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This paper presents the results obtained using a genetic algorithm(GA) to search for stable structures of
medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster
structures, which are further optimized using density-functional theory. For small clusters our results agree well
with previously reported structures, but for larger ones different structures appear. This is the case of Si36 where
we report a different structure, with significant lower energy than those previously found using limited search
approaches on common structural motifs. This demonstrates the need for global optimization schemes when
searching for stable structures of medium-size silicon clusters.
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I. INTRODUCTION

The study of the structure and physical properties of
atomic and molecular clusters is an extremely active area of
research due to their importance, both in fundamental sci-
ence and in applied technology[1].

Existing experimental methods for structural determina-
tion seldom can obtain the structure of atomic clusters di-
rectly. Therefore the calculation, using theoretical structures
and comparison with experimental values of their physical
and optical properties, is the most common way to obtain
structural information of atomic clusters. While the predic-
tion of the structures of clusters with a small number of
atoms is well understood, the prediction of the structures and
properties of medium-size(10–100 atoms) clusters is much
less developed in spite of their critical importance in under-
standing the transition from microscopic to macroscopic be-
havior of nanomaterials and their possible technological ap-
plications.

The investigations on Sin clusters [2–11] have been
guided by the formidable developments in the field of carbon
clusters during the last two decades. Differences and simi-
larities between both series of atomic clusters have been
pointed out in numerous publications[12]. For instance no
fullerenelike structures have been identified for Sin units, this
is attributable to thesp2 characteristic hybridization in
fullerenes, which is more favorable for Cn than for Sin units
[13], i.e., silicon clusters of five atoms form three-
dimensional compact structures while pure carbon clusters
with ten or less atoms show linear and planar structures.

Clusters with up to approximately ten atoms can be mod-
eled using standard geometry optimization techniques in
conjunction with quantum chemical methods, such as
density-functional theory (DFT), second-order Møller-
Plesset theory, coupled clusters, etc. Systematic, global ge-

ometry optimizations of larger clusters is complex and time
consuming, due to the large number of possible structures
[6], the time required for the calculation of their total ener-
gies, and the lack of effective methods to perform global
searches. Nowadays, the global optimization of clusters with
,20 atoms is almost an intractable problem and inconsistent
results on the structures of Sin, 10ønø30 clusters have
been reported in the literature[2–7,11,12,14]. For these me-
dium to large size clusters the option of usingab initio or
DFT methods to calculate the cluster energies is limited to
the study of a few plausible configurations. This is the case
of the comprehensive study of one of the largest silicon clus-
ters studied byab initio methods: Si36 [12]. In this paper the
authors locally optimized several plausible structures of Si36
that were constructed by introducing small modifications into
several common structural motifs observed in nanostruc-
tures: cages, wires, and fullerenes. The high cost of theab
initio calculations precluded a more comprehensive study of
the structural parameter space, leaving open the possibility
that geometries quite different from those derived from the
selected motifs may be valid candidates for stable isomers of
this species.

In this paper, we report the use of a parallel genetic algo-
rithm (PGA) to predict the structure of medium-size silicon
clusters. This stochastic method was chosen because, in con-
junction with basin-hopping Monte Carlo[15,16] and simu-
lated annealing[17], it is one of the best approaches to ex-
plore and find global and secondary minima of complex
energy potential surfaces. Moreover, our recent research ef-
forts have demonstrated the success of using parallel genetic
algorithms[18,19] to predict crystalline structures of organic
compounds[20–22].

GAs are a family of search techniques rooted on the ideas
of Darwinian biological evolution. The introductory sections
of Refs. [23,24] offer a very detailed description of the
progress in the development of GA strategies to perform
cluster optimizations in the last seven years. These methods
are based in the principle of survival of the fittest, consider-
ing that each string orgenomerepresents a trial solution
candidate of the problem, and that at any generation the ge-
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nomes or “individuals” compete with each other in the popu-
lation for survival and produce offsprings for the next gen-
eration by prescribed propagation rules. Operators analogous
to crossover, mutation, and natural selection are employed to
perform a search able to explore and learn the multidimen-
sional parameter space and determine which regions of that
space provide good solutions to the problem. One of the
advantages of genetic algorithms is that they can provide not
only global minima, but also information on other states with
energies close to the minimum, an important property when
analyzing atomic clusters.

Current computational limitations make it unfeasible to
useab inito methods in extensive GA searches, therefore in
this paper we have adopted a compromise by using a semi-
empirical molecular orbital program,MSINDO [25–27] to
evaluate the energy of the clusters in the global search using
the GA, while using a DFT method to refine those more
promising ones by performing a local optimization of the
best structures found by the GA. To perform the calculations
reported here, we have extended the computational package
modified genetic algorithm for crystal and cluster structures
(MGAC) [21] to add semiempirical methods as one of the
possible options to calculate the energy.

Here we present two sets of results: one on small silicon
clusters Sin (n=4–14 and 16) to demonstrate the validity of
the method in silicon clusters with structures that are well
characterized using DFT methods[4,28–31], and a second
set on Si36, one of the largest silicon clusters previously stud-
ied byab initio methods, to demonstrate the effectiveness of
our method in larger clusters.

II. METHODOLOGY

In any GA implementation it is necessary to define a ge-
nome with enough information to calculate the associated
fitness function. For the case of atomic clusters, the genome
is quite simple because there are no symmetry or periodicity
relationships that constrain the parameters in the genome.
The genome is given as an array containing the coordinates
of the atoms. This array has dimension 3N, were N is the
number of atoms in the cluster. Moreover, any genetic opera-
tor, mating, crossover, mutation, etc., applied to this genome
produces a valid individual, i.e., a possible structure for the
desired cluster size.

The first population, of sizeNpop, is constructed by gen-
erating a set of atomic coordinates using random numbers.
These random numbers, used to define the atomic positions
in the cluster, belong to specific intervals selected according
to the expected dimensions of the cluster; these restrictions
have been included to avoid sampling in nonphysical con-
figurations. The distances between any pair of atoms is cal-
culated and compared with a set of rules that guarantees that
they are within the normal values for silicon interatomic dis-
tances, otherwise the structure is rejected. This set of rules is
designated to eliminate from the initial population all those
structures that are evidently unphysical. There are basically
two rules: the first states that if any pair of atoms is closer
than a minimal distancesr1d the structure will be rejected;
the second rule states that if any atom is at a distance larger

thanr2 to any other atom in the cluster the structure also will
be rejected.

The GA operations of mating, mutation, and selection are
used to evolve one generation into the next. In addition, for
Si36 we have augmented these operations on the genome by
using the real space “cut and split” operator introduced by
Johnston and Roberts[32]. The population replacement is
done through the steady-state genetic algorithm, which typi-
cally replaces only a portion of the individuals in each gen-
eration [33–35]. This technique is also known as elitism,
because the best individuals among the population, 50% in
our case, are copied directly into the next generation. The
criteria for fitness probability, selection of the individuals
and mutation are discussed in detail in Ref.[21]. Like any
stochastic minimization procedure the GA should be run sev-
eral times to guarantee that the resulting structures are inde-
pendent of the initial population and statistically significant.

The MGAC package has been implemented in C++ lan-
guage using parallel techniques, making it very portable as
well as easy to maintain and upgrade. Our parallelMGAC
implementation of the GA(PGA) is particularly efficient
[36].

Using the information contained in the genomes the en-
ergy of each individual was evaluated and its structure re-
laxed to its local minimum. All the energy calculations for
the GA optimizations were done using theMSINDO code. The
optimizations used<20 individuals for clusters with less
than ten silicon atoms, while the number of individuals was
increased for larger clusters reaching 40 individuals for Si36.
In general the number of individuals was taken< 1

2 the num-
ber of free parameters in the optimization. For the small
clusters the GA converged in,30 generations, while for Si36
the GA optimization required more than 200 generations to
converge. The GA procedure was repeated several times em-
ploying different initial populations to confirm that the final
selection of isomers was independent from the initial popu-
lation. Populations were considered converged when the
standard deviation of the energies in the population reaches
0.1 eV. The structures in the final population were manually
classified selecting a set of structures with significant diver-
sity for further refinement. All the structures in the popula-
tion with significantly different features were considered for
further analysis. The geometry of these isomers was locally
optimized using density-functional methods with the
B3PW91 exchange-correlation functional using the Stuttgart
pseudopotential and basis set[37] augmented with the most
diffuses andp functions and one of thed-polarization func-
tions of Sadlej’s basis set[38]. The DFT calculations in Si36
were done using the same principles, but to reduce the com-
putational cost associated with this larger cluster the smaller
LanL2DZ basis set and Los Alamos pseudopotential[39]
were used. Additional calculations using the local spin-
density approximation(LSDA) [40] exchange-correlation
functional were performed to verify the sensitivity of the
results with the selection of the exchange-correlation func-
tional. Vibrational frequencies were calculated for the opti-
mized structures to check that no imaginary frequencies are
present, confirming that the isomers presented here corre-
spond to true minima of the potential energy. All the
calculations are done using the Gaussian package of pro-
grams[41].
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III. RESULTS AND DISCUSSION

Figure 1 shows the structures obtained for the isomers
with up to 16 silicon atoms and their corresponding binding
energy per atom. These binding energies are based on a cal-
culated silicon atomic energy of −102.449 eV. The isomers
enclosed into frames are those that have been previously re-
ported in the literature[11]. Those enclosed by dashed lines
correspond to structures that have been reported in the litera-

ture and that were also found by theMGAC/MSINDO search,
but for which at least one of the calculated vibrational fre-
quencies is imaginary when the structure is further optimized
by DFT.

Comparing the results in the figure with those from the
literature we observe that our approach was able to find most
of the stable isomers previously reported in the literature. For
all but Si12 and Si16 the most stable isomer found here coin-

FIG. 1. Optimized structures and binding energies per atom for Sin, n=4–14 and 16clusters. All energies in eV based on a Si atomic
energies of −102.449 eV.
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FIG. 1. (Continued).

BAZTERRA et al. PHYSICAL REVIEW A 69, 053202(2004)

053202-4



cides with those reported previously, while for these two
clusters, Si12 and Si16, our approach is able to find structures
that are more stable than those previously known. For most
cluster sizes, our approach is also able to find a larger num-
ber of stable structures, with higher energies than the lowest
one, than previous approaches based on lattice replacements
and local optimization of known structural motifs. It is very
important to emphasize that for the smaller clusters in the
series, our approach produces the same results than those
found by less exhaustive searches, while as the size of the
clusters grows our approach is able to locate different lower-
energy configurationssSi12 and Si16d as well as other stable
structures. This shows the clear advantage of our methodol-
ogy that uses GA to perform a global search of the structural
parameter space with respect to other approaches based on
limited searches. Clearly these approaches are successful for
the smaller structures but they are not able to fully explore
that entire conformation space for larger clusters because this
methodology privileges the presence of symmetry con-
straints in the final structures.

Figure 2 compares the calculated binding energies per
atom, of the most stable cluster found in this work, as a
function of the cluster size with existing results from the
literature[5]. It is apparent from the figure that the method
used here is able to reproduce the features observed by others
in the smaller clusters.

Si36 is one of the largest silicon clusters studied using first
principles. In a recent paper[12] several structures derived
from first-principles calculations were proposed; all of them
were obtained by local optimizations of structures derived,
by introducing small changes, of plausible structural motifs.
This approach leaves open the possibility that more stable
structures, which cannot be derived from these motifs, may
exist. Using the method presented here, which as it was dem-
onstrated above is able to find the correct structures of small
silicon clusters; we found several different stable structures

for Si36. The most stable one found by the GA was subject to
further refinement by performing a local optimization using
the B3PW91 exchange-correlation function and the
LanL2DZ basis set with the Los Alamos pseudopotential.
The final optimized structure is presented in Fig. 3. This
structure is quite different from any of those presented in
Ref. [12], which were derived from cage, wire, and stuffed-
fullerene motifs. In Table I we compare the binding energy
per atom of our optimized structure with three representative
structures from Ref.[12], each one corresponding to a dif-
ferent motif. The calculations of the energies of these struc-
tures were done using the Cage 2, Wire 2, and Stuff30-A
structures from Ref.[12] and the LanL2DZ basis set. Calcu-
lations were performed for both the B3PW91 and LSDA
exchange-correlation functionals. From the table it is appar-

FIG. 2. Calculated binding energies per atom for Sin, n=4–16
clusters. All values are in eV.

FIG. 3. Optimized structure of Si36 found byMGAC/MSINDO and
local DFT Optimization(B3LPW91/LanL2DZ).

TABLE I. Calculated binding energies per atom for Si36 iso-
mers. All values in eV based on Si atomic energies of −102.155 eV
and −101.428 eV for the LSDA and B3PW91 approaches,
respectively.

Structure LSDAa B3PW91a

Cage 2b 4.79 3.93

Wire 2b 4.95 4.18

Stuff30-Ab 5.00 4.16

MGAC/MSINDO 5.13 4.41

MGAC/MSINDO

plus local DFT optimization 5.19 4.46

aAll calculations done using the LanL2DZ basis set with its respec-
tive Los Alamos pseudopotential.
bGeometries from Ref.[12].
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ent that the structure found here using theMGAC/MSINDO

followed by the local DFT optimization has a significant
higher binding energy, therefore more stable than those ob-
tained in Ref.[12]. The locally refined structure is slightly
more stable than theMGAC/MSINDO structure, but clearly
both are significantly more stable than the previously deter-
mined structures of Si36. Local minimization of the second
two lowest MGAC/MSINDO structures lead, after DFT
(B3PW91) optimization, to two structures very similar to the
one depicted in Fig. 3 with biding energies per atom of
4.46 eV and 4.45 eV. This shows that there are at least three
structures of Si36 that have significant lower energy than
those previously known in the literature. This finding clearly
highlights the importance of exploring the complete configu-
ration space when searching for atomic cluster.

IV. CONCLUSION

We have demonstrated a strategy to find stable isomers of
silicon clusters. The principal advantage of the hybrid tech-
nique proposed here is that it does not need to make any
assumptions on the symmetry or type of the cluster struc-
tures, allowing for a full exploration of the complete con-
figuration space available for the cluster geometry. Moreover
the use of GA for the exploration of the space allows for an
efficient search into those regions of the configuration space
that represent the desirable low-energy configurations. This
global search was possible due to the use of a semiempirical

energy function because computational limitations still make
these searches not feasible when usingab initio methods for
medium-size clusters.

For small clusters our results agree well with previously
reported structures, but for larger ones different structures
appear. For Si36 it is clearly demonstrated that previous ap-
proaches, using local optimization of plausible structural mo-
tifs, may produce structures that are significantly higher in
energy than those presented here. This demonstrates the need
for global optimization schemes when searching for stable
structures of medium-size Si clusters.
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