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Modified genetic algorithms to model cluster structures in medium-size silicon clusters
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This paper presents the results obtained using a genetic algai@#mto search for stable structures of
medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster
structures, which are further optimized using density-functional theory. For small clusters our results agree well
with previously reported structures, but for larger ones different structures appear. This is the cgs@logi®i
we report a different structure, with significant lower energy than those previously found using limited search
approaches on common structural motifs. This demonstrates the need for global optimization schemes when
searching for stable structures of medium-size silicon clusters.
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[. INTRODUCTION ometry optimizations of larger clusters is complex and time
. ] consuming, due to the large number of possible structures
The study of the structure and physical properties ofig], the time required for the calculation of their total ener-
atomic and molecular clusters is an extremely active area Gjies, and the lack of effective methods to perform global
research due to their importance, both in fundamental scisearches. Nowadays, the global optimization of clusters with
ence and in applied technology]. ~20 atoms is almost an intractable problem and inconsistent
Existing experimental methods for structural determinatesults on the structures of Sil0=n<30 clusters have
tion seldom can obtain the structure of atomic clusters dibeen reported in the literatuf@—7,11,12,1# For these me-
rectly. Therefore the calculation, using theoretical structureslium to large size clusters the option of usial initio or
and comparison with experimental values of their physicaDFT methods to calculate the cluster energies is limited to
and optical properties, is the most common way to obtairthe study of a few plausible configurations. This is the case
structural information of atomic clusters. While the predic-of the comprehensive study of one of the largest silicon clus-
tion of the structures of clusters with a small number ofters studied byb initio methods: S [12]. In this paper the
atoms is well understood, the prediction of the structures anguthors locally optimized several plausible structures gf Si

properties of medium-siz€10—100 atomsclusters is much that were constructed by introducing small modifications into

less developed in spite of their critical importance in underS€veral common structural motifs observed in nanostruc-

standing the transition from microscopic to macroscopic belUrés: cages, wires, and fullerenes. The high cost ofathe

havior of nanomaterials and their possible technological ap!l'tio_calculations precluded a more comprehensive study of
plications. the structural parameter space, leaving open the possibility

The investigations on Siclusters [2—11 have been that geometries quite different from those derived from the

. gatc ® [2-11 b selected motifs may be valid candidates for stable isomers of
guided by the formidable developments in the field of carbon[his species

clu_s_ters during the last two decades._leferences and simi- In this paper, we report the use of a parallel genetic algo-
Iar!t|esd betwgen both senesblpf e_ltor;m Ic:Iust_ers have beeﬂthm (PGA) to predict the structure of medium-size silicon
fp?Imte ?.:it n numerouhs pub|cat|pdrﬁ Z]f g; m;;gncehpo clusters. This stochastic method was chosen because, in con-
fullerenelike structures have been identified far dits, this junction with basin-hopping Monte Carld 5,14 and simu-

is attributable to thesp’ characteristic hybridization in lated annealing17], it is one of the best approaches to ex-
fullerenes, which is more favorable for, @han for Sj units plore and find global and secondary minima of complex
energy potential surfaces. Moreover, our recent research ef-
"orts have demonstrated the success of using parallel genetic

W'tglten or Iesi atoms show _Ilnearl and planar strucLures. dalgorithms[18,1§j to predict crystalline structures of organic
usters with up to approximately ten atoms can be mo compoundg20—22.

eled using standard geometry optimization techniques i
conjunction with quantum chemical methods, such a
density-functional theory (DFT), second-order Magller-

Plesset theory, coupled clusters, etc. Systematic, global g

N GAsarea family of search techniques rooted on the ideas
%f Darwinian biological evolution. The introductory sections
of Refs. [23,24 offer a very detailed description of the
Progress in the development of GA strategies to perform
cluster optimizations in the last seven years. These methods
are based in the principle of survival of the fittest, consider-
*Corresponding author: University of Utah. Email address:ing that each string ogenomerepresents a trial solution
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nomes or “individuals” compete with each other in the popu-thanr, to any other atom in the cluster the structure also will
lation for survival and produce offsprings for the next gen-be rejected.

eration by prescribed propagation rules. Operators analogous The GA operations of mating, mutation, and selection are
to crossover, mutation, and natural selection are employed tésed to evolve one generation into the next. In addition, for
perform a search able to explore and learn the multidimenSizs We have augmented these operations on the genome by
sional parameter space and determine which regions of th&ing the real space “cut and split” operator introduced by
space provide good solutions to the problem. One of the/ohnston and Rober{82]. The population replacement is
advantages of genetic algorithms is that they can provide nd{one through the steady-state genetic algorithm, which typi-
only global minima, but also information on other states with€@y replaces only a portion of the individuals in each gen-

energies close to the minimum, an important propert Wher‘?r""tion [33-39. Th_is j[e.chnique is also known as eIitism,_
anal;g/]zing atomic clusters P property because the best individuals among the population, 50% in

: P : : our case, are copied directly into the next generation. The
usg;grﬁ]?goﬁgﬁgg'?ﬂnz;tlémngsggiZ‘:;fcr']z:ntfﬁgrsé?é?et?criteria for fitness probability, selection of the individuals
' "and mutation are discussed in detail in ReXfl]. Like any

this paper we have adop_ted a compromise by using a S€Mitochastic minimization procedure the GA should be run sev-
empirical molecular orbital progranMSINDO [25-27 10 g fimes to guarantee that the resulting structures are inde-
evaluate the energy of the clusters in the global search usingandent of the initial population and statistically significant.
the GA, while using a DFT method to refine those more’ The ygac package has been implemented in C++ lan-
promising ones by performing a local optimization of the gyage using parallel techniques, making it very portable as
best structures found by the GA. To perform the calculationsyell as easy to maintain and upgrade. Our paraliehc
reported here, we have extended the computational packag@plementation of the GAPGA) is particularly efficient
modified genetic algorithm for crystal and cluster structureg36].

(MGAC) [21] to add semiempirical methods as one of the Using the information contained in the genomes the en-
possible options to calculate the energy. ergy of each individual was evaluated and its structure re-
Here we present two sets of results: one on small silicortaxed to its local minimum. All the energy calculations for

clusters Sj (n=4-14 and 1§to demonstrate the validity of the GA optimizations were done using tiisINDO code. The
the method in silicon clusters with structures that are welloptimizations used=20 individuals for clusters with less
characterized using DFT metho¢#,28—31, and a second than ten silicon atoms, while the number of individuals was
set on Sjg, one of the largest silicon clusters previously stud-increased for larger clusters reaching 40 individuals fgg. Si

ied by ab initio methods, to demonstrate the effectiveness of general the number of individuals was takeq the num-
our method in larger clusters. ber of free parameters in the optimization. For the small

clusters the GA converged in30 generations, while for &
the GA optimization required more than 200 generations to

Il. METHODOLOGY converge. The GA procedure was repeated several times em-
. L . ploying different initial populations to confirm that the final

In any GA implementation it is necessary to define a gexgjection of isomers was independent from the initial popu-
nome with gnough information to ca_lculate the associateghion. Populations were considered converged when the
fitness function. For the case of atomic clusters, the genomgandard deviation of the energies in the population reaches
is quite simple because there are no symmetry or periodicity 1 ev. The structures in the final population were manually
relationships that constrain the parameters in the genomejassified selecting a set of structures with significant diver-
The genome is given as an array containing the coordinatesity for further refinement. All the structures in the popula-
of the atoms. This array has dimensioN,3vereN is the  tion with significantly different features were considered for
number of atoms in the cluster. Moreover, any genetic opergurther analysis. The geometry of these isomers was locally
tor, mating, crossover, mutation, etc., applied to this genomeptimized using density-functional methods with the
produces a valid individual, i.e., a possible structure for theB3PW91 exchange-correlation functional using the Stuttgart
desired cluster size. pseudopotential and basis $8%7] augmented with the most

The first population, of siz&,,, is constructed by gen- diffuse s andp functions and one of theé-polarization func-
erating a set of atomic coordinates using random numbersions of Sadlej’s basis s¢88]. The DFT calculations in §j
These random numbers, used to define the atomic positiongere done using the same principles, but to reduce the com-
in the cluster, belong to specific intervals selected accordingutational cost associated with this larger cluster the smaller
to the expected dimensions of the cluster; these restrictionsanL.2DZ basis set and Los Alamos pseudopoternias]
have been included to avoid sampling in nonphysical conwere used. Additional calculations using the local spin-
figurations. The distances between any pair of atoms is cabensity approximation(LSDA) [40] exchange-correlation
culated and compared with a set of rules that guarantees thiinctional were performed to verify the sensitivity of the
they are within the normal values for silicon interatomic dis-results with the selection of the exchange-correlation func-
tances, otherwise the structure is rejected. This set of rules fonal. Vibrational frequencies were calculated for the opti-
designated to eliminate from the initial population all thosemized structures to check that no imaginary frequencies are
structures that are evidently unphysical. There are basicallgresent, confirming that the isomers presented here corre-
two rules: the first states that if any pair of atoms is closerspond to true minima of the potential energy. All the
than a minimal distancér,) the structure will be rejected; calculations are done using the Gaussian package of pro-
the second rule states that if any atom is at a distance larggrams[41].
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(d) 2.58 eV (e) 2.58 eV (d) 2.68 eV (€) 2.62 eV
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(a) 3.00 eV (b) 2.98 eV
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(c) 2.88 eV (d) 2.88V () 2.94 eV (d)2.93 eV

FIG. 1. Optimized structures and binding energies per atom fpmSi4—14 and 16&lusters. All energies in eV based on a Si atomic
energies of —102.449 eV.

[ll. RESULTS AND DISCUSSION ture and that were also found by tivesAc/MSINDO search,

Figure 1 shows the structures obtained for the isomerbut for which at least one of the calculated vibrational fre-
with up to 16 silicon atoms and their corresponding bindingquencies is imaginary when the structure is further optimized
energy per atom. These binding energies are based on a c&Y¥ DFT.
culated silicon atomic energy of —102.449 eV. The isomers Comparing the results in the figure with those from the
enclosed into frames are those that have been previously réterature we observe that our approach was able to find most
ported in the literatur¢11]. Those enclosed by dashed lines of the stable isomers previously reported in the literature. For
correspond to structures that have been reported in the literadl but Si, and Sig the most stable isomer found here coin-
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FIG. 1. (Continued.
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FIG. 2. Calculated binding energies per atom fqf, 84-16
clusters. All values are in eV.

cides With.those !'eported previou_sly, while _for these two FIG. 3. Optimized structure of & found bymcac/msinbo and
clusters, Si, and Sig, our approach is able to find structures |, peT Optimization(B3LPW91/LanL2D3.
that are more stable than those previously known. For most

cluster sizes, our approach is also able to find a larger numg, . Siss. The most stable one found by the GA was subject to

X . ®Stirther refinement by performing a local optimization using
one, than previous approaches based on lattice replaceme%% B3PW91 exchange-correlation function and the

gnd local optimization of known structural mofifs. It is VEIY | anL2DZ basis set with the Los Alamos pseudopotential.
important to emphasize that for the smaller clusters in th he final optimized structure is presented in Fig. 3. This

series, our approach produces the same results than tho§t’?ucture is quite different from any of those presented in

found by less exhaustive searches, while as the size of thg ¢ [12], which were derived from cage, wire, and stuffed-
clusters grows our approach is able to locate different lowerfullerene' motifs. In Table | we compare ’the b'inding energy

energy conf|ggrat|on$8|12 and Sig) as well as other stable er atom of our optimized structure with three representative
structures. This shows the clear advantage of our methOd‘;g'tructures from Ref[12], each one corresponding to a dif-
ogy that uses GA to perform a global search of the structurglyren motif. The calculations of the energies of these struc-
parameter space with respect to other approaches based

e es were done using the Cage 2, Wire 2, and Stuff30-A
limited searches. Clearly these approaches are successful fgr,,~t.res from Ref12] and the LanL2DZ basis set. Calcu-

the smaller structures but they are not able to fully explorqatiOns were performed for both the B3PW91 and LSDA

that entire conformation space for larger clusters because thig, .hange-correlation functionals. From the table it is appar-
methodology privileges the presence of symmetry con-

Stral.nts in the final structures. . ) TABLE |. Calculated binding energies per atom forgSiso-
Figure 2 compares the calculated binding energies P&hers. All values in eV based on Si atomic energies of —~102.155 eV

atom, of the most stable cluster found in this work, as a,nq -101.428 ev for the LSDA and B3PW91 approaches,
function of the cluster size with existing results from the yegpectively.

literature[5]. It is apparent from the figure that the method

used here is able to reproduce the features observed by others Structure LSDA B3PWOT
in the smaller clusters.

Sigg is one of the largest silicon clusters studied using first Cage 2 4.79 3.93
principles. In a recent papét2] several structures derived Wire 2 4.95 4.18
from first-principles calculations were proposed; all of them Stuff30-A° 5.00 4.16
were obtained by local optimizations of structures derived, MGAC/MSINDO 5.13 4.41

by introducing small changes, of plausible structural motifs.
This approach leaves open the possibility that more stable
structures, which cannot be derived from these motifs, may
exist. Using the method presented here, which as it was denAll calculations done using the LanL2DZ basis set with its respec-
onstrated above is able to find the correct structures of smative Los Alamos pseudopotential.

silicon clusters; we found several different stable structure§Geometries from Ref12].

MGAC/MSINDO
plus local DFT optimization 5.19 4.46
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ent that the structure found here using theAc/MSINDO  energy function because computational limitations still make
followed by the local DFT optimization has a significant these searches not feasible when usgibgnitio methods for
higher binding energy, therefore more stable than those obmedium-size clusters.

tained in Ref.[12]. The locally refined structure is slightly For small clusters our results agree well with previously
more stable than th&GAC/MSINDO structure, but clearly reported structures, but for larger ones different structures
both are significantly more stable than the previously deterappear. For S it is clearly demonstrated that previous ap-
mined structures of §j. Local minimization of the second proaches, using local optimization of plausible structural mo-
two lowest MGAC/MSINDO structures lead, after DFT tifs, may produce structures that are significantly higher in
(B3PW9)) optimization, to two structures very similar to the energy than those presented here. This demonstrates the need
one depicted in Fig. 3 with biding energies per atom offor global optimization schemes when searching for stable
4.46 eV and 4.45 eV. This shows that there are at least thregtructures of medium-size Si clusters.

structures of Sf that have significant lower energy than
those previously known in the literature. This finding clearly
highlights the importance of exploring the complete configu-
ration space when searching for atomic cluster.
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