probability set proportional to the speed of39
processors, pi ∝ vi . In this way, the algorithm compensates
for the heterogeneity of the parallel system by sending more41
operations to the faster processors. For example, given a
parallel computer Cn and a parallel algorithm An(K) with43
a probability set pi = vi/

∑
k

vk , it is easy to prove that the

parallel elapsed time is Tn = K/
∑
i

vi , which corresponds
45

to executing the algorithm on the parallel computer with47

a compute capacity equivalent to a serial computer with
the effective speed given by the sum of speeds of all the 49
processors. This corresponds to the case of perfect linear
scaling for homogeneous parallel systems. 51

The second proposition states that in the optimal distribu-
tion the total computer time is equally distributed on all the 53
processors, i.e. all the processors run the same amount of
time regardless their different speeds. In the other extreme 55
when only one processor is used, the total computer time is
equal to the parallel elapsed time. 57

3.2. Speedup and efficiency in a heterogeneous system

A very common performance metric in homogeneous par- 59
allel systems is the speedup [1,3,4,8,9], which measures the
decrease in the elapsed time between the parallel and serial 61
execution of the program. In the case of heterogeneous sys-
tems, it is possible to extend this definition comparing the 63
elapsed time of the parallel execution with the serial execu-
tion on the fastest processor. Given a parallel computer Cn 65
and algorithm An(K) the speedup is the ratio between the
elapsed time (T1,min) of the best serial version of An(K) on 67
the fastest processor in Cn and the parallel elapsed time [1]:

s = T1,min

Tn

. (4) 69

This definition coincides with the definition of speedup
in homogeneous systems, when all the processors have the 71
same speed. Other definitions are possible based on the av-
erage processor speed of the available processors, but the 73
selection of the base timing does not change the results pre-
sented here. Considering that the best serial version of the 75
algorithm An(K) has to complete K operations in the faster
processor, taking an elapsed time of T1,min = K/ max{vi}, 77
the speedup for a heterogeneous system can be written as

s = 1

max{vi} max{pi/vi} . (5) 79

The maximal and minimal values for the speedup are given
by the following proposition. 81

Proposition 3. Given any parallel computer Cn and any
parallel algorithm An(K), it is always true that 83

min{vj }
max{vi} �s� 1

max{vi}
∑

k

vk

and s = min{vj }
max{vi } if pi = �ij where j is the index of the slowest 85

processor and s = 1
max{vi }

∑
k

vk if pi = vi/
∑
k

vk , i.e. for

the most efficient probability set (see proof in appendix). 87

The most important consequence of this proposition is
that there is a maximum speedup that can be achieved in a 89
heterogeneous environment, even when no delays are added
by communication or synchronization operations. This max- 91
imum speed up depends only on the distribution of the Cn
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processor speeds. We can express this maximum possible1
speedup as

smax = 1

max{vi}
∑

k

vk. (6)
3

All the performance information of an application can be
derived by comparing the actual speedup to the value of5
smax. This comparison can be done using the ratio between
these two speedups:7

e = s

smax
= 1

max{pi/vi} ∑
i

vi

. (7)

In homogeneous systems, the quantity defined in Eq. (7)9
is known as the efficiency of the algorithm, because in these
systems the number of processors determines the maximal11
speedup. Therefore, we propose Eq. (7) as a general def-
inition of the efficiency for both heterogeneous and ho-13
mogeneous systems. However, neither the speedup nor the
efficiency values in heterogeneous systems are as intuitive15
as in the case of homogeneous systems. To make the com-
parison between the actual speedup and the maximum ob-17
tainable speedups more intuitive is useful to introduce the
concept of effective number of processors, given by19

neff = T

Tn

= 1

max{pi/vi}
∑

k

pk/vk. (8)

The effective number of processors can be interpreted as21
a measure of how many processors in Cn have been used
efficiently by the algorithm An(K), after taking into account23
that this effectiveness is already reduced by the heterogeneity
of the system. From Proposition 2, follows that neff has the25
following properties:
(i) 1�neff �n,27

(ii) neff = 1 when pi = �ij for a given 1�j �n,
(iii) neff = n when pi = vi/

∑
vk .29

That is, neff has a value between 1 and the number of pro-
cessors, being equal to one if and only if one processor is31
used by An(K) and equal to n when the algorithm An(K)

uses the processors with a probability set pi = vi/
∑
k

vk ,
33

which corresponds to the most efficient use of the system in
accordance with the values taken by the speedup. The effec-35
tive number of processors and the speedup of the system are
related in the next proposition. Note that neff can take also37
values larger than n when the decomposition of the program
in smaller parts leads to the removal of memory bottlenecks39
due to improve utilization of main or cache memories. This
phenomena has been observed in other studies and it is com-41
monly known as super-linear speed up [15].

Proposition 4. Given any parallel computer Cn and any43
parallel algorithm An(K), it is always true that s�neff , and
the equality s = neff is true if and only if vi are all equal,45
i.e. homogeneous computer (see proof in appendix).

The interpretation of this statement is simple: if an algo- 47
rithm does not use all the processors efficiently (low neff ),
then it will not be possible to reach high levels of speedup. 49
When the algorithm uses the processors in the most effective
way achieving the maximum possible speed up, neff reaches 51
the value of n. This makes neff a convenient and intuitive
property to evaluate the effectiveness of an algorithm as it 53
follows closely our ideas for homogeneous systems.

3.3. Diversity of configuration 55

Many metrics to measure the diversity in heterogeneous
systems have already been proposed, for example see Ref. 57
[19]. The problem is that these metrics cannot be related an-
alytically to the performance of the parallel system. There- 59
fore, we would like to propose a definition of diversity that
describes the variation of the speed of the processors but at 61
the same time gives an idea of the maximum speedup that
can be reached by the parallel system. The maximal speedup 63
can be written as

smax = 1

max{vi}
∑

k

vk or smax = n

1 + dconf
, (9)

65

where

dconf = vmax − v̄

v̄
(10) 67

and v̄ is the average of the processors speed in Cn. The mag-
nitude dconf is zero if and only if the system is homogeneous 69
and if it is not, the maximal speedup can be calculated from
the Eq. (9). For these reasons, we define dconf as our metric 71
of the hardware diversity in Cn, calling it diversity of the
configuration. 73

3.4. Example of a parallel system and its metrics

In this section, we provide an example of the behavior 75
of the different metrics given above for a simple parallel
computer consisting of two processors. The speeds of the 77
processors are {v1 = v, v2 = hv, h�1} and the running
algorithm has a probability set given by p1 = p and p2 = 79
1 − p. The diversity of the configuration and probability set
are controlled by the parameters h and p. The metrics for 81
this parallel system are

dconf = h − 1

h + 1
, (11) 83

s =
{

(hp)−1 for p�(1 + h)−1,

(1 − p)−1 for p < (1 + h)−1,
(12)

neff =
{

1 + (1 − p)(hp)−1 for p�(1 + h)−1,

1 + hp(1 − p)−1 for p < (1 + h)−1.
(13)

85

Fig. 1 shows the shape of the speedup and the effective
number of processors for four diversities ranging from 0 to 87
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Fig. 1. Speedup and effective number of processors for a system of two processors with nonunity speed relationship.

0.33, corresponding to h ranging from 1.0 to 2.0, respec-1
tively.

As discussed above, for the homogeneous system the val-3
ues of the effective number of processors and the speedup are
the same, showing that the maximum efficiency is obtained5
when the workload is evenly distributed between the two
processors. In heterogeneous systems, when the diversity7
precludes the speedup to be larger than smax = (1 + h)h−1,
the effective number of processors still reaches the maxi-9
mum number of processors in the case of the most effec-
tive distribution of workloads. Comparison of the values at11
which the maximum speedup and neff are achieved, shows
a shift of the maximum towards a distribution for which the13
faster processor is used more often.

As an example, for the case of a diversity of 0.33 we15
can see that an optimal algorithm has p = 1/3 having a
speedup 1.5. In the same system an algorithm distributing17
the job equally between the two processors (p = 1/2) will
have a speedup of 1.0 because this probabilities set makes19
inefficient use of this highly heterogeneous environment.

4. Idle time21

In the previous section, we have expressed the parallel
performance metrics based on parallel elapsed time without23
taking into account the idle time incurred by the processors
due to communication and synchronization tasks. A network25
and communication model is necessary to fully understand
the impact of the idle time on the performance model, here27
we have simplified our model by introducing an average

idle time. We define this average idle time as the difference 29
between the parallel elapsed time calculated in Section 3
and the measured total parallel elapsed time, Ttot 31

Tid = Ttot − Tn. (14)

Using the value of total parallel elapsed time from Eq. 33
(4), the calculation of the system speedup is straightforward

stot = T1,min

Ttot
= T1,min

Tn + Tid 35

or

stot = s

1 + Tid/Tn

. (15) 37

From Eq. (14), it is apparent that the idle time reduces
the speedup of the parallel system by sc = s(1 + f )−1. 39
Therefore, the effects of the idle time on the performance
can be interpreted as an additive increment to the diversity 41
of the system given by

did = Tid/Tn, (16) 43

which is the ratio between the idle time and the parallel
execution time. In the Section 6, we show that from a given 45
distribution {pi} of the algorithm and a total elapsed time
Tn, it is possible to determine the relative contributions to 47
the total diversity due to the processor heterogeneity from
those arising from the idle time. 49
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5. The adaptive parallel genetic algorithm1

5.1. Introduction

The genetic algorithms are a family of search techniques3
rooted on the ideas of Darwinian biological evolution. These
methods are based on the principle of survival of the fittest.5
Considering that each string or genome represents a trial
solution candidate of the problem, at any generation the7
genomes or “individuals” compete with each other in the
population for survival and produce off-springs for the next9
generation by prescribed propagation rules. Operators ana-
logue to crossover, mutation and natural selection are em-11
ployed to perform a search able to explore and learn the
multidimensional parameter space and determine which re-13
gions of that space provide good solutions to the problem.

The fitness of the individual is given in general by a func-15
tion that is, called the objective function. An example of this
function can be the energy of a crystal or of an atomic clus-17
ter, where the objective is to find the structures with minimal
energy. In many practical applications, the evaluation of the19
objective function requires large amounts of computer time,
and it is generally the limiting factor on the problem size21
that can be solved. A possible solution to this problem is to
use a global parallelization of the genetic algorithm. Such23
parallelization scheme relies on the simultaneous evaluation
of the fitness of the individuals belonging to the same pop-25
ulation in every generation.

A well-known example of a parallel genetic algorithm was27
implemented by Cantú-Paz [7]. This algorithm, which was
designed for a homogeneous parallel computer system, dis-29
tributes the same number of individuals per processor. There-
fore, a large fluctuation in performance can be expected in31
heterogeneous environments. Using Eq. (5) the maximum
possible speedup for this algorithm is given by33

s = n
min{vi}
max{vi} , (17)

which for typical clusters with processors speeds covering35
a factor 4 could be as low as 0.25n. To correct this prob-
lem, while retaining the static distribution of workloads, it37
is possible to use runtime information of the heterogene-
ity of the processors to make the distribution of individuals39
nonhomogeneous. This approach is highly undesirable be-
cause it requires that the program interacts with the resource41
management software, which contains the speeds for the pro-
cessors allocated to the job. Because there are no standard43
interfaces for supplying this information, the implementa-
tion of this strategy results in a nonportable program. This45
is an undesirable property for scientific applications that are
supposed to run on numerous systems. The second alterna-47
tive is to modify the algorithm into an adaptive scheme in
which the processor loads are assigned dynamically during49
the run of the job. We had adopted this last scheme that is,
described in the next section.51

Client NClient 2Client 1

Server

Fig. 2. Basic diagram of the Adaptive Parallel Genetic Algorithm.

5.2. Structure of the Adaptive Parallel Genetic Algorithm

The Adaptive Parallel Genetic Algorithm was imple- 53
mented as an effective alternative for heterogeneous en-
vironments, since it automatically changes the number 55
of individuals to be evaluated on each processor depend-
ing on the speed at which the individuals are processed 57
in the nodes. This new algorithm was programmed us-
ing the GALib library (http://lancet.mit.edu/ga/) for the 59
GA implementation and the MPICH library (http://www-
unix.mcs.anl.gov/mpi/mpich/) for the intercommunication 61
between processors.

The algorithm uses a server–client blocking message ar- 63
chitecture, in which the server node is responsible for the
distribution of work and the evolution of the genetic algo- 65
rithm. The client nodes evaluate the fitness function for the
individuals and return their values to the server node (see 67
Fig. 2). The algorithm is divided into two units, the client
program and the server program. Communication between 69
processors is necessary for distributing and/or balancing the
evaluation of a population over the nodes. Note, that this 71
implementation is useful only when the evaluation time is
much larger than the communication time between proces- 73
sors.

5.3. Client program 75

The client program has three states that are described in
the following sub sections. 77

5.3.1. Initialization mode
The client waits for a YesWork signal to switch to active 79

mode.

5.3.2. Active mode 81
When a client node is not working, it sends a message to

the server requesting a new individual (WorkRequest signal), 83
the server receives the message and the worker waits for the
server’s response (YesWork or NoWork signal). 85

If the client receives a YesWork signal, it waits until the
information for the next individual is received and then eval- 87
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uates the fitness function for the individual. When this eval-1
uation is finished, the client sends a WorkEnd signal to the
server and sends the results of the evaluation. If the client re-3
ceives a NoWork signal, it switches to sleep mode and waits
until a YesWork or a Shutdown signal is received.5

5.3.3. Sleep mode
When a YesWork is received in sleeping mode, the node7

switches to active mode beginning the active cycle again
sending a WorkRequest signal. However, if a Shutdown is9
received, the client shutdowns by itself and stops receiving
any more signals. This signal is usually sent when algorithm11
finishes.

5.4. Server program13

The server program has two states that are described in
the following sub sections.15

5.4.1. Initialization mode
The server sends a YesWork signal to all the worker nodes17

that have been assigned to the job.

5.4.2. Active mode19
In active mode, the server receives work requests from the

clients. The server’s goal is to evaluate a complete generation21
of individuals by spreading the workload over the clients.
The server starts by sending an individual to every client23
from which it received a WorkRequest signal. If there are
no more individuals to evaluate, the server sends a NoWork25
signal to the client that requested the work. Then, that client
passes to sleep mode and stops asking for more work. The27
switch of the clients to sleep mode prevents the clients from
overloading the server with WorkRequest signals when the29
evaluation of a population is almost complete. When the
algorithm completes the entire evolution the server sends to31
every node the Shutdown signal and exits the program.

Using this scheme a fast processor will request more work33
than a slow one and as a result, the algorithm will send more
individuals to the faster processors adapting the algorithm35
to the heterogeneity of the system.

6. Performance measures37

6.1. Measurements on a homogeneous system

We first measured the performance of the algorithm in a39
homogeneous environment. The objective of this measure-
ment was to test the algorithm adaptation in the simplest41
environment possible and to measure the effects of idle time
associated with the loading and synchronization processes.43

An objective function with variable evaluation times of
the 0.5, 1.0, 4.0 s was used to test the algorithm. These45
measurements were done on a Beowulf Linux Cluster built
with AMD Athlon T-Bird 1333 MHz processors and with47
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Fig. 3. Total speedup vs. number of clients for a homogeneous run of the
Adaptive Parallel Genetic Algorithm. Dashed lines correspond to different
objectives functions times. The full line represents the linear speedup.

a network latency of approximately 5 ms when using the
MPICH libraries. The number of generations was 10 and 49
the population size was 32 individuals with a probability for
mutation and crossover of 0.001 and 0.9, respectively. The 51
algorithm was run with different number of processors: 2, 3,
5, 9, 17, where in each case one of the processors was used 53
as the server. All the measurements were repeated 10 times,
i.e. 100 generations, and the resulting average was used in 55
the calculation of the speedup. The calculations of standard
deviations and other statistical parameter of the distribution 57
shows that the results presented are statistically significant.
Fig. 3 shows the measured speedup for the algorithm vs. the 59
number of clients for different evaluation times of the fitness
function. It is important to note that when the number of 61
clients is one, the algorithm has two nodes, one running as a
server and the other running as a client. This is equivalent to a 63
serial version of the program because there is only one client
evaluating the fitness of the individuals. This serial version 65
is not the most efficient algorithm because the elapsed time
is given by the time required to evaluate the individuals plus 67
an idle time due to the communication between these two
processors. Comparing the case with zero clients (best serial 69
version) and one client, it is easy to observe that the amount
of extra time required in the case of one client results in a 71
speedup smaller than one.

The effectiveness of the algorithm increases for fitness 73
functions requiring longer compute times and decreases with
the number of individuals. This is because when the num- 75
ber of individuals is several times the number of proces-
sors, the algorithm has more individuals per processor to 77
be distributed making the loading process more efficient.
Furthermore, it is expected that the communication and the 79
synchronization time increase when the number of clients
increases. For example, the best speedup is 13.8 for the eval- 81
uation of a 4 s objective function reaching an efficiency 0.86
with 16 clients, while in the case that eight clients and the 83
same objective function, the algorithm reaches a speedup
7.3 that equates to a higher efficiency of 0.91. 85
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Fig. 4. Normalized speed and processors probabilities for the Adaptive
Parallel Genetic Algorithm on a heterogeneous computer.

6.2. Measurements on a heterogeneous system1

The measurement on a heterogeneous system was done on
a Beowulf Linux Cluster that contains ∼ 400 processors with3
great variation in the clock speeds (400–1933 Mhz). For this
purpose, we run the algorithm one time over 10 generations5
using 32 clients (33 processors) with a population size of
128 individuals. This is equivalent to the case of eight clients7
evaluating 32 individuals in the population discussed the
last section, in both cases there is a relationship of four9
individuals per client.

The speed of the processors used in running this job was11
calculated measuring the total time used in the evaluation
of the fitness function divided by the number of individuals13
assigned to each processor. Fig. 4 shows the normalized
speed, defined by vi/

∑
k

vk of this particular run. We express
15

the processor speeds using the normalized speed because
they are dimensionless quantities that are proportional to17
the probability set of the most efficient algorithm in the
heterogeneous environment (see Section 3). The diversity of19
configuration in this case is 0.96 corresponding to a maximal
speedup of ∼ 16.3. As consequence of Eq. (17), the maximal21
speedup that the Cantú-Paz algorithm could achieve in this
environment is 8.5 having an efficiency of 0.52.23

The probabilities set for the algorithm can be evaluated
from the fraction of individuals assigned to each processor.25
Fig. 4 compares the normalized speeds and the measured
probabilities for the algorithm. The differences between the27
normalized speed and the probabilities is quite small, sug-
gesting a nearly optimal workload. Using Eq. (5) the cal-29
culated speedup for the algorithm is ∼ 15.3, ignoring the
idle time. The parallel elapsed and idle time for this run was31
measured Tn ∼ 361 s and Tid ∼ 37.8 s resulting in a 10%
reduction of the speedup for a total of 13.9, Eq. (15). There-33
fore, the efficiency of the algorithm is 0.87, very similar
to the values of 0.91 observed for the homogeneous case,35
showing a much higher efficiency that would be reached by
the Cantú-Paz algorithm.37

7. Conclusions

This paper provides a detailed discussion of the effects 39
that hardware heterogeneity has on degrading parallel per-
formance. The paper presents a framework in which it 41
is possible to define a set of intuitive metrics that facili-
tate the performance analysis of parallel programs running 43
on heterogeneous systems. These metrics also allow the
differentiation between the factors leading to performance 45
degradation associated with the heterogeneity of the hard-
ware from those more widely recognized, arising from com- 47
munications and synchronization delays. Finally, the paper
describes a new adaptive implementation of a global parallel 49
genetic algorithm. This algorithm is able to adapt to hetero-
geneous environment showing a efficiency of 0.87 that can 51
be compared with the maximum possible efficiency of 0.52
by the traditional Cantú-Paz parallel genetic algorithm. 53
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Appendix 55

Proposition 1. Given a parallel system Cn and a parallel
algorithm An(K) with a probability set pi = vi/

∑
k

vk ,
57

for any other algorithm Bn(K) with a different probability
set, the execution of the algorithm Bn(K) requires a longer 59
parallel elapsed time than An(K).

Proof. In the case of algorithm An(K), the parallel elapsed 61
time for this algorithm is Tn(A) = K/

∑
vi . Any other

probability set associated to an algorithm Bn(K) can be 63
written as p(B) = vi/

∑
vk + �i . Where the �i are incre-

ments on the probability sets. Because p(A) �= p(B), there 65
is a set of {�i : �i �= 0} where

∑
�i = 0 due to the nor-

malization condition and therefore there is no empty set of 67
{�i : �i > 0}. Now the elapsed time for every processor in
Bn(K) is Ti = K/

∑
vi +K�i/vi so the parallel execution 69

time for Bn(K) is given Tn(B) = Tn(A) + K max{�i/vi}
but we know that max{�i/vi} > 0 so Tn(B) > Tn(A), that 71
is, the condition we want to prove. �

Proposition 2. Given a parallel computer Cn and a parallel 73
algorithm An(K), it is always true that T �Tn �T/n. The 75
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equalities T = Tn and Tn = T/n are true when pi = �ij for1
a given 1�j �n and when pi = vi/

∑
k

vk , respectively.

Proof. (i) By definition Tn is the maximum Ti, T = Tn +3 ∑
Ti �=Tn

T , but because the rest of the Ti different than Tn are

always Ti �0, therefore T �Tn.5
(ii) By definition Ti �Tn therefore

∑
Ti �nTn or

T �nTn.7
(iii) Replacing pi = �ik in the definition of T and Tn can

be verified that T = Tn.9
(iv) Replacing pi = vi/

∑
vk in the definition of T and

Tn we have11

T =
∑ Kpi

vi

= nK/
∑

vi = K/v̄

Tn = K∑
vi

= K

n�̄
= T

n
. �

Proposition 3. Given any parallel computer Cn and any13
parallel algorithm An(K), it is always true that

min{vj }
max{vi} �s� 1

max{vi}
∑

k

vk
15

and s = min{vj }
max{vi } if pi = �ij where j is the index of the slowest

processor and s = 1
max{vi }

∑
k

vk if pi = vi/
∑
k

vk , i.e. for
17

the most efficient probability set.

Proof. (i) First, pi/vi �1/vi because 0�pi �1, therefore19
max{pi/vi}�1/ min{vi}. Replacing this inequality in the
definition Eq. (5) we have:21

s� min{vi}
max{vi}

by definition this is possible if pi = �ik where k is the index23
of the slowest processor.

(ii) Using the Proposition 1, the minimum parallel elapsed25
time is given when pi = vi/

∑
vk , but this is precisely the

condition where the algorithm reach the maximum speedup.27
Therefore, the maximum speedup is reached when pi =
vi/

∑
vk . Replacing this value in the Eq. (5) we obtain29

s = 1

max{vi}
∑

k

vk. �

Proposition 4. Given any parallel computer Cn and any31
parallel algorithm An(K), it is always true that s�neff , and
the equality s = neff is true if and only if vi are all equal,33
i.e. homogeneous computer.

Proof. It is easy to see that: 35
∑

pi/vi �
∑

pi/ max{vk} or
∑

pi/vi �1/ max{vk}
replacing this inequality in the definition of speedup Eq. (5) 37
we have

s�
∑

pi/vi

max{pk/vk} that is, s�neff 39

by the definition of the neff in Eq. (7). �
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