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Accurate ground-state energies of the hydrogen molecule have been computed using wavefunctions in 
the form of expansions in elliptic coordinates and including explicitly the interelectronic distance. The 
computations have been made with 54-term expansions (0.4~R~3.7) and with 80-term expansions 
(0.5~R~2.0). For the equilibrium internuclear distance, the best total energies obtained in the two cases 
are -1.1744701 a.u. and -1.1744746 a.u., respectively, the corresponding binding energies being 38291.8 
and 38 292.7 cm-I • Employing the 54-term wavefunctions, the relativistic corrections and the diagonal 
corrections for nuclear motion have been computed for several internuclear distances. For eqUilibrium their 
contributions to the binding energy have been found to be -0.526 and 4.947 cm-I, respectively. Thus the 
final theoretical binding energy for H. amounts to 38 297.1 cm-I and is a little larger than the experimental 
value 38 292.9±0.5 cm-I • The discrepancy may be due to the adiabatic approximation. 

I N recent years the hydrogen molecule has been 
studied extensively and with great accuracy by 

experimental and theoretical methods. The most 
accurate theoretical binding energy to date, computed 
for clamped nucleii using a nonrelativistic Hamiltonian, 
differed by 4.6 cm-I from the most accurate experi­
mental value obtained recently by Herzberg and 
Monfils.2 However, if the diagonal corrections for 
nuclear motion as computed by Van Vleck3 are em­
ployed to extrapolate the experimental binding energy 
to the case of infinitely heavy nuclei, the disagreement 
between theory and experiment decreases2 to only 0.1 
cm-r, which is five times smaller than the experimental 
error. 

There are, however, good reasons to believe that this 
excellent agreement between theory and experiment 
is fortuitous: (1) It is not known whether the 50-term 
wavefunction which was usedl yielded the limiting value 
of the energy. It is possible that, by using in the varia­
tional wavefunction more terms with higher powers of 
the variables, one would get a still lower energy. (2) No 
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I W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 
(1960) . 

2 G. Herzberg and A. Monfils, J. Mol. Spectry. 5, 482 (1960). 
3 J. H. Van Vleck, J. Chern. Phys. 4, 327 (1936). 

relativistic effects' were included in the theoretical 
results, and later estimations suggest4 that the rela­
tivistic contribution to the binding energy may be of 
the order of -1 cm-r, or even5 + 7 cm-I • (3) The 
diagonal corrections are sensitive to the form of the 
wavefunction, and a contribution of -5.1 cm-I has also 
been reported4 in contrast to Van Vleck's value of 4.5 
cm-I . Thus the Van Vleck corrections, computed with 
a relatively poor wavefunction, may differ from accu­
rate values. (4) Even if the above-mentioned objec­
tions are taken care of, the resulting theoretical binding 
energy may still differ from the experimental value 
due to the neglect of the nondiagonal terms coupling 
the electronic and nuclear motion. 

The computations reported in this paper were under­
taken to clarify these points and to compute an accu­
rate binding energy of the hydrogen molecule within 
the framework of the adiabatic approach. 

ADIABATIC APPROXIMATION 

The separation of electronic and nuclear motion in 
diatomic molecules can be performed using a method 
of Born,6 which is somewhat different from the earlier 

4 W. Kolos and L. Wolniewicz, Acta Phys. Polon. 20, 129 
(1961) . 

iA. Froman, Rev. Mod. Phys. 32,317 (1960). 
6 M. Born, Nachr. Akad. Wiss. Gottingen 1 (1951); M. Born 

and K. Huang, Dynamical Theory of Crystal Lattice (Oxford Uni­
versity Press, New York, 1956) pp.406-407. 
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3664 W. KOLOS AND L. WOLNIEWICZ 

Born-Oppenheimer7 approach. The exact nonrelativistic 
Hamiltonian of the symmetrical H2 molecule in the 
center-of-mass system is separated into two parts: 

(1) 

where XO denotes the Hamiltonian in the clamped 
nuclei approximation including the nuclear repulsion, 
and x' describes the kinetic energy of the relative 
motion of the two nuclei as well as the coupling between 
electronic and nuclear motions: 

(2) 
where 

X 1= - (l/M).:lR, 

X2= - (1/4M) (.:lrl+.:lr2+2VrlVr2). (3) 

The electronic problem 

The potential energy in this equation, 

Un(R) = EnO(R) +X' nn(R) , (10) 

takes partly into account the coupling between elec­
tronic and nuclear motion and is sometimes called 
"the best potential-energy curve" for the given nth 
electronic state of the diatomic molecule. 

CLAMPED NUCLEI COMPUTATION 

The clamped nuclei computation was a straight­
forward extension of the variational treatment of H2 
carried out by Kolos and Roothaan,1 i.e., the following 
wa vefunction was employed: 

(11) 

where 
(12) 

X'¥n(X, R) = EnO(R)Y;n(x, R) (4) and 

is assumed to be solved. In (4), x represents the co­
ordinates of all electrons in the molecule R= I R \, 
and R is the relative position vector of the nuclei. The 
electronic wavefunctions if;n(x, R) are chosen to be real 
and normalized for all values of the parameter R. 
Obviously they from a complete set in the space of x. 
Next one looks for the solution of the problem 

(XO+X')q,(x, R) = M(x, R), (5) 

in the form of the expansion 

'11",.1'= (1/211") exp[ -a(~I+~2) J~{711·~l71lpl'. (13) 

~ and 71 denote the elliptic coordinates, and p= 2r12/ R, 
where r12 and R are the interelectronic and internuclear 
distances, respectively. The symmetry restriction that 
S+8 be even must be fulfilled. 

Since the expansion coefficients c. satisfy 

L(XijLBOSij)c;=O, (14) 
; 

the energy is the lowest root of 

det(3CL BOS) =0 (15) 
q,(x, R) = LXn(R)Y;n(x, R), 

n 
(6) and was computed using the Ostrowski8 iterative 

method: 
which gives the following rigorous set of equations for 
the functions xn(R) : 

[- (1/2Jt).:lR+EnO(R) +X'nn(R) -EJXn(R) 

= - LX'mn(Rhm(R), (7) 

(16) 

where c(n) denotes the eigenvector in the nth approxi­
mation, and 

BO(n) = c(n)3COc(n) / c(n)Sc(n). (17) 

where 

X'mn= jY;m(X, R)X'if;n(x, R)dx, 

In most cases, starting with Cl (0) = 1 and c/O) = 0 for i.= 1, 
only three or four iterations were needed to get satis­

(8) factory results. 

and Jt is the reduced mass of the two nuclei. 
By neglecting the right-hand side of Eq. (7), one 

gets the adiabatic approximation q,=XnY;n and a 
Schrodinger-type equation for the nuclear motion 

DIAGONAL CORRECTIONS FOR NUCLEAR MOTION 

The computation of the diagonal elements X' nn, de­
fined by Eqs. (2) and (8), can be carried out using a 
method published previously by the present authors.4•9 

For the matrix elements of X2, with respect to the 
(9) functions 'IIi, one obtains 

(X2) ij= - 8~j pI'/+I'{q,'iVIV2q,' ;+'11' jV1V2q,'i- Vlq,',V2q,' i- VI'll' ;V2q,', 

+'11',.11'11' ;+'11' ;.12'11',- VI'll' .VIq,' i- V2q,' ,V2q,' jJdTIdT2, (18) 

7 M. Born and R. Oppenheimer, Ann. Phys. 84, 457 (1927). 
8 A. M. Ostrowski, Arch. Rational Mech. Anal. I, 233 (1958); Math. Rev. 21, 80 (1960). 
9 W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963). 
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GROUND STATE OF THE HYDROGEN MOLECULE 

To compute the expectation value of .6R, one can use the relation 

f cl>.6R~l>dTldT2= ~ f (Rp)l' icl>.6RG.(Rp)-l'icl>,dT1dT2, 

and in Eq. (19), the operator .6R can be shown4•9 to be equivalent to 

.6 -~ ~ ~ 2(~12+7112_1)[~( 2-1)~+~(1- 2)~J 
R- aR2+RaR+ R2(~l-7112) a~ ~l a~l iJ71l 711 iJ71l 

R2(~1;-7112)[ M~12_1) a~1+711(1-7112) a:J[ 1 +Ra~J+ R2(~L71l;) a22-7122) 

X[~l(~lL 1)~+71l( 1-7112)~][M~2L 1)~+712(1-TJ22)~] 
iJ ~1 aTJ1 a ~2 aTJ2 

3665 

(19) 

2[a12-1) (1-7112) (~2L 1) (1-7122) ]i [a iJ][ a iJ ] a2 iJ 
+ R2(~12-TJ12)(~22-TJ22) COS(ipl-~) TJla~l-~laTJl TJ~-~2aTJ2 == iJR2+ D1aR +D2. (20) 

Thus the expectation value of .6R can readily be computed if the derivative of the wavefunction with respect 
to the internuclear distance is known. The differentiation has been carried out assuming that in the wavefunction 
not only the coefficients Gi, but also the exponent a, is a function of R. With these assumptions, a simple manipu­
lation gives for the expectation value of .6R the equation 

21 f(a<I»2 J . [(J.!i+ 1) J.!. fJ.i ] . 
(.6R)= R2- aR dT1dT2+ ~ pl"cl> R2 RD1+ D2 c.-cl>;p-I"dT1dT2 

+ ~ f P"icl>( - 2~i+ Dl)cl>iP-I'~dTldT2+ ~~ J P"icl>(~1+~2) e~i - Dl)cl>iP-l'iCiliTldT2. (21) 

Since 

+ ~ J P"icl>Dlb/cl>iP-l'idTldT2+2~~ J cl>(~1+~2) b/"CfJ.dTldT2 

-G;YJ cl>(~1+~2)2cl>dTldT2-~~ J P"iCfJ(~1+~2)DICiCfJip-l'idTldT2, (23) 

where 

I dCi fJ.i 
b· =---c' 
• dR R" 

b." = !!:!:(JL,+ 1 C.- 2 dC.) 
, R R • dR' 

(24) 

The derivative dc;! dR, appearing in Eq. (23), can easily be found. The coefficients Ci obviously satisfy the set of 
equations 

LC.(R) [3Cik(R) -EOSik(R)]=O (25) 
i 

and 
LCi(R)Ck(R) Sik(R) = 1. (26) 

i 

By differentiating Eq. (25) with respect to R and employing the virial theorem, one obtains 

dc. (23Cik- V ik 2EO- {V) ) da 
~(3Cik-.ElSik) dR= ~ R R Sik Ci+ dR~{~1+~2' 3C-.EljikCi, (27) 
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3666 W. KOLOS AND L. WOLNIEWICZ 

where the curly brackets denote the anticommutator. Making use of the wave equation, one easily gets 

.L:{~1+~2' X-EOJikCk= -R82.L:{d--!~12+(~12_1) !l:]} c". 
k k ~L V .. 1 ik 

(28) 

(29) 

By solving the set of inhomogeneous linear equations (27) with the auxiliary condition (29), one gets the deriva­
tives dc;/ dR. 

To perform integrations in the matrix elements of XO, Xl, and X2, one has to evaluate integrals of the type 

1 f J - -[lSrsri= 4?r2 exp[ -2a(~1+~2) ~{171'~{172'pI'd~ld~~171d17~CP1dcp2 

and 

MlSr8ri= ~f exp[ - 2a(~1+~2) J~{171'U17lpl'[(~lL 1) (1-1712) (~2L 1) (1-1722) J1 COS(CP1-CP2)d~ld~~171d17~CPldcp2, (30) 
47r2 

where p.? -1. The integrals have been computed using the method given by Kolos and Roothaan,l° which is 
based on Ruedenberg'sll analysis for the exchange integrals. The auxilary integrals <l>nnMI were computed by 
a 110-point numerical integration, which has been found to be satisfactory for single precision computations. 

RELATMSTIC CORRECTIONS 

The relativistic corrections for H2 have been computed using the two-electron relativistic Hamiltonian which 
can be derived from the Breit equation in the Pauli approximation.12 In the absence of external fields, it reads 

X= Xo+X1+X2+Xa+3<4+X6, 

where Xo is the Schrodinger Hamiltonian of the molecule, and 

X 1= -ia2(.112+.122) , 

X2 = !a2 (1/ r12) [VI V 2+ (1/ r122) rd r12 V 1) V 2J, 

X3= -i!a2{[FI XV1+ (2/r123) r12 XV2J81+[F2 XV2+ (2/rI23) r21 XVIJSz}, 

X4= ia2{V1Fl+V2F2J, 

X6=a2{ -he 8182) 5(3) (r12) + (1/rI23) [8182- (3/rI23) (81r12) (82r12)]'}, 

(31) 

(32) 

A perturbation treatment can now be employed to compute the relativistic corrections. In the case of the ground 
state of H2, which is a l~o+ state, the expectation value of X3 and of the second term in X5 vanish, and the cor­
rections Ei= J<I>Xi<l>dT1dT2 to be computed can be expressed as follows13 : 

El = a2 Uf ( .11<1» .12<1>dTldT2 -! E2+ E f <I> V <l>dT1dT2-~f <I> V2<1>dT1dT2} , 

E2= !a2j <I>(rI2)-1[V1V2+ (r122)-lr12( r12V1) V2J<I>dT1dT2, 

E6= 27ra2f <1>5(3) (rI2) <l>dTldT2. 

In the derivation of (33) use has been made of the wave equation in order to simplify the evaluation of El. 

10 W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 205 (1960). 
11 K. Ruedenberg, J. Chern. Phys. 19, 1459 (1951). 

(33) 

12 H. A. Bethe and E. E. Salpeter, in Handbuch der Physik. edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35/1, p. 
267. 

13 Note that in Eqs. (32) and (33) a denotes the fine structure constant and not the parameter used in the wavefunction. 
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In the numerical computation, the wavefunction (11) was used and the matrix elements of the corrections (33) 
were expressed in terms of integrals in elliptic coordinates. In addition to the integrals (30), the following new 
types of integrals are needed for the relativistic case: 

1-3 = f exp[ - 2ex (~l + ~2) ]p-3W(2) (~11]1~21]2) d~ld~?Ji1]ld1]?JiCPldcp2, (34) 

and 

where m~ -1, and Wei) may be expressed in terms of 

as follows: W(l) ex PI or P2, and W(2) is equal to one of 
the three products: PlPl, Pl P2, or P2P2, multiplied by 
powers of h, 1]1, ~2, 1]2. 

00 I 

p-2p = L: L:d1m(p) [(1-1]12) (1-1]22) alL 1) (hL 1) ]m/2 
1=0 m=O 

(34') 

(35) 

It is obvious that each W(i) is a polynomial in ~h 1]1, 

~2, 1]2 having a zero of at least the ith order, if ~l = ~2 and 
1]1 = 1]2 simultaneously. 

In the numerical integration of (35), use has been 
made of the Neumann expansion for T12-l , and for the 
higher inverse powers of T12 in (34) the following series 
was used14 : 

X D l_m1>+m ( ~+) C l_m1>+m ( ~_) C l-m1>+m ( 1]1) C l-m1>+m ( 1]2) CmH ( coscp) 

where Cr are the Gegenbauer polynomials, CP=CPl-CP2, 

p) 0, p~!, (37) 

D,:W = Cn'W f~ (x2-1)-v-t[Cn>(x) ]-2dx, 

d ( ) = _22m+lr(2P-1) [r(p+m)]2(l-m) !(l+p) (2p+2m-1) 
1m p [r(p)]2r(2p+l+m)· 

(38) 

It will be noticed that the integrands in (34) behave 
like T12-l if Tl~O, and for the existence of (34) the 
behavior ex T12-2 would be sufficient. There are, however, 
two difficulties if (37) is used in an integrand that goes 
like T12-2: (1) the convergence of the series is very poor; 
(2) the integration of the right-hand side of (37) over 
the region T12= 0 always produces zero, while the left­
hand side gives a nonvanishing contribution. As a con­
sequence, this region has to be considered separately. 
However, both these difficulties disappear if the inte­
grand behaves like T12-l near T12= 0, and this is just the 
case in (34) and (34'). 

From (32) it is readily seen that H2exT12-l if T12~0. 
Thus the evaluation of E2 in terms of (34) and (34') is 
straightforward, though tedious. In El, however, the 
integrand goes like T12-2• Nevertheless, the use of the 
integrals (34') is still possible due to the identity 

f T12-2jdTldT2= f T12-2( r12Vl)jdTldT2, r12= r2- rl, (39) 

There is one more point concerning the final summa­
tion in (37) to be mentioned. If we denote by II the 
contribution to a given integral (34) due to the one 
value of 1 (and all corresponding m values), the integral 
reads either 

(40) 

or 

( 41) 

In some cases it happens that (40) represents an 
alternating series and the partial sums SL have alter­
nating signs, unless L is very large. This makes the 
convergence of (41) prohibitively slow. To avoid this 
difficulty, use has been made of the property of 
sequences 

(42) 

which is always satisfied if both integrals exist. Equa- and the summation has been performed in an equivalent 
tion (39) was used to achieve the proper behavior of 
the integrals in El. 14L. Wolniewicz, Acta Phys. Polon. 22,3 (1962). 
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TABLE I. Convergence of the ground-state energy. 

(a= 1.0, R= 1.4 a.u.) 

P No. of terms E (a.u.) 

1 3 -1.1520288 
2 9 -1.1733127 
3 20 -1.1743389 
4 40 -1.1744663 
5 67 -1.1744728 

>5 80 -1.1744742 

but more rapidly converging way 

1= limSL, 
L .... oo 

where 

D (em-I) 

33 366.6 
38037.7 
38 263.0 
38 290.9 
38 292.4 
38292.7 

(43) 

SL= i(sL+3sL+I+3sL+2+SLt3). (44) 

In the final computation, the summation to L=40 was 
used, i.e., we replaced (43) by I~S40, since it has been 
found that a further increase of L did not change the 
results. The numerical integrations were carried out 
using Simpson's rule with 80 integration points. An 
increase of the number of integration points up to 160 
did not change the values of the corrections. 

RESULTS AND DISCUSSION 

The computations were carried out on the IBM 7094 
computer at the Computation Center of the Univer­
sity of Chicago. Keeping fixed values of a= 1.0 and 
R= 1.4 a.u., numerous test runs were made to select 
the most important terms in the wavefunction (11). 
The expansion length was gradually increased with 
the following limitations for the powers of the variables: 
r+s (and 1'+8):=;5 for JL=O and r+s (and 1'+8):=;3 

TABLE II. Total, binding, and potential energies 
computed with 80-term wavefunctions. 

R (a.u.) a E (a.u.) V (a.u.) D (em-I) 

0.55 0.536 -0.6627707 -2.6465751 -74013.3 
0.60 0.562 -0.7696341 -2.6769660 -50 559.5 
0.65 0.597 -0.8543614 -2.6899810 -31 964.0 
0.70 0.636 -0.9220261 -2.6904771 -17 113.3 
0.75 0.662 -0.9763357 -2.6819180 -5 193.7 
0.80 0.698 -1.0200556 -2.6668205 4 401. 7 
0.90 0.765 -1.0836422 -2.6239059 18 357.2 
1.00 0.837 -1.1245385 -2.5715404 27 333.0 
1.10 0.892 -1.1500562 -2.5152997 32 933.5 
1.20 0.959 -1.1649342 -2.4584207 36 198.9 
1.30 1.014 -1.1723459 -2.4027901 37 825.6 
1.35 1.043 -1.1739627 -2.3758101 38 180.4 
1.39 1.066 -1.1744517 -2.3547115 38287.7 
1.40 1.072 -1.1744744 -2.3495093 38292.7 
1.401 1.072 -1.1744746 -2.3489908 38292.7 
1.4011 1.072 -1.1744746 -2.3489392 38 292.7 
1.41 1.077 -1.1744599 -2.3443366 38 289.5 
1.45 1.100 -1.1740558 -2.3239571 38 200.8 
1.50 1.121 -1.1728537 -2.2991984 37 937.0 
1.60 1.165 -1.1685799 -2.2521884 36 999.0 
1. 70 .1.210 -1.1624570 -2.2086130 35 655.2 
1.80 1.258 -1.1550670 -2.1685307 34 033.3 
1.90 1.295 -1.1468496 -2.1319110 32 229.8 
2.00 1.342 -1.1381312 -2.0986802 30 316.3 

-2.0 

-3.0 

V 
-4.0 

-5.0 

-6.0 

I 
I 

I 
I 

: 
I 

I 

R 

v 

3.0 

2.0 

T 
__ ",--T __ -I 1.0 

FIG. 1. Energies (in atomic units) for the ground state of 
H2 (54-term wavefunction). 

for JL= 1, 2, 3. The terms which did not significantly 
improve the total energy were rejected in subsequent 
runs. In this way a 80-term wavefunction has been 
selected, and the wavefunction was also used for other 
values of the internuclear distance. The convergence 
of the energy is shown in Table I, where Pma% denotes 
the maximum value of p=r+s+1'+8+JL. 

Similar test runs were also made with more restricted 
expansions. Thus, with r+s:=;4 for JL=O and r+s:=;2 
for JL= 1, 2, 3, the best energy obtained was W= 
-1.1744720 a.u., which gives the binding energy 
D.=38 292.3 em-I. This is only by 0.1 cm-l worse than 
the 67-term result given in Table I, obtained with 
higher powers of ~ and 1/. With r+s:=;4 for JL=O and 
r+s:=;2 for JL= 1, 2, the best energy obtained using a 
54-term expansion was W= -1.744699 a.U., which 
gives the binding energy D.=38291.7 cm-l • These 

150 

- ---
100 

50 -~ t.R 

" , 
~ 

I 
-.g.VIV2 

0
0 1.0 2.0 3.0 

R 

FIG. 2. Diagonal corrections for nuclear motion for the ground 
state of H2(in reciprocal centimeters). 
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TABLE III. Energies and diagonal corrections for nuclear motion computed with 54-term wavefunctions.· 

R a E v D 
- (2M)-1 - (2M)-1 -M-l 
X (t.,.,) X (Vr.V..,) X (t.R) Enuol t.Dnuol 

0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.35 
1.39 
1.40 
1.401 
1.4011 
1.41 
1.45 
1.50 
1.60 
1. 70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.40 
3.60 
3.70 

0.407 
0.416 
0.442 
0.4836 
0.5223 
0.5601 
0.5966 
0.6314 
0.6745 
0.7334 
0.8025 
0.8560 
0.9148 
0.9723 
1.000 
1.021 
1.027 
1.027 
1.027 
1.031 
1.054 
1.078 
1.132 
1.187 
1.249 
1.308 
1.362 
1.427 
1.486 
1.554 
1.614 
1.676 
1.747 
1.806 
1.863 
1.926 
2.000 
2.067 
2.126 
2.192 
2.262 
2.382 
2.517 

-0.1202028 -2.3630289 -193093.2 
-0.3509282 -2.5024310 -142 454.8 
-0.5266270 -2.5917873 -103 893.4 
-0.6627583 -2.6465583 -74016.0 
-0.7696253 -2.6769600 -50561.4 113.994 

109.708 
105.693 
101.936 

8.026 
7.880 
7.736 
7.596 
7.459 
7.193 
6.940 
6.697 
6.465 
6.242 
6.134 
6.049 
6.028 
6.026 
6.025 
6.007 
5.923 
5.821 
5.619 
5.424 
5.232 
5.043 
4.857 
4.673 
4.489 
4.306 
4.123 
3.939 
3.754 
3.570 
3.383 
3.197 
3.012 
2.826 
2.642 
2.461 
2.285 
1.948 
1.786 

36.084 
36.654 
37.076 
37.382 
37.615 
37.871 
38.005 
38.072 
38.136 
38.226 
38.289 
38.348 
38.365 
38.366 
38.367 
38.382 
38.457 
38.566 
38.843 
39.201 
39.644 
40.176 
40.794 
41.505 
42.301 
43.184 
44.140 
45.168 
46.255 
47.385 
48.538 
49.709 
50.875 
52.013 
53.253 
54.102 
54.989 
56.588 
57.276 
59.766 

158.104 
154.242 
150.505 
146.914 
143 .495 
137.119 
131.427 
126.364 
121. 907 
118.007 
116.252 
114.936 
114.620 
114.588 
114.585 
114.308 
113.105 
111. 704 
109.224 
107.149 
105.446 
104.091 
103.057 
102.330 
101.882 
101.702 
101. 759 
102.040 
102.521 
103.173 
103.964 
104.883 
105.895 
106.964 
108.208 
109.128 
110.143 
112.111 
113.048 
119.532 

-38.572 
-0.8543531 -2.6899756 -31 965.8 -34.710 
-0.9220185 -2.6904717 -17 115.0 -30.973 
-0.9763287 -2.6819152 
-1.0200487 -2.6668265 
-1.0836362 -2.6239031 
-1.1245331 -2.5715414 
-1.1500512 -2.5152963 
-1.1649294 -2.4584158 
-1.1723414 -2.4027857 
-1.1739581 -2.3758036 
-1.1744472 -2.3547044 
-1.1744699 -2.3495022 
-1.1744701 -2.3489835 
-1.1744701 -2.3489315 
-1.1744556 -2.3443296 
-1.1740513 -2.3239486 
-1.1728492 -2.2991869 
-1.1685773 -2.2521693 
-1.1624521 -2.2085964 
-1.1550616 -2.1685117 
-1.1468425 -2.1318795 
-1.1381236 -2.0986316 
-1.1291528 -2.0686852 
-1.1201190 -2.0419222 
-1.1111659 -2.0182412 
-1.1024035 -1.9975034 
-1.0939149 -1.9795924 
-1.0857627 -1.9643862 
-1.0779927 -1.9517054 
-1.0706404 -1.9414292 
-1.0637259 -1.9334036 
-1.0572607 -1.9274598 
-1.0512547 -1.9234024 
-1.0457057 -1.9210074 
-1.0406020 -1.9201199 
-1.0359419 -1.9205494 
-1.0278471 -1.9242625 
-1.0243742 -1.9276723 

co -1.0 -2.0 

-5 195.2 
4 400.2 

18 356.0 
27 331.9 
32932.4 
36 197.8 
37 824.6 
38 179.4 
38286.7 
38291.7 
38 291.8 
38 291.8 
38 288.6 
38 199.8 
37 936.0 
36 998.4 
35 654.1 
34032.1 
32 228.2 
30 314.6 
28 345.8 
26 363.1 
24398.1 
22 475.0 
20611.9 
18822.7 
17 117.4 
15 503.8 
13 986.2 
12 567.3 
11 249.1 
10 031.2 
8 911.1 
7 888.3 
6 111. 7 
5 349.5 
o 

98.421 
92.055 
86.482 
81.595 
77.306 
73.539 
71.829 
70.539 
70.227 
70.196 
70.193 
69.919 
68.725 
67.317 
64.762 
62.524 
60.570 
58.872 
57.406 
56.152 
55.092 
54.212 
53.496 
52.933 
52.512 
52.218 
52.043 
51.977 
52.008 
52.125 
52.313 
52.565 
52.869 
53.575 
53.986 
59.766 o 

-27.382 
-23.963 
-17.587 
-11.895 
-6.832 
-2.375 

1.525 
3.280 
4.596 
4.912 
4.944 
4.947 
5.224 
6.427 
7.828 

10.308 
12.38:1 
14.086 
15.441 
16.475 
17.202 
17.650 
17.830 
17.773 
17.492 
17.011 
16.359 
15.568 
14.649 
13.637 
12.568 
11.324 
10.404 
9.389 
7.421 
6.484 
o 

• R, E. and V in atomic units; D and all corrections in reciprocal centimeters; Enucl"" (X). Eq. (8); t.Dnucl=Enuol(R=co)-Enuol(R). 

results clearly show that the energy has converged, 
and that probably our best energy differs from the 
accurate eigenvalue of the nonrelativistic clamped 
nuclei Hamiltonian by not more than a fraction of 
a reciprocal centimeter. 

The energy for several internuclear distances was 
computed using three different values of a for each R. 
The final energies are shown in Table II, and they were 
computed for interpolated exponents a assuming that 
E versus a is a parabola. Our best results FJl= 
-1.1744744 a.u. and D.= 38292.7 cm-I are signifi­
cantly better than the best previously reported valuesl : 

FJl= -1.174444 a.u. and D.=38 286.9 cm-I . 

Similar computations were carried out with the 
54-term wavefunction mentioned above. The exponents 
a in this case were obtained by five-point interpolations, 
and the eigenvectors computed for interpolated a's were 
employed to compute the diagonal corrections for nu-

clear motion (8) and the relativistic corrections (33). 
The results are shown in Tables III and IV, where the 
last columns contain the contributions to the binding 
energy. 

The computed clamped nuclei kinetic and potential 
energies are also shown in Fig. 1, where the scale on 
the left-hand side applies to the potential energy and 
on the right-hand side to the kinetic energy. The cor­
rections for nuclear motion and the relativistic correc­
tions are shown graphically in Figs. 2 and 3. It is seen 
that the form of the Enucl(R) function is determined 
mainly by the term proportional to the kinetic energy 
of the electrons. 

For a= 1.0 and R= 1.4 a.u., the corrections were also 
computed using a smaller number of terms in the wave­
function. The relativistic corrections for 3 ~N ~ 54 are 
presented in Table V. For a given number of terms the 
results on the corresponding horizontal line apply to a 
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TABLE IV. Relativistic corrections computed with 54-term wavefunctions.o 

R El E2 E4 E6 E rel l1D rel 

0 -13.52204 -0.13910 11.04099 0.66856 -22.810 19.888 
0.6 -3.93452 -0.09186 3.19829 0.32219 -5.913 2.991 
0.8 -2.94627 -0.07723 2.42283 0.23913 -4.225 1.303 
1.0 -2.33091 -0.06536 1.93580 0.17998 -3.278 0.356 
1.2 -1.92873 -0.05572 1.61369 0.13748 -2.726 -0.196 
1.3 -1.77973 -0.05159 1.49314 0.12076 -2.541 -0.381 
1.35 -1.71510 -0.04967 1.44055 0.11332 -2.465 -0.457 
1.40 -1.65613 -0.04783 1.39240 0.10640 -2.398 -0.524 
1.401 -1.65500 -0.04779 1.39147 0.10626 -2.397 -0.525 
1. 4011 -1.65489 -0.04779 1.39138 0.10625 -2.396 -0.526 
1.45 -1.60227 -0.04607 1.34825 0.09996 -2.339 -0.583 
1.5 -1.55304 -0.04440 1.30771 0.09399 -2.288 -0.634 
1.6 -1.46673 -0.04126 1.23625 0.08322 -2.203 -0.719 
1.8 -1.33351 -0.03571 1.12454 0.06559 -2.093 -0.829 
2.0 -1.23992 -0.03094 1.04427 0.05198 -2.041 -0.881 
2.1 -1.20459 -0.02879 1.01335 0.04632 -2.030 -0.892 
2.2 -1.17548 -0.02678 0.98737 0.04128 -2.029 -0.893 
2.3 -1.15192 -0.02488 0.96592 0.03679 -2.035 -0.887 
2.4 -1.13313 -0.02309 0.94822 0.03276 -2.048 -0.874 
2.7 -1.10056 -0.01850 0.91429 0.02307 -2.123 -0.799 
3.1 -1.09697 -0.01315 0.90141 0.01402 -2.275 -0.647 
3.6 -1.12606 -0.00788 0.91277 0.00708 -2.502 -0.420 

IX> -1.25 0 1.0 0 -2.922 0 

a R in atomic units, Eo in a'X (a.u.) = 11.68715 em-I, Erel and l1Drel in reciprocal centimeters. 

wavefunction containing terms defined in the second 
column on and above the horizontal line. The last 
column contains the relativistic contribution to the 
binding energy. 

To compute the expectation value of - (1/ M) dB we 
had to assume certain functional dependence of a on R. 
The interpolated values of a for the 54-term wave­
function are shown in Fig. 4 as function of R. It is 
seen that a is an almost linear function of the inter­
nuclear distance; therefore, we assumed that 

a=a+bR. (45) 

To see how sensitive are the results of the particular 
choice of the function a (R), the correction - (1/ M) 
(dR) was computed for three different cases: (1) as­
suming a constant value of a, i.e., b=O; (2) assuming 
a=O and an average value of b; (3) assuming average 
values of a and b. The resulting values of - (l/M) (dR) 
for the three cases and the two other corrections for 
nuclear motion are shown in Table VI for various 
expansion lengths. The order of terms in the wave­
function was the same as that defined in Column 2 of 
Table V. The last three columns of Table VI give the 
contributions to the binding energy, in reciprocal centi­
meters, for the three cases (1)-(3), respectively. It is 
seen that for short expansions, the best and most con­
sistent results were obtained in Case (3). However, 
for the 54-term wavefunction, the differences between 
the three cases are negligibly small. In Table VII we 
give in addition the values of the various contributions 
to the expectation value of - (1/ M) dR which were 
obtained in the three cases with a 54-term wavefunction. 
The good agreement served as a check for our analysis 
as well as of the numerical computations. 

To obtain an accurate value of the equilibrium 
internuclear distance R e, we employed the virial 
theorem V /2E= 1 for R= Re. Using this relation and 
the values of the total and potential energies listed in 
Tables II and III, one gets R.= 1.401080 a.u. = 
0.74141 A, and R.= 1.401083 a.u. =0.74141 A for the 
80- and 54-term functions, respectively. The experi­
mental value15 obtained from the extrapolated rota­
tional constant B. is Re=0.74158 A; however, if this 
is corrected to include the effects of (1) interaction of 

r-T.",r---r-.---r-r--....,..-,,.,-------...,,~g 

2 

~---------- -----

o -~'~:===::::~~~~ __ --1 ,£ -- --- -------
-I 

-2 

-3 

, , , 

I 

-----------

.4 

FIG. 3. Relativistic corrections for the ground state of H2 (in 
a 2Xa.u.). 

16 G. Herzberg and L L. Howe, Can. J. Phys. 37, 636 (1959). 
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TABLE V. Total energy, binding energy, and relativistic corrections computed with three- to 54-term 
wavefunctions (a= 1.0, R= 1.4 a.u.). 

No. of 
terms ,.. rs ~ E D 'I '2 E4 '6 Erel AD,., 

1 0 00 00 
2 0 00 10 
3 1 00 00 -1.1520289 33 366.5 -1.393345 -0.060102 0.989831 0.103734 -4.206 1.284 
4 0 00 20 -1.1532352 33 631.2 -1.403043 -0.058171 1.008506 0.104538 -4.069 1.147 
5 0 00 02 -1.1706537 37 454.2 -1.624057 -0.054415 1.350343 0.118755 -2.447 -0.475 
6 0 10 10 -1.1709694 37 523.4 -1.633545 -0.051878 1.359490 0.118301 -2.427 -0.495 
7 0 01 01 -1.1730119 37 971. 7 -1.668260 -0.049631 1.388933 0.117999 -2.466 -0.456 
8 1 00 10 -1.1730849 37987.7 -1.664700 -0.051123 1.381735 0.120848 -2.492 -0.430 
9 2 00 00 -1.1733128 38037.8 -1.659255 -0.048181 1.382452 0.114337 -2.462 -0.460 

10 0 00 30 -1.1733564 38047.3 -1.656333 -0.048112 1. 376982 0.113891 -2.496 -0.426 
11 0 00 12 -1.1734197 38 061.2 -1.649021 -0.048025 1.361529 0.113681 -2.593 -0.329 
12 0 10 20 -1.1734210 38 061.5 -1.648854 -0.048060 1.361346 0.113673 -2.593 -0.329 
13 0 10 02 -1.1739949 38 187.5 -1.652355 -0.048220 1.371383 0.111275 -2.547 -0.375 
14 0 01 11 -1.1740369 38 196.7 -1.650639 -0.048309 1.369738 0.110923 -2.551 -0.371 
15 1 00 20 -1.1740489 38 199.3 -1.650387 -0.048498 1.368074 0.111858 -2.559 -0.363 
16 1 00 02 -1.1742383 38 240.9 -1.654642 -0.049158 1.379096 0.110272 -2.506 -0.416 
17 1 10 10 -1.1743025 38 255.0 -1.653760 -0.048793 1.378502 0.109863 -2.503 -0.419 
18 1 01 01 -1.1743067 38 255.9 -1.653808 -0.048812 1.378784 0.109692 -2.503 -0.419 
19 2 00 10 -1.1743325 38 261.6 -1.652445 -0.048381 1.379209 0.107570 -2.502 -0.420 
20 0 00 22 -1.1743423 38263.7 -1.654091 -0.048359 1.383978 0.107559 -2.465 -0.457 
21 0 00 04 -1.1743526 38 266.0 -1.655798 -0.048335 1.390141 0.107587 -2.412 -0.510 
22 0 10 30 -1.1743531 38 266.1 -1.655727 -0.048340 1.390077 0.107570 -2.412 -0.510 
23 0 10 12 -1.1743655 38 268.8 -1.656405 -0.048251 1.391580 0.107401 -2.404 -0.518 
24 0 01 21 -1.1743703 38 269.9 -1.656191 -0.048240 1.391397 0.107309 -2.404 -0.518 
25 0 20 20 -1.1743719 38 270.2 -1.656151 -0.048221 1.391357 0.107311 -2.404 -0.518 
26 0 20 02 -1.1744006 38 276.5 -1.656451 -0.048140 1.391636 0.107466 -2.402 -0.520 
27 0 02 02 -1.1744338 38 283.8 -1.656925 -0.048161 1.392092 0.107605 -2.400 -0.522 
28 0 11 11 -1.1744376 38 284.6 -1.656940 -0.048156 1.392076 0.107618 -2.401 -0.521 
29 1 10 20 -1.1744397 38285.1 -1.656902 -0.048108 1.392163 0.107512 -2.400 -0.522 
30 1 10 02 -1.1744405 38 285.3 -1.656924 -0.048097 1.392278 0.107444 -2.399 -0.523 
31 1 01 11 -1.1744420 38 285.6 -1.656988 -0.048084 1.392546 0.107393 -2.397 -0.525 
32 2 00 20 -1.1744432 38 285.9 -1.657223 -0.048115 1.392714 0.107681 -2.395 -0.527 
33 2 10 10 -1.1744508 38287.5 -1.656706 -0.047946 1.392894 0.106928 -2.394 -0.528 
34 2 01 01 -1.1744577 38 289.0 -1.656327 -0.047880 1.392517 0.106604 -2.397 -0.525 
35 0 10 40 -1.1744589 38 289.3 -1. 656142 -0.047896 1.391814 0.106716 -2.402 -0.520 
36 0 10 04 -1.1744598 38 289.5 -1.656252 -0.047898 1.392223 0.106710 -2.398 -0.524 
37 0 01 13 -1.1744652 38290.7 -1.656511 -0.047912 1.392328 0.106911 -2.398 -0.524 
38 0 01 31 -1.1744652 38290.7 -1.656487 -0.047913 1.392270 0.106908 -2.398 -0.524 
39 0 20 30 -1.1744653 38290.7 -1.656488 -0.047911 1.392259 0.106913 -2.399 -0.523 
40 0 02 30 -1.1744659 38 290.8 -1.656478 -0.047913 1.392263 0.106894 -2.399 -0.523 
41 0 02 12 -1.1744667 38 291.0 -1.656434 -0.047912 1.392076 0.106910 -2.400 -0.522 
42 2 10 20 -1.1744672 38 291.1 -1.656392 -0.047893 1.392052 0.106861 -2.400 -0.522 
43 2 10 02 -1.1744674 38 291.2 -1.656365 -0.047894 1.392000 0.106855 -2.401 -0.521 
44 2 01 11 -1.1744682 38 291.3 -1.656341 -0.047882 1.392162 0.106730 -2.400 -0.522 
45 0 20 22 -1.1744681 38 291.3 -1.656332 -0.047885 1.392116 0.106745 -2.400 -0.522 
46 0 02 22 -1.1744682 38 291.3 -1.656346 -0.047886 1.392149 0.106748 -2.400 -0.522 
47 0 11 13 -1.1744682 38 291.3 -1.656335 -0.047886 1.392138 0.106740 -2.400 -0.522 
48 0 11 31 -1.1744685 38 291.4 -1.656338 -0.047880 1.392243 0.106698 -2.399 -0.523 
49 0 30 30 -1.1744684 38 291.4 -1.656336 -0.047880 1.392243 0.106693 -2.399 -0.523 
50 0 12 30 -1.1744685 38 291.4 -1.656325 -0.047880 1.392211 0.106698 -2.399 -0.523 
51 2 20 20 -1.1744686 38 291.4 -1.656308 -0.047878 1.392174 0.106692 -2.400 -0.522 
52 2 02 02 -1.1744692 38 291. 6 -1.656198 -0.047854 1.392146 0.106562 -2.400 -0.522 
53 2 20 02 -1.1744692 38 291.6 -1.656174 -0.047856 1.392092 0.106566 -2.400 -0.522 
54 2 11 11 -1.1744698 38 291. 7 -1.656099 -0.047836 1.392194 0.106425 -2.400 -0.522 

rotation and vibration, (2) interaction of electronic 
2.4 

and nuclear motion, and (3) L uncoupling, one gets15 

2.0 R.=O.74116 A. The discrepancy between this value 
1.6 and our result may be partly due to inaccurate values 

" 
of the corrections and partly to the adiabatic approxi-

1.2 mation. 
.8 In Table VIII we list our final results for the binding 

.4 
energies of R 2, RD, and D2• In the first row the clamped 
nuclei binding energies are given; the next two rows 
show the contributions to the binding energies due to 

0 
the diagonal corrections for nuclear motion and to the 

FIG. 4. The optimum exponent a as function of the inter- relativistic effects. The subsequent row shows the final 
nuclear distance. theoretical binding energies, and it is followed byexperi-
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TABLE VI. Diagonal corrections for nuclear motion computed with three- to 54-term wavefunctions in 
reciprocal centimeters (a=1.0, R=1.4 a.u.). 

-(11M) (.<:lR) .<:lDnucl 
No. of 
terms - (112M) (.<:l1) - (112M) (V1V2) 1 2 3 1 2 3 

1 
2 
3 66.897 7.747 47.174 23.510 25.463 -2.286 21.378 19.425 
4 65.962 7.392 32.384 19.919 20.995 13.793 26.259 25.182 
5 69.469 6.748 45.332 30.831 32.160 -2.017 12.484 11.155 
6 69.880 6.503 43.464 34.446 35.343 -0.315 8.703 7.806 
7 70.622 6.226 45.798 35.959 36.956 -3.114 6.724 5.727 
8 70.438 6.419 41.094 37.493 37.890 1.581 5.182 4.785 
9 70.425 5.947 41.174 37.502 37.906 1.986 5.658 5.254 

10 70.379 5.940 39.968 36.763 37.133 3.244 6.449 6.080 
11 70.332 5.921 39.090 37.643 37.798 4.189 5.636 5.482 
12 70.331 5.920 39.156 37.762 37.910 4.124 5.518 5.370 
13 70.173 5.944 38.411 37.670 37.754 5.005 5.745 5.661 
14 70.152 5.940 38.216 37.944 37.973 5.224 5.495 5.466 
15 70.156 5.934 38.291 38.180 38.186 5.151 5.262 5.256 
16 70.208 6.017 38.663 38.516 38.527 4.644 4.792 4.781 
17 70.197 6.029 38.464 38.144 38.178 4.842 5.162 5.128 
18 70.200 6.037 38.503 38.185 38.220 4.791 5.109 5.075 
19 70.210 6.056 38.488 38.172 38.208 4.778 5.094 5.058 
20 70.208 6.053 38.408 38.062 38.102 4.863 5.209 5.169 
21 70.212 6.050 38.440 38.091 38.131 4.830 5.178 5.138 
22 70.212 6.050 38.432 38.073 38.114 4.838 5.197 5.156 
23 70.221 6.041 38.485 38.269 38.293 4.785 5.000 4.977 
24 70.223 6.039 38.504 38.315 38.335 4.765 4.955 4.935 
25 70.222 6.039 38.511 38.323 38.343 4.760 4.948 4.928 
26 70.210 6.031 38.366 38.250 38.262 4.925 5.041 5.029 
27 70.221 6.022 38.456 38.316 38.331 4.833 4.973 4.958 
28 70.220 6.024 38.424 38.281 38.296 4.865 5.007 4.992 
29 70.221 6.024 38.431 38.315 38.327 4.856 4.972 4.960 
30 70.222 6.022 38.423 38.323 38.333 4.865 4.696 4.954 
31 70.222 6.024 38.424 38.323 38.333 4.861 4.963 4.953 
32 70.221 6.024 38.383 38.282 38.293 4.904 5.004 4.993 
33 70.222 6.025 38.378 38.265 38.278 4.907 5.019 5.007 
34 70.222 6.028 38.379 38.267 38.279 4.903 5.015 5.002 
35 70.223 6.029 38.367 38.310 38.316 4.913 4.970 4.963 
36 70.224 6.029 38.368 38.311 38.318 4.911 4.968 4.962 
37 70.226 6.026 38.397 38.338 38.345 4.882 4.942 4.935 
38 70.226 6.026 38.393 38.340 38.346 4.886 4.939 4.933 
39 70.226 6.026 38.393 38.341 38.347 4.886 4.939 4.933 
40 70.225 6.026 38.379 38.334 38.339 4.901 4.946 4.941 
41 70.225 6.026 38.378 38.344 38.347 4.903 4.937 4.933 
42 70.226 6.026 38.376 38.352 38.354 4.904 4.928 4.925 
43 70.226 6.027 38.371 38.348 38.350 4.907 4.931 4.929 
44 70.226 6.028 38.370 38.355 38.357 4.907 4.922 4.921 
45 70.226 6.028 38.370 38.359 38.360 4.907 4.919 4.918 
46 70.226 6.028 38.371 38.360 38.361 4.906 4.918 4.917 
47 70.226 6.028 38.371 38.360 38.361 4.907 4.917 4.916 
48 70.226 6.028 38.369 38.358 38.359 4.909 4.919 4.919 
49 70.226 6.028 38.368 38.358 38.359 4.909 4.920 4.919 
50 70.226 6.028 38.368 38.358 38.359 4.909 4.920 4.919 
51 70.226 6.028 38.368 38.360 38.360 4.909 4.918 4.917 
52 70.226 6.027 38.368 38.359 38.360 4.911 4.920 4.919 
53 70.226 6.027 38.367 38.359 38.360 4.911 4.919 4.919 
54 70.226 6.028 38.367 38.358 38.359 4.911 4.920 4.919 

mental results.2 When Herzberg and Monfils2 measured both the theoretical and experimental values are cor-
the binding energies of H2, HD, and D2, they could not reet, the discrepancy can only be attributed to the 
unambiguously conclude whether B' I ~u or C lllu was adiabatic approximation. But, if this is the case, the 
the upper state of the continuum, and they gave two results show that the contribution to the binding 
sets of binding energies, one set being shifted with energy due to the nondiagonal terms, neglected in the 
respect to another by 0.6 em-I. The experimental adiabatic approximation, is of the same order as the 
binding energies listed in Table VIII are the larger contribution due to the diagonal terms. 
values obtained by assuming that B' l~u is the upper The accuracy of our results was tested in several 
state of the continuum. However, even in this case the different ways. There are two most significant possible 
theoretical binding energies are slightly larger than the sources of inaccuracy: the first, resulting from numerical 
corresponding experimental values. If one assumes that in tegra tion of the I and M integrals (30) for odd powers 
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TABLE VII. Contributions to -(1/Y)~R computed with a 54-term wavefunction (a=1, R=1.4 a.u.). 

a=const. a=bR a=a+bR 

-Y-l(21/R2) -0.00583529 -0.00583529 -0.00583529 

Y-l(c'l Sic') 0.00272445 0.00062968 0.00021184 

_Y-l(C I D21 c) -0.00335248 -0.00335248 -0.00335248 

_Y-l(C I Sib") - 0.00060920 -0.00016953 0.00006128 

- Y-l (c I Dtil/b') 0.00724733 -0.00235916 -0.00102385 

- (2/Y) (da/dR) (c I ~H21 b"') 0 - 0.00460948 -0.00255074 

-Y-l(da/dR)2(c I (~1+~)21 c) 0 +0.00592422 +0.00439175 

+Y-l(da/dR) (c I (~+~)Dli c) 0 +0.0096077 5 0.00827227 

_Y-l~R a.u. 0.00017481 0.00017477 0.00017478 

of '12, and the second due to rounding off errors in the 
diagonalization. The first possibility has been elimi­
nated by testing the convergence of the matrix elements 
and of the total energy with increasing number of inte­
gration points. In addition, independent tests have been 
made for some of our integrals. For instance, the 
integral 

1 =...!..(~)3f exp[ -ad~1+~2) ]r12-1V1V2 211"2 R 

X exp[ -a(~1+~2) ]dT1dT2 (46) 

can be evaluated in terms of our Jl'riiB integrals 

1 = a2( - 110101- 211010-1+ 213010-1+ 211210- 1 

+210101-1_412101-1), (47) 
or analytically 

(48) 
where 

(49) 

Using (47) and (48), we obtained, for a=l, 

TABLE VIII. Binding energies of the isotopic hydrogen 
molecules (reciprocal centimeters). 

D.O 38 292.7 
~Dnu.1 4.9 
~Dr.1 -0.5 
D.(theoret.) 38 297.1 
D.(exptl.) 38 292.9±0.5 

HD 

38292.7 
3.3 

-0.5 
38 295.5 
38290.9±1.5 

38292.7 
2.5 

-0.5 
38294.7 
38 291.4±0.7 

1 = 0.011828848 and 1= 0.011828840, respectively. Since 
the most important elements of the XO matrix were 
computed with a still better accuracy, we are convinced 
that our matrix elements used in the computation of 
the clamped nuclei energy are sufficiently accurate to 
yield the energy with at least seven figures of accuracy. 

We are also convinced that the diagonalization pro­
cedure employed in this computation yielded reliable 
results. For instance, when we increased the number of 
iterations, or changed a little the value of one of the 
nonlinear parameters a or R, the energy fluctuations 
did never exceed 4 in the eighth significant figure for 
the energy. In most cases they were smaller. The 
rounding off errors were larger for large internuclear 
distances (R>3.5 for the 54-term expansion and 
R> 2 for the 80-term expansion); however, in this 
region, our wavefunction becomes poor anyway. We 
may also add that for the equilibrium internuclear 
distance, we have noticed larger rounding off errors 
when we had almost redundant terms in the wave­
function. It is possible that our wavefunctions, which 
were selected and tested for the equilibrium inter­
nuclear distance, contained almost-redundant terms 
for large values of R, and this may account for the 
increased rounding off errors in that region. 
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