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ent of field. Perhaps more striking is an example 
such as methylaminium ion a t  low pH. l6 Here the 
methyl proton group is a quartet from interaction 
with the three protons, of the NH3+ ion. The total 
quantum number for the NH3+ group protons can 
be, 3/2, l/2, - or - 3/2,  and the multiplicity would 
be 2 21 + 1. The NH3+ spectrum is a triplet aris- 
ing from N14 with spin 1. 

I n  the latter example especially, one observes 
that while the several portions of the molecule are 
undergoing relative reorientations there is never- 
theless a mechanism whereby the effects of nuclear 
polarizations are communicated. This immedi- 
ately excludes direct magne+,ic interaction. It is to  
be noted that whenever this type of multiplicity 
occurs, the bonds between the atoms affected are 
all covalent. On a naive picture, the spin orienta- 
tion of the first nucleus shows some correlation with 
that of one of the bonding electrons. The orienta- 
tion of the second electron of the bond is neces- 
sarily anti-parallel, and this electron may produce 
a correlation of the spin of the second nucleus. 
Transmission of polarization of protons may occur 
through a t  least three bonds via the s-electrons of 
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the system. Thus nuclei which are remote from 
one another are indirectly coupled. When both s 
and p electrons are involved in a covalent bond, 
there will be an additional orbital interaction with 
the nuclei. For protons, McConnell has at- 
tempted to calculate proton bond orders.I7 

With very high resolution, one may detect more 
lines than the simple considerations outlined here 
would predict.’* Anderson and Arnold found that 
such further multiplicity arises when second and 
third orders of perturbation of the chemically- 
shifted system are considered. In  the simplest 
cases, these higher order effects serve to  remove 
some of the energy level degeneracies which previ- 
ously existed. McConnell19 has observed a very 
large number of lines in fluorinated ethylenes and 
has shown how their multiplicity and intensity may 
be calculated by application of group theory. 

In  summary, nuclear spin resonance spectra may 
by their line position, shape or multiplicity reflect 
the subtle or gross interactions of atoms which 
chemists designate as bonds. 

(17) H. M. McConnell, J .  Chem. Phys. ,  24, 460 (1956). 
(18) W. A. Anderaon and J. T. Arnold, Disc. Faraday Soc., 19, 228 

(1955). 
(19) H. M. McConnell, A. D. McLean and C. A. Reilly, J .  Chem. 

~ m . ,  as, 1152 (1955). 

PRESENT SITUATION OF QUANTUM CHEMISTRY 
BY PER-OLOV LOWDIN 

Quantum Chemistry Group, Uppsala University, Kemikum, Uppsala, Sweden 
Received October 4, 1966 

It is pointed out that the nature of the covalent bond may be understood only by means of modern quantum mechanics. 
The introduction of Planck’s quantum of action h leads to Heisenberg’s uncertainty relation for a single particle which indi- 
cates that the idea of the existence of the classical orbits has to be abandoned. In  a many-electron system there is then no 
longer any ossibility for identifying the individual particles, and all chemically and physically measurable results must 
hence be in&pend:pt of the labeling of the particles. It is shown that this symmetry law leads to a new form of energy, the 
“exchange energy, which among other things also explains the chemical bond according to Heitler and London. A brief 
survey is given of the development of quantum chemistry, and the main problems of actual interest in the valence bond 
method and in the molecular orbital theory are discussed. The simplification in the interpretations recently obtained by 
introducing density matrices and natural spin-orbitals is finally described. 

I n  investigating the highly different phenomena 
in nature, scientists have always tried to find some 
principles which explain the variety out from a basic 
unity. They have found not only that all the 
various kinds of matter are built up from a rather 
limited number of atoms, but also that these atoms 
are constituted of a few elementary particles. From 
the point of view of ordinary chemistry, an atom 
may be considered as consisting of a positive point 
charge, the nucleus, surrounded by an electronic 
cloud which determines its chemical properties and, 
in principle, all chemical problems may therefore be 
reduced to  problems concerning the interaction be- 
tween the electronic clouds and the nuclei. The 
laws which regulate the behavior of the electrons 
are therefore of basic nature, and the discovery of 
modern quantum mechanics has thus been of 
greatest importance for our understanding of the 
properties of molecules and crystals, the latter be- 
ing nothing but molecules of a tremendous size. 

Uncertainty Principle.-Planck’s discovery that 
in nature there exists the smallest quantum of 

action, h = 6.626 X erg sec., has been of 
revolutionary importance for the development of 
modern science. I n  physics and chemistry, only 
those quantities in nature which are physically 
and chemically measurable are studied. However, 
every measurement implies an interaction between 
the object to be measured and the apparatus, and 
the smallest interaction possible is regulated by 
the above-mentioned quantum of action. This 
means that every measurement mill disturb the ob- 
ject concerned and that this disturbance cannot be 
brought under a certain limit. It was found by 
Heisenberg that, if one tries to measure the position 
x and the momentum p of a particle simultaneously, 
the uncertainties in the measurements, Ax and A p ,  
respectively, must fulfil the famous relation 
Ax-Ap  2 h/47r, which is now known as Heisenberg’s 
uncertainty relation. The implication of this re- 
sult is that, from the point of view of the measure- 
ments, an elementary particle cannot simultane- 
ously have a fixed position and a fixed momentum, 
and consequently the idea of the existence of a 
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classical orbit for such a particle has to  be aban- 
doned. 

In  the discovery of modern quantum mechanics 
in 1925, i t  was found that, as a consequence of the 
existence of Planck’s constant h ,  physical observ- 
ables could no longer be considered as ordinary 
numbers, and that they instead should be described 
by mathematical quantities which do not fulfil the 
commutative law of multiplication. They may be 
represented by either matrices (Heisenberg), or by 
operators (Schrodinger), or simply by so called q- 
numbers (Dirac). The existence of the quantum 
of action led in this way to a quantization of the 
physical observables in the form of eigenva!ue prob- 
lems. However, from the chemical point of view, 
we are interested also in another consequence of a 
more indirect nature. 

Identity Principle-Exchange Energies.-It was 
pointed out above that, because of the existence of 
the smallest quantum of action, an elementary par- 
ticle cannot have a classical orbit. This implies that, 
if we consider a system of similar particles having 
the same charge and the same mass, i t  is impossible 
to distinguish the different particles individually, 
since one cannot follow them in any orbits. We 
have to observe that the individuality of a particle 
in the classical sense is intimately associated with 
the existence of its orbit. I n  a quantum-mechani- 
cal system, two particles may therefore exchange 
their places without any possibility to  discover this 
phenomenon experimentally. This exchange phe- 
nomenon leads to  a new form of energy, the ((ex- 
change energy” which is characteristic for modern 
quantum mechanics and which is of basic impor- 
tance for the understanding of the nature of the 
electronic clouds within the atoms, the homopolar 
chemical bond, the ferromagnetism, the saturation 
of the nuclear forces, and many other phenomena. 

In  order to obtain a mathematical formulation of 
this “identity principle,” let us consider any two 
particles 1 and 2 having the same mass and charge; 
see Fig. 1. If F(1,2) denotes any physically or 

2 
2 

(a) (b) 
(a) Classical physics; identification of the particles pos- 

sible in principle by following their respective orbits. 
(b) Quantum mechanica; no classical orbits exist and no 

identification of the two particles is possible, which leads to 
the fundamental symmetry law F(2,l) =i F(1,2) for any 
measurable quantity F. 
Fig. l.-DifTerence in behavior of two particles in classical 

physics and in quantum mechanics. 

chemically measurable result, the outcome of the 
measurement must be independent of our attempt 
to label the two particles and thus we get the rela- 
tion 

which is the basic symmetry law characteristic for 
modern quantum mechanics. 

The quantum-mechanical situation of a system of 
N particles is described in full detail by a wave 

F(2,l) = F(1,2)  (1) 

function \k = *(XI, XZ, . . . x,), where Xi is a com- 
bination of the space and spin coordinates of the 
particle i. The physical meaning of this wave func- 
tion is that gives the probability density for 
finding the particles in the point (XI, xz, x3, . . . x,) 
in configuration space. However, since all physical 
results must be independent of the individuality of 
the particles, this quantity / * I 2  must remain in- 
variant when the coordinates of the particles 
change their places. If P is an arbitrary permuta- 
tion of the coordinates, hence we have 

p I *(XI,XZ, . . . x,)12= I*(Xl,XZ, . . . XN)IZ 
This implies also that, under a permutation, the 
wave function itself may be changed only by a phase 
factor of the absolute value one, and, if we assume 
that this phase factor for a single exchange of the 
coordinates of two particles is a constant charac- 
teristic for the particles under consideration, the 
only possible values are +1 and -1, corresponding 
to  symmetric and antisymmetric wave functions, 
respectively. By using relativistic arguments, i t  
may be shown that particles having half-integer 
spins are (‘ antisymmetric,’’ whereas those having 
integer spins are ‘(symmetric.” The electrons have 
therefore antisymmetric wave functions fulfilling 
the relation 

P*(X,,XZ,. . .x,) = (-1)P *(X,,XZ,. . .x,) 
where p is the parity of the permutation P. 

In  *(XI, xz, x:;, . . . x,) each coordinate place cor- 
responds to  a particle state, and, if two such states 
are identical, the wave function should not change 
its value under a simple exchange of the coordinates 
in these places. This implies that an antisymmet- 
ric wave function having two particle states iden- 
tical must vanish. An antisymmetric wave func- 
tion is hence characteristic for a system of particles, 
where never more than one particle may be placed 
in every fully specified state. The electrons fulfil 
therefore autoniatically Pauli’s famous exclusion 
principle, which leads to a certain saturation phe- 
nomenon in their symmetry property. It is this new 
property which is of such importance for the under- 
standing of the behavior of the electronic structure 
of matter, and we emphasize again that this sym- 
metry is only indirectly a consequence of the exist- 
ence of Planck’s quantum of action. 

Stationary States.-The stationary states of a 
molecular system are characterized by the wave 
functions which are solutions to  the Schrodinger 
equation 

This equation has solutions, which are normalizable 
so that 

only for selected values of E, which are called the 
eigenvalues of the equation; the corresponding 
solutions are called the eigenfunctions. The eigen- 
values form together the energy spectrum of the 
molecule under consideration, and they give the 
energies of the possible stationary states of the 
electronic structure. In  addition to the discrete 
eigenvalues, there may also be a continuous spec- 
trum corresponding to  free particles within the 
molecular system; the corresponding wave func- 

(2) 

(3)  

Hop* = E* (4) 

Jl*12(dz) = 1 (5) 
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tions have a somewhat generalized normalizability 
condition. The operator Hop in the left-hand mem- 
ber is the quantum-mechanical Hamilt,onian, which 
is obtained from the classical Hamiltonian for the 
molecular system 

by replacing the classical momentum pi by the op- 
erator 

(7) 

In  the Hamiltonian the first term represents the 
electrostatic nuclear repulsion energy, the second 
term the kinetic energy of the electrons, the third 
term the attraction potential between the nuclei 
and the electrons, and the fourth term the elec- 
tronic repulsion energy. In  constructing this 
Hamiltonian, one has assumed that the nuclei have 
fixed positions and that relativistic effects may be 
neglected, which causes some approximations. 

The Hamiltonian Hop is defined in a “configura- 
tion space’’ (xl, x?, XI, . . . xN), where each particle i 
has its own space-spin coordinate Xi. Mathemati- 
cally Heisenberg’s uncertainty relation 

follows now from the operator equation 7. We 
note further that the exchange phenomenon’ and 
the basic symmetry law may be derived from (4) 
and the fact that the Hamiltonian is symmetric in 
the coordinates xi; the eigenfunctions are either 
automatically symmetry functions or mav (in de- 
generate cases) be chosen as symmetry functions, 
i.e., as eigenfunctions also to  the permutation op- 
erators P. The Schrodinper equation 4 forms 
therefore the basis for the entire molecular theory 
with an auxiliary condition entering in the form of 
the mathematical formulation (3) of the Pauli 

A X S A P  2 h/4ir 

principle. 
HomoDolar Chemical Bond.-In chemistry, the 

electrostkic nature of the heteropolar bond’ was 
rather well explained by a series of authors from 
Berzelius to Kossel, but the inner nature of the 
homopolar bond was a real mystery. According to 
Lewis, each covalent bond was supposed to be 
connected with an electron pair, but i t  was first 
the establishment of modern quantum mechanics 
which could explain its real nature. In  1927, 
Heitler and London2 discovered that the covalent 
bond in the hydrogen molecule W R S  associated 
with a pair of electrons and that the binding es- 
sentially arose from the above-mentioned “ex- 
change effect,” which is associated with the impos- 
sibility of individually distinguishing the two par- 
ticles. They found that, if a and b are the space 
wave functions for the two separated hydrogen 
atonis, a combined wave function of the type a(1) -  
b ( 2 )  would not correspond to  a chemical bond, 
whereas a symmetrized combination 

*(1,2) = a ( l I b ( 2 )  + a ( 2 ) b ( l )  (8) 
(1) W. Heisenberg, 2. Physik,  38, 411 (1926); 39, 499 (1926): 41, 

(2) W. Heitler and F, Londan, ibid., 44, 455 (1927). 
239 (1927). 

would give a binding energy of the correct order of 
magnitude. The existence of the covalent chem- 
cal bond depends therefore on a typical quanhm- 
mechanical phenomenon-the identity principle 
and the symmetry requirement-and, since there is 
no classical counterpart to  this effect, i t  is certainly 
very dificiilt to give an elementary description of 
the nature of the covalent chemical bond. The 
saturation of the covalent bond is further explained 
by the Pauli principle. 

Usually classical mechanics provides a first ap- 
proximation to a quantum-mechanical system, but, 
as regards the symmetry properties, no such cor- 
respondence seems to  exist. Heitler and London’s 
discovery opened therefore an entirely new field, 
I‘ Quantum Chemistry,” which provides a natural 
link between the physics of the elementary parti- 
cles and chemistry. Soon after the appearance of 
Heitler and London’s work, Heisenberg recognized 
that the exchange phenomenon may be of funda- 
mental importance also for the understanding of 
ferromagnetism. With the development of modern 
nuclear theory, it seems now as if the identity prin- 
ciple and the symmetry laws mould be one of the 
most important consequences of the whole quan- 
tum theory. 

Development of Quantum Chemistry.-Heitler 
and London’s investigation of the hydrogen mole- 
cule gave a qualitative understanding of the homo- 
polar chemical bond in general, and i t  started the 
development of modern quantum chemistry. There 
are several ways of constructing this link between 
chemistry and particle physics, and one of the most 
fruitful methods was explored by the chemists 
themselves by starting from the ordinary chemical 
terminology and translating and adapting it to the 
quantum-mechanical ideas. Of course, i t  is very 
hard to decide whether the electronic interpreta- 
tions given in this way have a real background in 
nature or not, and the whole approach may hence 
be compared with building a tunnel in a certain di- 
rection under a mountain from one side without 
having yet reached the other side. 

Ry unifying chemical and quantum-mechanical 
ideas, semi-empirical theories have been developed 
which are devices for correlating one set of experi- 
mental chemical data with another set. This ap- 
proach has been particularly successful in organic 
chemistry in treating the conjugated systems. We 
will here only mention the explanation of the prop- 
erties of the aromatic bond, the calculation of di- 
pole moments, the directing power of substituents 
in aromatic systems, the color of organic molecules, 
the problem of addition to conjugated systems, the 
stability of free radicals, and so on. Important 
contributions have here been given by Hiickel, 
Pauling, Wheland, Mulliken, Sklar, Coulson, Lon- 
guet-Higgins, Platt and others. 

These semi-empirical theories have the advantage 
of being comparatively simple, and if their applica- 
tions are not extended too far, the quantitative re- 
sults are usually very good. They seem to be excel- 
lent devices for interpolation and extrapolation of 
chemical results. However, i t  has usually been 
found impossible to use the semi-empirical parame- 
ters determined for the ground state to describe also 
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Physics of 
elementary 
particles 
(electrons) 

the lower exited states, and the whole approach ap- 
pears therefore to  be oversimplified in many ways. 
Some of the parameters have also been determined 
purely theoretically, but the agreement with the 
semi-empirical values has usually not been as good 
as  one would desire. 

The other way of obtaining a connection between 
the theory of electrons and the ordinary chemistry 
is to  start from the quantum-mechanical electron 
theory itself and try to derive solutions of the Schro- 
dinger equation. The explanation of the homo- 
polar covalent bond was iound this way and, among 
other fundamental problems which have been at 
least approximately solved by this method, the 
derivation of the repulsive Born-Mayer forces 
within the ionic cryst8als, and the explanation of the 
Hume-Rothery-rules for alloys by ,Jones should be 
mentioned. The difficulty is here that the many- 
electron Schrodinger equation is very hard to  solve 
even in an approximate form. 

In  distinguishing between “semi-empirical” and 
“pure” theories, one should always remember that 
all theories in physics and chemistry are basically 
semi-empirical in the sense that they correlate some 
experimental data with other experimental data- 
really pure theories belong to  metaphysics and not 
to  modern science. However, a theory is here 
called “pure” in a restrictive sense, if i t  derives for 
instance chemical data from the knowledge of only 
the physical values of the electronic mass and 
charge, Planck’s constant, the atomic numbers, and 
the form of the Schrodinger equation, which itself 
represents the quintessence of a great deal of physi- 
cal experience. A schematic survey of the various 
branches of quantum chemistry as a link between 
physics and chemistry is given in Fig. 2. 

In  this connection, it can also be discussed 
whether the Schrodinger equation it,self forms a suf- 
ficient basis for our understanding of chemistry or 
not. r 4 5 - 

Chemistry 
f.- -lllll..l--l .f 

2 

1 
I I I 

1. 
2. 

3. 

Theory of covalent bond (Hz). 
Theory of van der Waals forces, repulsive forces in ionic 

crystals, Hume-Rothery rules for alloys, etc. 
Semi-empirical theories of dipole moments, spectra of 

molecules, conjugation and aromatic bond, directing 
power of substituents, stability of free radicals, etc. 

4. Chemistry in quantum-mechanical language, theory of 
resonance, etc. 

Fig. 2.-Quantum chemistry as a link between chemistry 
and the physics of the elementary particles. 

The Drastic Extrapolation.-When Bohr in 1913 
established his theory of the hydrogen atom, i t  
was soon found out that it was impossible to  gen- 
eralize the theory from one electron to  the case of 
two or more electrons, Bohr’s theory gave there- 

fore a, description of the simplest atom but failed 
in giving a quantitative explanation of the remain- 
ing part of the periodic system. One of the most 
important points after the discovery of modern 
quantum mechanics in 1925 was therefore the ques- 
tion whether i t  would give a satisfactory treatment 
of the helium atom and the higher atoms in the 
periodic system. The helium atom represents a 
three-body problem, and, from the very beginning, 
i t  is obvious that it is impossible to  solve i t  in a 
closed form. In  an important series of papers, 
Hylleraas investigated carefully this problem and 
could show that i t  was possible to  obtain the differ- 
ent energy levels of the atom with any accuracy de- 
sired by the spectroscopists. Even the problems 
concerning the relativistic effects and the Lamb- 
shift seem now to be rather satisfactorily solved. 

Another two-electron problem of great interest 
was the hydrogen molecule. Heitler and London 
had here given only an approximate solution and, 
by using the same technique as was developed by 
Hylleraas for helium, James and Coolidge could de- 
rive the eigenfunction for the ground state of Hz 
and show that the quantum mechanical energy was 
in full agreement with the experimental value. 
The treatments of He and Hz both were based on 
Schrodinger’s equation in configuration space for 
tmo-electrons, and from these successful results one 
has then drawn the conclusion that the same type of 
SchrEjdinger equation should be valid for a system 
containing an arbitrary number N of particles, i e . ,  
one has drastically extrapolated from N = 2 to 
arbitrary values of N .  The solutions of the 
Schrodinger equation for many-particle systems 
have not yet been determined with such an accu- 
racy that one can decide whet,her this extrapolation 
is strictly valid or not, but so far there have been 
no objections in principle against this procedure. 
Dirac’s general prediction in 1929 is famous in this 
connection: 

“The general theory of quantum mechanics is now 
almost complete, the imperfections that still re- 
main being in connection with the exact fitting in 
of the theory with relativity ideas. These give rise 
to difficulties only when high-speed particles are in- 
volved, and are therefore of no importance in the 
consideration of atomic and molecular struc- 
ture and ordinary chemical reactions. . . . The un- 
derlying physical laws necessary for the mathemat- 
ical theory of a large part of physics and the whole 
of chemistry are thus completely known, and the 
difficulty is only that the exact application of these 
laws leads to equations much too complicated to  be 
soluble. . . .” 

Solution of the Many-electron Schrodinger 
Equation.-It is evident that it is mathematically 
impossible to solve the many-electron Schrodinger 
equation in a closed form, but this does not mean 
that one cannot obtain solutions with any accu- 
racy desired, and the existence of the eigenfunctions 
has been discussed by, among others, Kato. In 
order to  find approximate solutions, a number of 
schemes are now in use and a diagrammatic survey 
of them is given in Fig. 3. 

The simplest approach is based on the one-elec- 
tron model in which the total wave function is built 
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overcompleteness 

J. 
Nuclear motion and thermal effects 

Relativistic effects 

s 
“Real truth” 

the solution of the Schrodinger equation. 
Fig. 3.-Quantum chemistry. Schematic survey of the various methods now used in molecular and solid-state theory for 

up from one-electron functions or spin-orbitals. In  
a first crude approximation the total wave function 
for N electrons may be approximated by a product 
of N spin-orbitals containing each one electronic 
coordinate; 
antisymmetric, Pauli’s exclusion principle has to be 
added as a supplementary condition. Many of the 
papers written on the theory of conjugated systems 
have been based on this approach, but it should be 
remembered that the accuracy in such a case cannot 
be too high, and usually the integrals involved have 
been estimated from empirical d a h  

since the total wave function is not , 

If a product wave function is antisymmetrized, i t  
is transformed to  a determinant (Slater). The con- 
ventional methods have here been of two types, de- 
pending on the basic assumptions about the one- 
electron functions. If these one-electron functions 
have been taken from the atoms constituting the 
molecule, they have been called atomic spin-orbi- 
tals and the whole approach the valence bond 
method (Heitler-London, Slater, Pauling). On the 
other hand, if the electrons have been considered 
as belonging to  the molecule as an entirety, the 
gne-elegtron functions have been chosen as molec- 
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ular orbitals which are extended over the molecule 
as a whole (Lennard-Jones, Hund, Mulliken). 
Some details of the calculations according to  the 
different schemes will be discussed below. 

Originally Heitler and London developed also 
another variant of the valence bond method, 
in which the total molecular wave function was 
built up from the atomic wave functions of the con- 
stituents. A semi-empirical form of this atomic ap- 
proximation recently has been presented3 under the 
name of “atoms in molecules.” Even a two-elec- 
tron scheme has now been p r ~ p o s e d . ~  

A few words should be said about the mathema- 
tics. The strongest tool up till now for deriving 
approximate solutions of an eigenvalue problem of 
the type of the many-electron Schrodinger equa- 
tion is the variation principle which says that the 
best approximation makes the expectation value 
of the Hamiltonian operator, given by the mathe- 
matical expression 

an extreme value, Le. 

If this is true for all variations, then the wave func- 
tion is an exa,ct solution to the eigenvalue problem. 
TJsually one assumes that the total wave function XP 
has a specific form containing a series of parame- 
ters, the best values of which are then determined 
by the condition (10). Since the origiual equation 
is an eigenvalue problem in configuration space, the 
variation principle is often applied in the following 
way 

<Hop>,, = f **Hop*(dx) (9) 

S<Hop>av  = 0 (10) 

eigenvalue problem in N-electron space 

simplifying assumptions about the eigenfunctions 

J. 
variation principle (11) 

new, simplified eigenvalue problem in one-electron space 

The simplified eigenvalue problem is often ex- 
pressed in the form 

where the “effective Hamiltonian’’ H e 8  is a one- 
particle operator which corresponds to the classical 
energy of a single particle (moving in the average 
field of all the other particles) modified to  take also 
the quantum-mechanical symmetry effects and the 
Pauli principle into account. The eigenvalues e 
are called the orbital energies. 

A standard method for solving an eigenvalue 
problem of this type is Ritz’s method, in which the 
eigenfunction 9 is expressed as a linear combination 
of a complete set 9~ 

H.rt$(x) = 4 x 1  (12) 

\k = C *KCK (13) 
K 

The undetermined coefficients CK are here obtained 
by the variation principle, which leads to a series of 

(3) W. Moffitt, Proc. Roy. 9oc. (London), A210, 224, 245 (1951). 
(4) Hurley, Lennard-Jones and Pople, i b id . ,  A220, 446 (1953); 

L. A. Schmid, Phys. Rev., 92, 1373 (1953). 

linear equations containing the eigenvalue B as an 
unknown parameter 

C (HKL - E ~ K L ) C L  = 0 (14) 
L 

HKL = f **KHop*L(dz) 

The eigenvalue is then determined by the condition 
that the determinant of the coefficients of this homo- 
geneous system should vanish 

det (HKL - ESKL} = 0 

The secular equation obtained in this way may be 
solved either by numerical computations or by ex- 
pansions which correspond to the conventional per- 
turbation method. Since Ritz’s method may be 
applied either to the original eigenvalue problem 
(4) in N-electron space or to the simplified eigen- 
value problem (12) in one-electron space, there are 
two types of secular equations of the same mathe- 
matical form but of essentially different physical 
meaning. The mathematics used is nowadays of a 
standard form, and a schematic survey of the vari- 
ous steps needed in solving the Schrodinger equa- 
tion is given in Fig. 4. 

However, if the general scheme is almost the 
same for all the methods, the details are rather dif- 
ferent, and we will now give some comments on the 
various approaches. 

(a) Valence Bond Method. The Theory of 
Chemical Resonance.-The valence bond method 
developed by Heitler-London, Rumer, Slater, and 
Pauling is a direct generalization of the formers’ 
pioneer work on the hydrogen molecule. It was 
found in this simple case that, if the electrons are 
assigned to  atomic orbitals belonging to  the two 
hydroeen atoms involved, the bond itself corre- 
sponded formally to  a total function which could 
be written as the difference between two determi- 
nants having the spin functions a and /3 inter- 
changed. The wave function for a molecule con- 
taining only a. number r of single bonds 1s then 
built up analogously by forming the algebraic sum 
of the 2’ determinants which are obtained from a 
given determinant by carrying out an a-p reversa1 
including change of sign for every single bond oc- 
currinq in the chemical structure formula and tak- 
ing all possible combinations.6 This method for 
constructing a singlet state of the total spin has its 
great advantage in the close parallelism between 
the quantum-mechanical wave function and the 
corresponding chemical formula for the compound. 
However, the method is connected with mathenia- 
tical difficulties which are not yet solved and which 
depend on the €act that the atomic orbitals in- 
volved overlap mutually with the effect that the 
various determinants are not orthogonal.6 The 
matrix elements of two non-orthogonal determi- 
nants are easily constructed, but, so far, i t  has not 
been possible to  give a simple expression for the 
matrix elements of two general valence bond struc- 
tures taking the non-orthogonality into full ac- 

(15) 

( 5 )  See, e . ~ . ,  0. Rumer, “Gottinger Nachr.,” 1932: L. Pauling, 

(6) The non-orthogonality problem was first emphasized by J. C. 
J .  Chsm. Phys. ,  1, 280 (1933). 

Slater, Phys.  Rm., 85, 210 (19301. 
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Eigenvalue problem in many-electron 
configuration space (Schrodinger equation) 

.1 
Assumptions about the form 

of the eigenfunctions 
I 

Single determinant built up from undetermined 
one-electron functions (spin-orbitals) 

Variation principle 

One-electron eigenvalue problem; 
system of non-linear integro-differential 
equations (Hartree-Fock equations) 

61 

Expansion of determinants built up from a fixed com- 
plete set of one-electron functions (spin-orbitals) or 
“superposition of configurations” 

J. 
Variation principle 

J. 
Secular equation 
of linear type 

I I 
I 

I I Calculation of matrix elements 
r 

Calculation of 
potentials 

.1 
J. 

Expansion of one-electron 
eigenfunctions in a fixed 
complete set 

Numerical integration 
by self-consistent field 
method Variation principle 

Numerical Soln. by perturbation 
soln. expansions 

Secular equation of non-linear type; 
Calculation of matrix elements 

J. c 
Numerical solution Solution by perturbation 
involving a self- 
consistent-field self-consistent field 
procedure procedure 

expansions involving a 

Solution characterized by simplicity and high Full accuracy obtainable. The solution lacks simple 
physical and chemical visuality. Limited accu- physical visuality, but may be discussed by means of the 
racy, since electronic correlation is not taken into natural spin-orbitals, which diagonalize the generalized 
account first-order density matrix 
Scheme may be generalized to higher accuracy by 
permitting different orbitals for different spins. 
The total wave function is then approximated by 
the “projection” of a single determinant corre- 
sponding to a pure spin state, and the same mathe- 
matical scheme is applicable 

Fig. 4.--&uantum chemistry. Schematic survey of the various mathematical steps needed in solving the many-electron 
Combinations of the two approaches outlined above have also Schrodinger equation for a molecular or solid-state system. 

proved to  be useful. 

count.’ It seems as if some new mathematical de- 
vice in the form of a “superdeterminant” would be 
needed and, only in special cases, has i t  been possi- 
ble to obtain a closed expression for the final result. 
If the overlap is neglected, the matrix elements are 
easily obtained, but i t  should be strictly eniphasiaed 
from the very beginning that the overlapping of the 
electronic clouds of different atoms is fundamental 
for the understanding of the chemical forces and 
that the whole picture will break down, if this over- 
lap is neglected. In  the earlier literature within 
this field, the overlap usually has been universally 
neglected, and this is very unfortunate. I n  the 
theory of ionic crystals, it has been shown that, if 
the overlap integrals are omitted, there will be no 

(7) See e.&. J. C. Slater, Quarterly Progress Report of Solid-state 
and Molecular Theory Group, M.I.T., p. 3, October 15, 1953 (un- 
publiiahed). 

repulsive forces a t  all, and the whole quantum me- 
chanical description will then lose its validity.8 
The importance of the overlap integrals has suc- 
cessively been recognized, and usually they are now 
properly included. However, there is still no treat- 
ment of the original valence bond method which 
has really solved this p r ~ b l e m . ~  

The valence bond method in its crudest form is 
based on the conventiona.1 chemical formula. How- 
ever, in the case of the hydrogen molecule, i t  was al- 
ready found that, if higher accuracy is desired, one 
has to include also the ionic structures, z.e., the total 
wave function should be a linear combination of 
valence bond functions corresponding to the three 
structures 

( 8 )  P. 0. Lowdin, J .  Chem. Phys. ,  18, 365 (1950). 
(9) P. 0. Lowdin, Adu. Phye. ,  6 ,  1 (1956), particularly Sec. 10 1, p, 

153. 
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H-H, H +H-, H -H + 

which are in “chemical resonance” with each 
other.I0 In  the case of the conjugated systems in 
organic chemistry, the positions of the double bonds 
are not entirely fixed in the conventional chemical 
formulas and, for instance in the benzene molecule, 
one has the following five “canonical” structures 

consisting of two Kekul6 structures and three De- 
war structures. The total wave function is then a 
linear superposition of the valence bond functions 
corresponding to  these structures. This “theory of 
resonance” seems first to have been suggested by 
Slater,ll and it has then in the hands of Pauling12 
and others been successfully developed and applied 
to many fundamental chemical problems. 

The resonance theory has a simplicity and chemi- 
cal visuality which is striking, and it is therefore 
unfortunate that the basic overlap and non-ortho- 
gonality problem still appears to  remain unsolved. 
We have previously pointed out that the non-or- 
thogonality problem has not yet been solved for 
the case of a single general valence bond struc- 
ture, and the problem is still worse for molecules 
containing resonating bonds. It is often empha- 
sized that i t  is mainly the coefficients for the reso- 
nating structures in the total wave function which 
have the basic chemical importance, but, in this 
connection, it should be remembered that the struc- 
tures themselves are not strictly orthogonal to  each 
other, which means that the coefficients are not 
even uniquely determined. In many of the leading 
textbooks in quantum chemistry, the theory of reso- 
nance is usually developed in a form where all over- 
lap integrals are neglected. This does not prevent 
the theory from being useful for certain purposes, 
for instance interpolation or extrapolation of chemi- 
cal data, but one should always remember that an 
essential refinement of this theory is needed to  
bring i t  in full connection with quantum mechanics. 

In  addition to  the non-orthogonality problem, 
there is another fundamental question in the valence 
bond method which has not yet been solved, namely 
the problem of the degree of linear dependence of a 
system of atomic orbitals associated with two or 
more nuclei. Usually one introduces just the 
atomic orbitals which are occupied in the conven- 
tional chemical formula for the compound, but, 
even if all ionized states involving these orbitals are 
included, the accuracy of the total wave functions 
caniiot be brought beyond a certain limit. In  order 
to obtain a complete accuracy, it is necessary to 
introduce also the excited atomic orbitals. How- 
ever, if a complete system of atomic orbitals is intro- 
duced on every nucleus, the total system of basic 
one-electron functions will certainly be overcom- 
plete, and essential difficulties will then occur in 
the theory, since the secular equation for solving 
the variation problem will be identically vanish- 
(lo) J. C. Slater, P l ~ y s .  Rev., 36, 210 (1930). 
(11) J. C. Slater, ibid., 81, 481 (1931), particularly p. 489. 
(12) L. Pauling, J .  Chem. Phys., 1, 280 (1933), and a series of papers 

in J .  Cham. Phys. and J .  Am. Chem. Xoc. 

ing, because of the existence of linear dependencies 
within the basic set. Even if only a limited number 
of atomic orbitals are introduced on every nucleus, 
there may exist approximate linear dependencies 
which are just as disastrous for the numerical solu- 
tion of the secular equation as the overcomplete- 
ness. l3 

The problems of non-orthogonality and overconi- 
pleteness may both be solved by constructing an 
orthonormal set by linear combinations of the given 
atomic orbitals, for instance by a combination of 
the symmetric and successive orthonormalization 
procedures,14 but this implies that one is losing the 
direct correspondence between the new valence 
bond methodLs and the simple chemical formulas 
and that the theory of resonance will then mainly 
be a mathematical scheme without direct chemical 
interpretation. For the moment, the whole valence 
bond method is therefore in a rather difficult di- 
lemma. 

(b) The Molecular-Orbital Method.-The va- 
lence bond method is partly based on the idea of the 
existence of individual atoms within the molecule. 
However, when the atoms are put together in a 
molecular system, the valence electrons may be 
considered as belonging to  the molecule as a whole, 
and this point of view forms the basis for the 
molecular-orbital method (Lennard-Jones, Hund, 
Mulliken). This aspect has been particularly im- 
portant for the understanding of the aromatic 
bond16 and the general properties of the conjugated 
compounds. I n  this approach, the total wave 
function is approximated by a single determinant 
built up from the occupied spin-orbitals. In  order 
to obtain the best approximation to a real eigen- 
function, one may apply the variation principle, and 
this leads to certain equations for the orbitals in- 
volved which are usually called the Hartree-Fock 
equations and which have the form (12). These 
equations have been solved numerically for a whole 
series of atoms in the periodic system, but, only for 
a few molecules have they been investigated on a 
more exact basis. The Hartree-Fock equations 
are non-linear integro-differential equations of a 
rather complicated type, and they are usually solved 
by means of a self-consistent-field procedure. 

For a system containing a large number of mobile 
electrons like the metals or the conjugated com- 
pounds, one may start from an approximate free- 
electron model, where the extension of the system 
gives the diniensions of the box within which the 
electrons are enclosed. For metals this model has 
been essentially refined in the cellular method, 
which is an attempt to solve the Hartree-Fock 
equations more accurately for a solid-state system 
having high symmetry. 

For molecules, there is little hope that one will be 
able to  apply the self-consistent-field method in the 
same way as in atoms and metals, and instead one 
may try to solve the basic equations by expanding 

. 

(13) R. H. Parmenter, Phys. Reu., 86, 552 (1952). 
(14) P. 0. Lowdm, J .  Chem. Phys. ,  18, 365 (1950); Adu. Phys. ,  5, 

(15) R. McWeeny, Proc. Roy. Xoc. (London),  Aa28, 63, 306 (1954). 
(16) E. Hiiokel, 2 .  Physik, 60, 423 (1930); 70, 204 (1931); 71, 310 

(1931). 

1 (1956), Seo. 3.2. 
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the solutions in a fixed complete set.” This set 
may be chosen as consisting of the atomic orbitals 
of the molecule under consideration, and this leads 
to  an approach usually denoted by the symbol MO- 
LCAO, which means that, the molecular orbitals are 
formed by “linear combinations of atomic orbi- 
tals.” When these orbitals are substituted in the 
total wave function, the matrix elements of the en- 
ergy will contain integrals of the same type as in 
the valence bond method. I n  the molecular orbital 
method, there is no basic non-orthogonality prob- 
lem of the same type as occurred in the valence bond 
method, but one must certainly take the overlap 
integrals into full account even in this approach. 
The calculation of the molecular integrals in gen- 
eral will be discussed below. 

The molecular orbitals are of particular impor- 
tance in the physical description of a molecule, 
since it may be shown that they may be used in 
constructing the wave functions for the ionized and 
excited states of the compound. The real and vir- 
tual solutions of the Hartree-Fock equations form 
further a complete system together, and this sys- 
tem may be used for describing the exact eigenfunc- 
tions to  the total Hamiltonian. Each determinant 
built up from N spin-orbitals selected from a com- 
plete orthonormal system is called a “configura- 
tion”-a name which is borrowed from the theory 
of atomic spechra-and, since it may be shown that 
the exact wave function may be expanded in a sum 
of such determinants, the method is called “super-. 
position of configurations” or sometimes ‘‘ config- 
urational interaction.” 

A determinant is invariant against, unitary trans- 
formations of the orbitals under consideration. By 
carrying out a suitable transformation of this type, 
i t  has been shown that the molecule may be de- 
scribed by means of equivalent orbitals18 which 
have the property that the corresponding exchange 
integrals are particularly small so that the chemi- 
cal forces may be described as closely as possible by 
means of electrostatic forces of the “classical” type. 
The equivalent orbitals give hence a rather visual 
description of the electronic structure of the chemi- 
cal bonds. 

(c) Calculation of Molecular Integrals.-In 
both the valence bond method and the molecular 
orbital method, one has usually based the whole 
description of the system on a set of atomic orbi- 
tals, and the expectation values of physical and 
chemical quantities are then expressed as integrals 
containing these orbitals. ‘In the energy calcula- 
tions, the main problem is represented by the cal- 
culation of the electronic repulsion integrals, which 
may contain as many as four atomic orbitals, since 
each electron density is a product of two atomic or- 
bitals. Such an electronic repulsion integral may 
therefore be associated with maximum four nuclei, 
but if two or more nuclei coincide, the integral will 
degenerate into a three-, two- or one-center inte- 
gral. Some of the molecular integrals of atomic or- 
bitals, which occurred in Heitler and London’s the- 

(17) C .  A. Coulson, Proc.  Camb., 33, 104 (1937); C. C. J.  Roothaan, 
Reu. Mod. Phys., 23, GP (1951); P. 0. Lowdin, Phys. Rev., 97, 1490 
(1955). 

(18) J. Lennard-Jones, Proe. R o y .  SOC. (London) ,  8198, 1, 14 (1949), 
and a series of papers by  him and his school in the same journal. 

ory for the hydrogen molecule, were only estimated, 
and the first “exchange integral” was actually eval- 
uated by Sugiura. Different types of molecular in- 
tegrals were later calculated by various authors, 
but it was soon discovered that, if i t  should be pos- 
sible to  work out the detailed structure of all mole- 
cules of interest, i t  would be necessary to standard- 
ize the integrals, since it mould be too laborious 
and tedious to  evaluate the integrals for every spe- 
cial case. The first extensive tables were worked 
out by Kotani and his school in Japan immediately 
before the war. 

After 1945, the problems of the calculation of the 
molecular integrals have been taken up a t  several 
places. I n  the United States Mulliken in Chicago, 
Slater at M.I.T., Eyring in Utah and others have 
been interested in various aspects of the problem, 
in England Coulson and Barnett have prepared 
auxiliary tables, and in Germany Kopineck has 
investigated two-center integrals-many other 
important projects not mentioned. In  Uppsala we 
have specialized on evaluating molecular integrals 
for the atomic self-consistent field functions. Nu- 
merical tables are now partly availablel9 or under 
publication, but it will probably take several years 
until the problem of the s tpda rd  integrals has been 
concluded. The two-center integrals may be tabu- 
lated in a rather condensed form, but i t  is evident 
that, for the tabulation of the three- and four-center 
integrals, a rather large number of books would be 
needed, and instead one has tried to work out accu- 
rate formulas for converting these integrals into 
two-center integrals, particularly overlap and 
coiilomb integrals. The standard integrals are now 
evaluated for mostly Slater exponentials, but the 
question remains whether one should use hydrogen- 
like functions including the continuum or an en- 
tirely discrete set. 

(d) Configurational Interaction.-If one looks 
at the diagram in Fig. 3 over the conventional 
methods now used for solving the many-electron 
Schrodinger equation, one will find that the whole 
development of quantum chemistry is hindered by 
the large amount of numerical work involved. In  
the valence bond method as well as in the MO- 
LCAO method, the evaluation of the molecular two- 
center integrals has represented a major problem, 
and it is evident that the question of the inclusion 
of the many-center integrals will be much harder to  
solve. The question of the non-orthogonality and 
the inclusion of the overlap integrals represents a 
theoretical and numerical problem which has now 
been solved successfully, at least for the molecular- 
orbital method. 

The calculation of the molecular integrals is not 
the only obstacle, however. Even if all these nu- 
merical difficulties have been overcome, one cannot 
expect a too high accuracy of the two standard 
methods applied in their simplest or naive forms, 
since the basic sets are far from being complete. 

In  order to improve the accuracy, i t  is necessary 
to  extend the basic set from N to M functions, 

I 

(19) A list of references may be found in A. Dalgarno, Math. Tab. 
A d s .  Comp., 8 ,  203 (1954); see also Kotani, Amemiya, Ishiguro and 
Kimrira, “Table of Molecular Integrals,” Maruzen Co., Ltd., Tokyo, 
1955, and H. Preuss, “Integraltafeln zur Quantenohemie,” Springer, 
Berlin, 1956. 
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where M goes to  infinity when the set tends to  be 
complete. The total wave function may then be 
expanded in determinants over the configurations 
obtained by selecting N functions from the basic 
set, and, since t.he number of configurations is 

(M - N ) ! ,  the secular equation will be of this or- 
der. Since the number (:) is quickly increasing 
witbM, the order of the secular equation goes up so 
rapidly that it may be possible to  solve this equa- 
ion numerically, only if an electronic computer of 
sf lc ient ly  high capacity is available. The total 
wave function obtained in this way is complicated 
and difficult to  interpret physically and chemically, 
but, by introducing the natural spin-orbitals20 
which diagonalize the generalized first- order density 
matrix, one obtains the configuration expansion of 
most rapid convergency, and the whole problem is 
then usually essentially simplified. 

In  this way i t  is possible to  approach the exact 
solution with any accuracy desired, and i t  is evident 
that the final result will be independent of the 
starting point. The molecular orbital method in- 
cluding configurational interaction will therefore 
give the same result as the valence bond method 
including ionized and excited states-provided that, 
in the latter, one has taken the non-orthogonality 
into proper account and reduced away the linear 
dependencies caused by the overcompleteness. 
However, the numerical work involved in carrying 
out even a modest “configurational interaction” 
is of such an order of magnitude that one is eagerly 
looking for any possibilities of simplifying the pro- 
cedure. I n  the molecular-orbital method, the main 
effect of the higher configurations is that they take 
the “electronic correlation’’ into account, and the 
question is whether this effect could be included in a 
simpler way. 

(e) Electronic Correlation.-The molecular or- 
bital method is based on the “independent-par- 
ticle model” which assumes that, in a first ap- 
proximation, one can neglect the mutual inter- 
action between all the electrons or take it into 
account only by means of an “average” field. 
However, a repulsive potential, like the Coulomb 
potential e2/rij, tries naturally to keep the particles i 
and j apart, and, since this “correlation” between 
the movements of the particles is entirely neglected 
in constructing a total wave function in the form of 
a simple product of the occupied spin-orbitals, the 
corresponding wave function and energy are af- 
fected by errors which are usually called “correla- 
tion errors.” The situation is somewhat changed 
by the antisymmetrization procedure, which has 
the direct consequence that the probability density 
for two particles with the same spin to  be in the 
same place will be zero of a t  least the second order 
(the “Fermi hole”). The main problem in treating 
antisymmetrized functions is therefore to take the 
correlation between electrons having anti-parallel 
spins into proper account. This problem is of funda- 
mental importance for the understanding of the 

given by the binomial coefficient (F) = M ! / N !  

(20) P. 0. Lowdin, Phys. Rev., B7, 1474 (1955); P. 0. Lowdin and 
H. Shull, ibid., 101, 1730 (1956). 

homopolar chemical bond, since this bond is asso- 
ciated with an electron pair having opposite spins. 
Extensive calculations have shown that each doubly 
filled orbital is associated with a correlation error 
which amounts to about 1 electron volt. The corre- 
lation energy is therefore a very important quantity 
in the theory of the chemical bond. 

In  the first successful treatments of the simplest 
two-electron systems, the He atom (Hylleraas) 
and the H, molecule (James and Coolidge), the in- 
terelectronic distance rI2 was explicitly introduced 
into the tots1 wave function, which is then called 
a “correlated” wave function. However, there are 
essential difficulties in generalizing this procedure 
to  many-electron systems and recently one has 
therefore tried another approach, which is based 
on the idea of the existence of a more “static” cor- 
relation. One has abandoned the idea of the doubly 
filled orbitals which occur in the original formula- 
tion of Pauli’s exclusion principle, and instead as- 
sumed that electrons having different spins may oc- 
cupy different orbitals in space.21 This means that 
the molecular orbitals have got a new degree of 
freedom and that the number of orbitals is twice as 
high as before. It is possible to extend the ordi- 
nary Rartree-Fock scheme to have different orbitals 
for different spins, and the main point is that even 
the generalized scheme preserves a great deal of the 
mathematical simplicity and physical visuality 
which is characteristic for the“independent-particle- 
model.” In applications to  simple atoms and mole- 
cules, i t  has been shown that the main part of the 
correlation energy may be taken into account in 
this simple way without any further configurational 
interaction. 

In  a scheme where there are different orbitals for 
different spins, a single determinant D is a mixture 
between spin states of various multiplicities so that, 
for an even number of electrons, we have 

D = singlet + triplet + quintet + . . . 
However, one can always select any pure spin com- 
ponent desired by means of a “projection operator” 
0 having the simple property O2 = 0. Measuring 
the spin in units of h, we find for instance that the 
operator IO for selecting the singlet component has 
the form 

(16) 

10 = (1 - s) (1 - &) (1 - :;) . . .  (17) 

In  this operator the first factor will annihilate the 
triplet term in (16)! the second factor the quintet 
term, etc., whereas the singlet term will survive the 
operation in an unchanged form. In the extended 
independent-particle model, the total wave function 
\k is therefore a projection of a single determinant, + = OD, and this has the important mathematical 
consequence that the expectation value of any 
physical or chemical quantity is easily formally 
evaluated. 
f q * H o p q ( d z )  = J (O*D*)Hop(OD)(dx)  = 

= fD*O+H, ,OD(dx)  = f D*H,,(OD)(dx) (18) 
This is an essential difference against the valence 
bond method, where the problem of calculating 
(21) P. 0. Lowdin, Rep. Nikko  Sump. Mol.  Phus., 113 (1954); 

Phys. Rev., 97, 1609 (1955). 
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the matrix elements has not yet been fully solved. 
There is consequently good hope that the correla- 
tion problem may be solved with a comparatively 
high accuracy ( ~ 0 . 1 5  e.v. per electron pair) with- 
out a more or less complete configurational inter- 
action. 

(f) . The United Atom-Model. A Simple Solu- 
tion of the Many-Electron Problem in Principle.- 
In  the survey given above, i t  has been pointed out 
that large difficulties are involved in calculating for 
instance the two- and many-center integrals oc- 
curring in the standard treatments of the molecu- 
lar problems. In  this connection, i t  could be 
pointed out that the mathematical problem of the 
solution of the many-electron Schrodinger equation 
may be solved, a t  least in principle, in a very simple 
way. I n  order to  describe the total wave function, 
one can select a basic set which is associated with a 
single center in space and forms a complete set. 
One set of this type is of the form 

rl~26+s12+~ (2v)e-vYIm ( 8 , ~ )  

where the radial fnnctions are Laguerre polynomials 
(without principal quantum number in the varia- 
ble), is an adjustable effective charge, and the 
functions Ylm are the ordinary spherical harmonics. 
The matrix elements of the Hamiltonian of an arbi- 
trary molecular system with respect to  this set are 
easily constructed and evaluated, and, since the to- 
tal wave function may always be expanded in Sla- 
ter determinants built up from configurations of the 
basic set, one may solve the Schrodinger equation 
by means of “superpositions of configurations.” 
The main problem is apparently to solve the secu- 
lar equation corresponding to  this problem, and 
this is possible if an electronic computer having 
sufficiently large capacity is available. With the 
development of the mathematical machines, one 
can expect to  get higher and higher accuracy in this 
process, and there are no limitations in principle as 
to  the accuracy obtainable. The essential differ- 
ence with respect to the conventional methods is 
that here no many-center integrals are involved and 
that the matrix elements are easily calculated. 
Since only a single center is used, the mathematical 
scheme corresponds to some extent to the “united 
atom model,” which was frequently discussed in 
the early days of molecular theory. No problem 
of including the continuum occurs, since the basic 
set is entirely discrete. It is clear that this model 
may be successful for molecules having a small ex- 
tension in space, but that i t  also may be rather 
cumbersome and require an enormous number of 
configurations for describing a large molecule. It 
may be anticipated that the model should be partic- 
ularly good for describing the excited states of the 
Rydberg type. 

The choice between the conventional methods 
using atomic orbitals associated with different nu- 
clei and the one-center model is therefore essentially 
a choice between the solution of a secular equation 
of lower order with complicated matrix elements 
and a secular equation of very high order having 
simple matrix elements. It is true that, in the one- 
center model, the basic set has no natural associa- 
tion with the problem itself, but, after having ob- 

tained the total wave function, one may transform 
the result to  another basic set-the natural spin- 
orbitals-which is directly associated with the 
problem under consideration. 

(g) Recent Development of Valence Theory. 
Density Matrices.-Some simplifications of the 
valence theory have recently been suggested. In 
quantum mechanics all physical and chemical 
quantities. are represented by hermitean operators 
Fop, but we note that only the expectation values of 
these operators 

are really measurable, For a many-particle sys- 
tem, the operator Po, may be expressed in the form 

= f **Fop * (dx) (19) 

1 
- E’ F i j k  + . . 3! ijk (20) 

where F(o, is a constant, Fi a one-particle operator, 
Fij a two-particle interaction, Fijk a three-particle 
interaction, etc. The operator Fop is said to be of 
the order p ,  if the highest interaction occurring is 
of this order. It has recently heen emphasizedz2 
that, in order to find the value of (19), it is not nec- 
essary to  know the wave function in detail but only 
a certain density matrix of order p of the form 

r(x’lx’z.. .xtP Ixlx2.. .xP) = 

= (r) f**(X’lx’Z. .x’pxp+l. .xN) \k(xlxz. .xpxp+l. .xN) 

dxp++l. .dza (21) 

This matrix is hermitean and antisymmetric in 
each set of its indices, and it satisfies further the 
normalization condition 

Jr( xlxz. . X, [ xixz. . x,)dzldzz. . dxp = (;) (22) 

The expectation value of Fop is then given by the 
formula 

<Fop>*“ = F(o) + f Fi P(x‘I [ xi)dzi + + f Fd?(x‘ix’z I xixz)dxidzz + f F 1 2 3 r ( ~ ’ l ~ ‘ 2 ~ ‘ 3  I ~ 1 ~ 2 x 3 )  
dzidz2dz3 + . . ., (23) 

where, in the integrals, me have introduced the 
additional convention that the operators F1, F,?, 
F123,. . . should work only on the unprimed coordi- 
nates and that, after the operations have been carried 
out, we put all x’i = Xi. According to (9) and (22), 
the total energy of a molecular system is for in- 
stance given by the expression 

(24) 
which implies that the energy and the valence prop- 
erties are determined already by the density matrix 
I’(x’lx‘z I XIXZ) of the second order and that it is not 
necessary to know the total wave function *(XI, xz, 
x3, . . . xN) of all N coordinates. The first term in 
(23) is the internuclear repulsion energy, the sec- 
ond is the kinetic energy of the electrons, the third 

(22) P. 0. L8wdin, Phys. Rev., 97, 1474 (1955); R. McWeeny, 
Proc. Roy.  SOC. (London), A383, 114 (1955). 
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represents the interaction energy between the elec- 
trons and the nuclei, whereas the last one is the in- 
terelectronic repulsion energy. 

The density matrix of order p = N is defined by 
the relation 
r ( x w 2 .  . . x’,v j xlxz. . . XN) = 

and the lower order density matrices may then be 
found successively by integra.tion 
r(x’lx’z.. . x ’ , - ~ I x ~ x ~ .  . . x , -~ )  = 

= **(X‘lx’2.. .x’N)*(xlxZ.. .xN) (25) 

- - P  - + I Sr(x‘lx’2. . . x’,-lxp lxlxz. . . X,-~X,,) dz, 

(26 1 
It would also be of interest to  investigate the re- 

verse problem and to see how much the knowledge of 
a lower-order density matrix ( p  < N )  would deter- 
mine the higher-order density matrices and the 
wave function. This problem is far from being 
solved and only a few special cases have been 
treated up till now. 

It has been shown21 that, in the Hartree-Fock 
scheme where the total wave function is approxi- 
mated by a single Slater determinant, the first-or- 
der density matrix r(x’l I xl) fulfills the two basic 
relations 

r2 = r, trace [I.] = N 
and that it further det,ermines also all the higher- 
order density matrices according to the formula 

r(x‘1x’z.. .x’,lx1xz.. .xp) = -i det (r(x’ilxj)) (28) 

(27) 

1 
P. 

where the determinant is of order p .  This result 
implies that, in the molecular orbital treatment of 
for instance the ground state of a molecule, it 
would be possible to determine all chemical prop- 
erties without the explicit knowledge of the individ- 
ual molecular orbitals, since I’(x‘1 I xl) describes 
entirely the quantum-mechanical situation. A 
practical method for the direct calculation of the 
first-order density matrix has also been con- 
structed.23 It should be observed, however, that 
the simple relat’ion (28) is not valid in higher ap- 
proximations than the Hartree-Fock scheme. 

It would certainly be worthwhile to investigate 
under which conditions the variation principle (10) 
may be formulated in terms of the second-order 
density matrix r(x’1x’2 I xlx2) instead of the wave 
function.24 In this connection we note that not all 
hermitean matrices f(x’lx’z . . . x ’ ~  I xlxz. . . xp) with 
the correct antisymmetry and normalization prop- 
erties are necessarily density matrices and that, for 
instance for p = N ,  a necessary and sufficient con- 
dition for t)he existence of the product form (25)  is 
expressed by the relation 
r(x’,x‘z. . . X‘N Io11az. . a ~ ) r  (utaz, . a , ~  /x,x2. .x.v) - - r(alorz. .a’N[a1a2, .QN) 

= r(x’Ix’z. .x’Nlxlxz. .xN), (29) 

for arbitrary values of the parameters al, az, . . , aN. 
In  a two-electron system, the second-order density 
matrix must therefore be varied subject to  the con- 
dition (29) for N = 2, which is a rather severe re- 
sbriction. It remains to investigate the auxiliary 

(23) R. MoWeeny, Proc. Roy .  SOC. (London), A2B5, 496 (1956). 
(24) J. E. Mayer, Phya.  Rev., 100, 1579 (1955). 

conditions which may exist for many-electron sys- 
tems with N 2 2. 

There seems to be no question that the density 
matrix formalism renders a considerable simplifica- 
tion of the quantum theory of many-particle sys- 
tems. It emphasizes such points as are of essential 
physical and chemical interests, and i t  avoids such 
concepts and ideas, which are of a more artificial or 
conventional type, as for instance different types of 
basic orbitals. However, the orbital idea itself is 
certainly useful, and we will now discuss how it may 
be preserved and utilized in connection with the 
density matrices. 

(h) Natural Spin-orbitals.-The idea of the 
existence of certain spin-orbitals is of essential 
importance in describing atomic and molecular 
systems, since it gives a high degree of simplicity 
and visuality to the theoretical explanation of a 
great deal of physical and chemical experimental 
experience. The idea goes back to  classical 
quantum mechanics, where it was assumed that 
each electron occupies its own fully specified quan- 
tum state, and we will now discuss whether i t  is pos- 
sible to maintain this basic idea also in a more ex- 
act theory taking the interelectronic repulsion and 
correlation into full account. 

Another reason for the introduction of spin-orbi- 
tals is of a more mathematical nature and depends 
on the fact that, if we introduce a complete ortho- 
normal set of one-electron functions I++~(x), it is pos- 
sible to  expand an arbitrary antisymmetric wave 
function \k(xl, xz, . . . xN) as an infinite sum of 
Slater determinants built up from this set 
Q(x~ ,x~ ,  . . .XN)  = C CKQK(X~,XZ,. . .xN), 

R 
*K(Xi,X2,. . .XN) = ( N ! ) - ’ h  det(@l, $kz, . . . $ k ~ ]  (30) 

where the sum should be taken over all ordered con- 
figurations K, ie., over all selections of N indices 
kl < kz < . . . < k N .  The coefficients CK for an ei- 
genfunction may in principle be determined by the 
variation principle, which leads to the linear system 
(14) and the secular equation 15; this is the method 
we have previously mentioned under the name of 
(‘ configurational interact,ion.” In  the different 
approaches to a molecular quantum theory, one 
has hoped to obtain good accuracy with only one 
or a few terms included in the expansion (30) and, 
for this purpose, one has chosen different basic 
sets of spin-orbitals : atomic orbitals, molecular or- 
bitals and so on. A survey is given in Fig. 5, show- 
ing also the main advantages of the different de- 
scriptions. 

If the basic set is not properly chosen, the series 
of determinants in (30) may be very slowly conver- 
gent with a corresponding difficulty in interpreting 
the results. In  this connection, i t  seems therefore 
natural to  ask whether there exists any basic set of 
spin-orbitals x ~ ( x )  which leads to the most “rapid 
convergency” in the expansion of the wave function 
*(XI, XZ, . . . xN) for a specific state.26 The answer 
may be found by a consideration26 of the first-order 
density matrix defined by (21) for p = 1 
T(x’1]~1) = h’ J**(x’ixz. .x.v)?lr(xiXz. .X~)dzz. . d z ~  

(31) 
(25) J. C. Slater. ibid., 81, 385 (1951). 
(26) P. 0. Lbwdin, ibid., 97, 1474 (1955). 
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Atomic orbitals 
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molecular properties, 
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Schrodinger equation 7 
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Molecular orbital method Exact wave functions 
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Simultaneous description “Classical” description Maximum occupation numbers, 
of round state and ion- of the chemical bond optimum convergency of total 
isef and excited states wave function, best step-by-step 

convergency for N = 2, sym- 
metry orbitals 

Fig. 5.-Development of the orbital idea in quantum chemistry. 

By using the arbitrary complete orthonormal set 
$k(X), this matrix may be expressed in the form 

r(X’1 1x1) = +*k(X’l)\tl(Xl)7’lk (32) 
kl 

where the coefficients y l k  form an hermitean matrix, 
which may be found from the coefficients CK by 
substituting (30) into (31). For the diagonal ele- 
ments, we obtain the simple formula 

(33) 

where the summation should be carried out over all 
configurations K containing the specific index IC. 
The element y k k  may be interpreted as the occupa- 
tion number for the spin-orbital $k(x), and we note 
that i t  depends only on the given state character- 
ized by X€’(xl, xz, . . . x,) and the orbital $k(X) under 
consideration. By combining (31) and (32), we 
obtain the explicit formula 
ykk = S+k(X’l)r(X‘l[X1)+*k(Xy)d2‘ldZ1 = 

= N S + k ( X ’ i ) ~ * ( X ’ I X z .  .XN)$*k(Xl)*(XIXz. . x N )  
dz’idzidzz. . d 2 N  (34) 

The occupation numbers ykk have simple prop- 
The normalization condition (5) gives ZK erties. 

[ & I 2  = 1, and (33) leads then to  the inequality 
0 L Ykk 4 1 

showing that there is never more than one electron 
in any chosen spin-orbital. This theorem follows 
from the antisymmetry property and is an expres- 
sion for Pauli’s exclusion principle. In  the naive 
formulation of this principle, each spin-orbital 
could be occupied by a full electron which then 
would exclude any other electron from entering the 
same orbital. This model has the advantage of a 
high degree of physical visuality, and, in order to 
approach it as much as possible, me will now intro- 
duce the basic orthonormal set xl, xz, x3, . . . which 
has maximum occupation numbers. 

Let U be the unitary matrix which brings the 
hermitean matrix q l k  to  diagonal form 

U+yU = n = diagonal matrix 

(35) 

(36) 
Introducing the set x. by the matrix formula x = 
$U or 

Xk = f iauak (37) 
a 

we obtain y = UnU+, $ = XU+, and finally 
r(X’11 xl) = X*k(X‘I)Xk(Xl)nk (38) 

IC 

The basic set x defined by (37) has thus the occupa- 

tion numbers n k ,  and the extremum properties fol- 
low then immediately from the fact that nl, n2, n3, 
. . . (with nl 2 nz 2 n3..  .) are the eigenvalues of the 
matrix Ylk. 

The functions xl, x2, x3, . . . will in the following 
be called the natural spin-orbitals associated with 
the state under consideration. The first function 
x1 is the spin-orbital which has the highest occupa- 
tion number possible, the second function x2 has 
the same property within the class of orbitals or- 
thogonal to XI, the third function has the same prop- 
erty within the class of orbitals orthogonal to x1 and 
xz, eta. 

If the relation $ = XU+ is substituted into (30), 
we obtain an expansion of 9 into configurations of 
the natural spin-orbitals 

*(Xi,X2,. . .XN) E (N!)-’/Z E A K d e t  (Xkl, xkq . . . XkN) 
K 

(39) 
which will be called the natural expansion. This 
series is characterized by a most “rapid conver- 
gency” in the following sense: according to  an ele- 
mentary theorem2’ for the eigenvalues of an hermi- 
tean matrix, the sum of the r highest eigenvalues is 
always larger than the sum of any r diagonal ele- 
ments, which gives 

T (r) 

k = l  k = (1) 
n k  2 ‘Ykk (40) 

By using (33) and (39), we t8hen obtain 

which expresses the optimum convergency prop- 
erty of the natural expansion. 

The natural spin-orbitals are symmetry orbitals. 
This important property may be used for sepamt- 
ing the u- and a-electrons in an exact theory for the 
conjugated organic compounds, for an exact formu- 
lation of the band theory for crystals, etc. 

The case of two electrons ( N  = 2) is of particu- 
lar importance for the understanding of the chemi- 
cal bond and has been analyzed in greater detail.28 
It has been shown that, in this case, the natural 
expansion of the total wave function X€’(xl, xr) has 
another important optimum convergency property 
in addition to (41). If the natural expansion is in- 
terrupted after r terms, the renormalized function 

(27) This theorem is easily derived from the separation theorems 

(28) P. 0. Lowdin and H. Shull. ibid.. 101, 1730 (195G). 
given e.g., in J. K. L. MacDonald, Phya. Rev., 49, 830 (1933). 
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qr has the smallest total quadratic deviation from 
the exact solution. 

J - q p  l a  dzidzz (42) 
of all functions built up by configurations selected 
from a finite basic set . . . +r of order T.  The 
result implies that x1 is closely related to but not 
identical with the corresponding Hartree-Fock 
function. 

Detailed calculations on the ground state of the 
helium atom have given the following occupation 
numbers for the first three natural spin-orbitals 

The result shows how the coulomb repulsion is 
breaking up the closed shell ( 1 ~ ) ~ ~  since it is ener- 
getically cheaper to have a small fraction of the 
electron in x1 excited to  the higher spin-orbitals xz 
and x3. Similar calculations for the ground state of 
the hydrogen molecule are now in progress, and we 
hope that they will lead to a simple but a t  the same 
time accurate treatment of the covalent bond. 

The measurements in modern chemistry are now 
so refined that a very high degree of accuracy is 
needed in the corresponding theories. In quantum 
mechanics good methods have been worked out for 
determining eigenvalues, i.e., total energies E, but 
unfortunately the chemists and physicists are usu- 
ally measuring only energy differences AE which are 
very small fractions of the total quantities. This 
implies that rough models are no longer sufficient 
and that, in many cases, not even the Hartree- 
Fock scheme has a high enough accuracy. The 
problem of the electronic correlation has thus be- 
come of great importance, but it seems as if the 
introduction of density matrices and natural spin- 
orbitals would prevent the theory from becoming 
too complicated in its mathematical form to be 
given a simple physical and chemical interpretation. 

Goal of Quantum Chemistry.-It is sometimes 
said that a theoretician is a person who knows 
how to solve a problem, but who cannot do it. 
This remark is certainly true concerning the quan- 
tum chemists since i t  is pointed out above that 
we know several ways of solving the many-electron 
Schrodinger equation in principle, but that there 
are large difficulties in carrying out these solutions. 
The difficulties are therefore transformed from the 
purely mathematical plane to a plane where both 
mathematics and numerical technique are involved. 
Unfortunately this does not mean that the problem 

ni = 0.99562, nz = 0.00431, = 0.00007 (43) 

has been solved or even essentially simplified, since 
numerical technique is a domain which requires 
just as much ingenuity as pure mathematics. 
The development of the modern electronic com- 
puters may here be of fundamental importance. 

The problems involved in quantum chemistry 
are comparatively hard, and the scientists working 
within this field have therefore found it desirable to 
arrange a series of international conferences in order 
to get a common attack on all these problems 
(Shelter Island 1951, Nikko 1953, Stockholm- 
Uppsala 1955, Austin 1955). The arrangements of 
these symposia have greatly helped the develop- 
ment of molecular theory, but, since there is an 
extremely small number of quantum chemists in 
relation to the total number of chemists, i t  mill 
probably take a considerable time before even the 
more fundamental problems of chemistry have been 
thoroughly treated by quantum mechanical meth- 
ods. Today there is therefore no answer to the 
question whether the above-mentioned drastic ex- 
trapolation from N = 2 to an arbitrary N is justi- 
fied or not, but so far there have not been any es- 
sential objections to  it, and we have thus good rea- 
sons for believing that the many-electron Schrodin- 
ger equation in configuration space is the correct 
basis for the description of molecular or solid-state 
sys terns. 

There seems to be a rather long way to go before 
we reach the mathematical goal of quantum chem- 
istry, which is to be able to  predict accurately the 
prnperties of a hypothetic polyatomic molecule 
before it has been synthesized in the laboratories. 
The aim is also to obtain such knowledge of the 
electronic structure of matter that one can con- 
struct new substances having properties of particu- 
lar value to mankind. To learn to think in terms of 
electrons and their quantum mechanical behavior 
is probably of greater technical importance than 
me can now anticipate. We have further shown 
that quantum mechanics is necessary to under- 
stand the covalent bond, and there is certainly no 
doubt that the tool of quantum mechanics will ap- 
pear to be more and more fundamental for the 
discussion of chemical problems in general. It 
seems therefore urgent to incorporate the language 
and technique of quantum mechanics in the domain 
of chemistry, and particularly to find the correct 
electronic interpretations of the ordinary chemical 
phenomena. Many important qualitative and quan- 
titative problems remain here to be solved. 


