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Potential-Energy Curves for the X 1z,+, b*s,+, and C 1, States of the
Hydrogen Molecule*

W. Korost anp L. WoLNiEwICz}
Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois
(Received 26 April 1965)

Previous calculation of the ground-state energy of H; has been extended to include large internuclear
distances and accurate potential-energy curve for 0.4<R<10.0 a.u. is presented. For 0.4<R<4.0 a.u.
expectation values of several operators have also been calculated. The calculation was made using a wave-
function in the form of an expansion in elliptic coordinates. The wavefunction depends on the interelec-
tronic distance but, in contrast to the James-Coolidge expansion, is flexible enough to describe properly
the dissociation of the molecule. Extensive calculations have also been made for the repulsive 3T ,* state
(1.0<R<10.0) and for the 'II, state (1.0<R<10.0). In the former case a van der Waals minimum has
been found at R=7.85 a.u. and 4.3 cm™ below the disseciation limit. For the I, state the computed binding
energy D¢=20490.0 cm™ and the equilibrium internuclear distance R,=1.0330 X are in a satisfactory
agreement with the experimental values D,=20 488.5 cm™! and R,=1.0327 A. In this case a van der Waals
potential maximum has been found to occur at R=9.0 a.u. and 105.5 cm™! above the dissociation limit.
Preliminary results for the 12, state at R~ R, are also given.

INTRODUCTION

CCURATE ground-state energy of the hydrogen
molecule has been computed recently by the
present authors,! in the adiabatic approximation, for
several values of the internuclear distance R. In that
calculation the wavefunction was represented by an
expansion in elliptic coordinates first used by James
and Coolidge.? It is, however, well known that the
expansion converges more and more slowly with in-
creasing value of R, and therefore the most accurate
calculations have been carried out only for R<2.0 a.u.
For very large distances it is natural to use the per-
turbation theory to compute the energy of interaction
between two atoms. A special perturbation method has
been suggested for this purpose by Dalgarno and Lynn,?
and their numerical results for the interaction energy
of two hydrogen atoms in the lowest 'Z,* and 32+
states are believed to be of high accuracy. Undoubtedly
the perturbation theory is superior to the variational
method for large distances between the interacting
atoms. In the variational method one computes the
total energy of the system and not the interaction
energy alone. Therefore it is difficult to get an accu-
rate value of the latter if it is several orders of magni-
tude smaller than the former. However, for smaller
internuclear separations a finite-order perturbation the-
ory fails to give accurate results, while the variational
approach has the important advantage of giving always
an upper limit of the energy.
The most accurate variational calculations for large
distances between the hydrogen atoms are probably
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those carried out by Hirschfelder and Linnett.* Their
energies for both the !Z,* and 3Z,* states are signifi-
cantly higher than those of Dalgarno and Lynn3; it
is however not known whether the latter lie higher or
lower than the true energies, and a more accurate
variational treatment of the problem is certainly de-
sirable. IFor the ground state, results of such calcula-
tions could be compared with the so called experimental
potential-energy curve obtained recently by Weissman
et al® from the experimental vibrational energies® by
using the Rydberg-Klein—-Rees method. However, the
“experimental” ground-state potential-energy curve
can only be determined up to R=6.16 a.u. which is
the classical turning point for the highest (14th)
vibrational level. For still larger internuclear distances,
including the important van der Waals region, no
experimental data are available. Thus, accurate the-
oretical results for this region would represent a valu-
able contribution to the theory of the long-range inter-
atomic and intermolecular forces.

¥ For the same reason it would be interesting to com-
pute an accurate potential-energy curve for the lowest
Z,* state which is known to be repulsive and to have
only a shallow van der Waals minimum at a large
value of R. The repulsive section of this potential-
energy curve is of importance for scattering problems
and to account for the well-known extensive continu-
ous spectrum of H,.

Among other states of Hp which are of interest there
is the lowest I, state. The van der Waals interaction
in this case gives rise to a maximum of the potential
energy, first considered in detail by King and Van
Vleck,” and computed recently by Browne,3 and Sales.?
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Since in the experimental determination of the dis-
sociation energy of H, the molecule may be supposed®®
to dissociate via this state, the problem of existence
of the potential hump and of its height is of great
interest.

In the present work we have extended to large inter-
nuclear distances the previous calculation of the ground-
state energy of H, using a generalized James-and-
Coolidge-type wavefunction. In addition, expectation
values of several operators have been computed as
functions of the internuclear distance. For the excited
states 32, and II,, the potential-energy curves have
also been calculated, and the results are reported below.
The accuracy of the 3Z,* curve is believed to be com-
parable to that of the ground-state curve. For the I,
state the results are somewhat inferior and are, per-
haps, by a few reciprocal centimeters higher than the
accurate eigenvalues of the nonrelativistic clamped nu-
clei Hamiltonian. The energy of the lowest !Z,* state
for the equilibrium internuclear distance has also been
computed and an unexpected disagreement with the
experimental value has been found. The reason of the
discrepancy is unclear.

METHOD OF CALCULATION

For infinite distance between two hydrogen atoms
the Heitler-London wavefunction

V=1u(1)¥s(2) +¥s(1)¥a(2) (1)

represents the exact solution of the electronic Schrs-
dinger equation for the ground state of the system.
However, even for large but finite distances (1) does
not represent an accurate wavefunction, since, without
additional terms which take into account the electron
correlation, it is unable to account for the long-range
dispersion forces between the two atoms.

The James and Coolidge wavefunction is certainly
adequate for small and intermediate distances. It is
therefore reasonable to expect that, if this wavefunction
is generalized to have the asymptotic form (1) for
R— o, the generalized wavefunction will be flexible
enough to give accurate energies, with a finite number
of terms, also for large values of R.

For the ground state of H, the James and Coolidge
wavefunction is defined by

¥=3cf@:(1, 2)+8:(2, 1], (2)

®,(1, 2) =exp[ —a(ft+&) Jamnt & mdor,  (3)

where £ and 5 are elliptic coordinates, p=2r,/R, and
r2 denotes the interelectronic distance. The exponent
o as well as the linear coefficients ¢; are variational

parameters.
In elliptic coordinates the asymptotic wavefunction

(1) has the form
V=exp[—3R(&1+&) ] cosh[—3R(m—n2) ] (4)
10 (3, Herzberg and A. Monfils, J. Mol. Spectry. 5, 482 (1960).
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Therefore it is natural to generalize the James and
Coolidge wavefunction by using instead of (3) the
following basis set:

®,=exp[ — abi— &k ] cosh (Bm+Fne) &5 m 6 matiprs, (5)

where a, &, 8, B are variational parameters. The same
basis set can be used not only for the ground state but
also for states of a different symmetry. If the total
wavefunction is assumed in the form

=3 e[ ®i(1, 2)a'+3:(2, 1)art], (6)

where x; denotes the Cartesian coordinate of the ith
electron perpendicular to the molecular axis, then for
1=0 and /=1, Eq. (6) represents wavefunctions for
2 and II states, respectively. The 4 or — sign in (6)
results in a singlet or triplet state.* The g or # charac-
ter of the wavefunction is determined by the parity
of s;i4+§+7! in (5) and (6). For the lowest 1Z,* and
$Z.F states the asymptotic values of the exponents are
a=&=8=—F=1R and for the lowest I, state a=
—B=1R, a=f=%R. Wavefunctions (6) with the basis
set (5) were used in the present calculation. If, how-
ever, in the functions (5) cosh(8m-+By.) is replaced
by exp(8m+Bns), the wavefunction (6) has neither g
nor % symmetry and therefore can be employed to the
heteropolar two-electron diatomic molecules, e.g., to
the helium hydride ion HeH+ .22

The numerical procedure adopted in this work was
different from that used previously! in the case of a=a
and B=f8=0. Because of the relative complexity of the
wavefunction (6), we had to write an entirely new
computer program for the numerical integration and
for the computation of the required matrix elements.
If the ®; functions defined by (5) are used in (6), any
matrix element needed in our computations can be
expressed in terms of the integrals

Grora* = / exp (— anf1— anfatBrm~+Bang) it et o

XL(EP—1) (82— 1) (1~n?) (1—9a?) Jo2
X [cos(¢r—¢s) Fidbr- - <dgpe, (7)

where 7, 5, 7, §20, p=—1, 0, 220, and a1, a3, 81, B2

are simple linear combinations of the @, @ and 8, B,
respectively, from Eq. (3).

For u=0 all integrations in (7) are elementary, as
each of the J integrals in this case is simply a product
of two one-electron integrals. For u=—1 the J inte-
grals resemble very closely the familiar exchange in-
tegrals and the integrations can be performed by making

1 Note that for the 32, * state cosh (8m+Bnz) in the asymptotic
form (4) should be replaced by sinh (814-8%2) and, e.g., for the
13,* state by a combination of cosh (8m+gns) and sinh (8m-+Fns).
However, it may be shown that for the 33, state the basis set
(5) results in the correct asymptotic energy and therefore this
basis set was used in the present calculation.

121.. Wolniewicz, ‘“Variational Treatment of the HeH* ion and
the 8 Decay in HT,” J. Chem. Phys. (to be published).



POTENTIAL-ENERGY CURVES OF HYDROGEN

use of the Neumann expansion for rs2. If ;=0 or
B2=0 the integrations over %; leave a finite number of
terms in the sum over / from the Neumann expansion.
If, however, 81 and 8, are both different from zero, the
sum over / remains infinite and this introduces some
computational problems. Since, in general, different J
integrals entering a matrix element can differ by several
orders of magnitude, not all of them need be computed
with the same accuracy. For this reason and because
of the large number of required J integrals, it has
proved to be more convenient and more economical
to apply the Neuman expansion to the whole matrix
elements, rather than to express them in terms of the
J integrals.

Each matrix element is composed of contributions
with different a;, as, Bi, B2 values, corresponding to
different combinations of «, &, 8, § from Eq. (5). For
given ay, as, B1, B2 the contribution M (e, +++, B2) to
a matrix element M («, & B, B) was expressed as

M (ou, az, Br, B2) =2 0 M ™ (e, ag, B, B2), (8)
I m

where M ;™D denotes the term due to a pair of I, m
indices in the Neumann expansion. Each M ;™ (e,
as, B, B2) was built up from Ruedenberg’s®® @,;™ (o, )
and B;(B) integrals. The ®,;* integrals with m=0,
for each pair of a1, ay, have been computed numerically
by employing the Simpson rule. For m70 the Rueden-
berg recursion formula was used. To compute the B/
functions we have used a program written by Wahl*
who has kindly provided us with the program and with
all the necessary information.

The sum over m in (8) truncates in any case when
the integration over ¢ is carried out. However, the
sum over } remains infinite, unless 3=0. The conver-
gence threshold for this summation was in our case
1078, i.e., the summation for each matrix element was
continued until the relative magnitudes of M ™/ M
for two consecutive / values were smaller in absolute
value than 1073

The accuracy of the computed matrix elements has
been checked in various ways. First, a great number
of hand calculations have been carried out to check
the program step by step. Next, the matrices have
been computed for the special case a=&, =8=0 and
compared with our previous results obtained with the
earlier program.! The equality of the matrix elements
computed in two different ways was a check for both
programs and increased our confidence in the correct-
ness of the obtained results. Finally, many test runs
have been made for aa and %0, §0. As each term
of the wavefunction consists of a sum

tbi(]_’ 2):&@1(27 1) ’
the matrix elements of an operator M are sums of four

13 K. Ruedenberg, J. Chem. Phys. 19, 1459 (1951),
4 A, C. Wahl (private communication).
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terms of the form
M= / eXP(— af— afz) cosh (6771+[§7]2) 21'771352;112%“]‘2[

Xexp(—atb—ats)
X cosh (8'n+Bns) E1Pm%Pndo’dtr - < dps,  (9)

where o'=a and &'=a& or a'=& and &'=a, and similar
relations hold for 8. From symmetry considerations
one can replace one of the hyperbolic functions,
say, cosh(8m-+Br2), by a single exponential function
exp(Bm-+Bn2), thus getting

M=5(M,+M_) (10)

with
M= f exp (— aki— ata-+Bm-+-Bns) &b nd o M

X exp(— af1— aBlm=B2) EPm%EaPnalo*dkr « « depe.
(11)

The M, elements have been checked stepwise. First
the a#a, 8=B=0 case was considered. The matrix
elements in this case depend only on two parameters:
a, & By making use of the obvious expansion

exp(—at) =exp(—oaf) D [ (a—a)"/nlle, (12)

the My(a, &) elements, for small differences |a—« |,
can be easily expressed in terms of M («, «). Thus
the first test of the program consisted in computing
the matrix elements with a=a, employing (12) to
get the elements with a#&, and comparing these num-
bers with those resulting from a direct application of
our program for a#a. In all tested cases we had an
excellent agreement; the differences between the corre-
sponding numbers never exceeded 2 in the last (eighth)
significant figure. In the next step, we expanded the
exp(Bn) functions in power series and thus the M (e,
& B, B) matrix elements could be expressed in terms
of the already checked elements with 8=8=0. Again
the two sets of numbers were in complete agreement.
Finally the total matrix elements have been tested in
a similar way. If we denote the terms in the wave-
function (6) as

{a, & B, B; 1,5, 7 5 ul=2(1, 2) =d(2, 1),
where & is given by (5), we get the following relations:
(8/0a)™{a, &, B, B; 1, 5, F, §, u}

=(—D"{a, &8, B;r+n,s, 7, 5 ul,
(8/8e)™{e, &, B, B; 1, 5, T, 5, 1} pfimo

{a, @, 0,0;7, s+n,7 5 u} forevenn

0 for odd #.

Similar relations hold for the derivatives with respect
to @ and B, and for the cross derivatives. Hence, the
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Fic. 1. Improvement of the ground-state energy of Hp due to
the 8 variation in the 54-term wavefunction.

total matrix elements consisting of eight M4 integrals
may be easily expressed as a power series in (&a—a),
B and B and can be computed for any set of the expo-
nents «, & @, § if the matrix elements for =& and
B=B=0 are known. This method, different from that
used by the program, was employed in the hand com-
putations. The full agreement of the results confirmed
the correctness of the analysis and the accuracy of the
computations.

Note that the M, integrals defined by (11) are
identical with the complete matrix elements in the
heteropolar case,'? i.e., when the basis functions (5)
need not be symmetrical or antisymmetrical with re-
spect to the inversion and cosh(Bmi+8ns) in (5) is
replaced by exp(Bm-+8n2).

RESULTS AND DISCUSSION

The numerical computations were carried out on
the IBM 7094 computer at the Computation Center
of the University of Chicago. The computation of the
ground-state energy was started by reproducing the
previously reported! results obtained with a=& and
B=pF=0. Since the present program was more general,
we have made some additional test runs in which the
number of integration points in the numerical inte-
gration was gradually increased up to the maximum
number of 250 points and for shorter expansion of the
wavefunction up to 500 points. The results were com-
pletely satisfactory; the small oscillations of the total
energy which appeared in the last (eighth) significant
figure could be attributed to rounding errors.

In the next step the exponents a, &, 8, § were varied.
It has been found that for R~R. the independent
variation of all four nonlinear parameters did not im-
prove our previous results obtained with a=& and
B=8=0. For the ground state the variation has been
found to be effective only for short expansions or for
large internuclear distances. However, even for large
R it turned out to be completely sufficient to put

=—f and a=&, and to vary only two nonlinear
parameters. In Fig. 1 we show graphically the energy
improvement resulting from introducing the variational
parameter 8 to our previously used 54-term wavefunc-
tion of James and Coolidge type. It is seen that even
for R=2.0 a.u. the energy improvement amounts only

W. KOLOS AND L. WOLNIEWICZ

to 0.4 cm™, and vanishes at about R=1.6 a.u. Since
for the previously used 80-term wavefunction the en-
ergy improvement due to B variation must be still
smaller, we decided to accept the previous 80-term
results for R<2.0 a.u. and to vary 8 only for larger
values of the internuclear distance.

The final electronic energies for the ground state of
H, are listed in Table I where in addition to the total
and potential energies E and V we give the binding
energy (in cm™) and the ratio V/2E which, by invok-
ing the virial theorem, enabled us to calculate the
derivative dE/dR given in the last column of Table I.
The total energy is plotted in Fig. 2 which also shows
the energy curves for other states to be discussed
below.

As has already been mentioned we could not use
the same expansion of the wavefunction for all inter-
nuclear distances. To get reliable results, one has to
avoid cancellation of significant figures in the final
computation of the energy E= Y cicihx. In consequence
of Hy/Sw_E it is obvious that the cancellation must
occur when | ¢ [2>10. Because of this difficulty we had
to exclude from the wavefunction all “‘almost linearly
dependent” terms. In practice we adopted the follow-
ing procedure: having chosen an expansion for a given
internuclear distance, we used it for larger R until we
arrived at a point, say Ry, where the condition | ¢ <10
was not fulfilled. At that point we made a new selection
of terms which resulted as a rule in a shorter expansion
for the wavefunction. The new function was then used
for R> R, and also for R R, if it improved the energy
in the latter region. When the next point was reached
where | ¢, [PA210, the whole process was repeated.

The computed potential-energy curve can be com-
pared with the curve constructed from the observed
vibrational and rotational energies by using the Ryd-
berg-Klein-Rees (RKR) method. The RKR method,

rvr 1T 1rrrr T T eI

A

S T T NS WY S B B W I T U I

-4

.
1AL L I N B B Mt ot Sy B

l'lll‘llll|||
Ria-u)

Fi16. 2. Computed potential-energy curves for Hs.



TaBLE 1. Theoretical ground-state energies for the hydrogen molecule computed in the Born-Oppenheimer approximation.®

R N a B8 D E |4 V/2E dE/dR
.4000 54 2407 w0 ~T93C93.2 =.1202028 -2.3636289 9.8293421 =5, 3CA5531
24500 54 <416 .U -142454.8 -.35092482 245024310 3,5054458 ~4,C012768
5000 54 442 .0 ~103893.4 =.5266210 -2.5917813 2.4607429 ~3.077066%
+5500 80 2536 .0 -74013.3 = 6627707 ~2.6465751 1.9965993 ~2.4CL 3794
.6000 80 562 .0 -50559.5 <. 7696341 -2.6169660 1.7391160 ~1.8961624
#6500 80 2597 Y =31964.0 -.8543614 -2.6899810 1.5742641 -1.5C96280
L7000 80 L6386 0 =I7113.3 =322028T ~2.6904711 1.4590027 F1U.ZCIL T84
7500 80 2662 -0 -5193.7 -.9763357 -2.68191H0 1.3734610 -.9123284
.8000 80 .€98 ! 440147 -1,0200556 ~2,66682L5 1.3071937 ~. 7833866
.9000 a0 <165 .0 18357.3 ~1.0836422 ~2.6239059 1.2106883 -.5C73572
1.0000 80 .837 N 27333.0 -1.1245385 ~2.57154C4 1.1433759 -.3224634
1.1000 80 .892 .0 32933.5 -1.1500562 -2.515299/ 1.€9355%1 -.195624%
1.2000 80 <959 .G . “T.1649342 =2.45842C1 1.C5517158 ~. 1071269
1.3000 80 1.C14 .0 37825.6 -1.1723459 -2.40279C1L 1.c247786 -.0446910
1.3500 80 1.C43 N 38180.4 ~1.1739627 -2.37581C1 1.C118763 -.0206553
1.3900 80 1.C66 .0 38287.7 ~1.1744517 -2.3547115 1,0024727 -.CC41785
1.4000 80 1.C72 .0 38292.7 ~1.1744744 =2.3495053 1.€002386 ~.00C04003
1.4010 80 1.072 -0 38292.7 ~1,1744746 -2.34899Ch 1.C000177 ~.0C00297
1.4011 80 1.C72 ) 38292.7 =1.1744746 ~2.3489362 25995957 OCotoTT
1.4100 80 1.c7¢ .0 38289.5 -1.1744599 =2.34433¢60 .9980488 .0C32508
1.4500 80 1.100 .0 38200.8 -1.174C558 -2.3239571 .958917132 .0166583
1.5000 80 1.121 .0 37937.0 -1.1728537 -2.2991984 .9601727 .0310060
1.6000 a0 1.165 -0 36999.0 -1.1685799 ~2.2521884 9636433 .0531071
1,7000 80 1.210 -0 35655.2 ~1.1624510 -2.2086130 .5499762 0684124
1.8000 30 1.258 .0 34C33.3 ~1.1550670 -2.1685307 9381034 0765585
1.9000 80 1.295 .0 32229.8 -1.1468496 -2.1319110 .9294641 .08B51517
2.0000 80 1.342 .0 30316.3 ~1.1381312 -2.09868C2 .9219852 .0887911
2.1000 54 1.360 .232 28346.5 -1.1291562 -2.0687129 .5160437 .0GL2855
2,2000 54 1,406 263 26364.0 -1.1201233 -2.0419623, .91149C0 .C901292
2.3000 54 1,453 «296 24399.5 ~1.1111725 -2.0182976 .9081837 .0847163
2.4000 54 1.499 .328 22477.0 =1.1024127 -1.99759C5 .5060085 L0d6347y
2.5000 54 1.546 .360 20614.7 -1,0939273 -1.9797159 .GC48663 .0832555
2.6000 54 1.575 <375 18826.8 -1.0857810 -1.964534¢6 .5046643 0796259
2.7000 54 1,640 423 17122.6 <1,0780104 -1.,9519321 .5053351 .07559249
2.8000 54 1.680 +450 15510.3 -1.07067G0 ~1.94172¢4 .5067810 .0712406
2.9000 54 1.733 <4817 13994.6 ~1.0637641 -1.9337932 .5089389 .0668052
3.0000 B4 1.780 519 T2Z578.5 =1.0573118 ~1.92793%0 SSTITLTT LG622219
3.1000 54 1.834 «549 11263.1 -1.0513145 -1.92398€2 .5150349 .G576293
3.2000 5% 1,668 +578 10C%8.3 ~1.0457832 -1.92174258 .5188C55 0530699
3.3000 54 1.542 <610 8G932.7 ~-1,04070¢3 -1.3210189 25229453 .0486005

374000 5% Z.To0 <640 7913.8 -1.0360578 C1.9216012 .5273620 0442689
3.5000 54 2.C50 <670 6988.1 -1.0318402 -1.9232198 319659
3.6000 54 2.160 LitE’ 6T51.3 =1.0280272 =1.9258641 23366155
13,7000 54 2.150 . T41 5398.6 -~1.0245918 -1.9291385 .5414126 .0324479
3.8 5% 22260 775 4725.2 -1.0215297 T1.9329636 .5461123 .0269726
13,9000 54 2.250 .8l2 4125.4 -1.0187967 -1.9371441 .5507020 .0257562
4,0000 S4 2.300 .848 3592.6 -1.0163609 <1.9415062 .5551189 .0228079
4,1000 54 2.350 . 8E9 3122.0 -1.0142247 ~1.3459920 .$5935¢0 .0201113
4.2000 54 2.400 330 27077 S1.0123371° “1.95043C1 .56333T3 LOT16TTZ
4.3000 54 2.4%0 .971 2344.2 -1.,0106810 ~1.95477506 .96706C7 .0154842
%.%000° 35 ZIEET 1.054 2025.8 -1.00923C3 S1JY350788 .5705559 .0135072
4.5000 35 2.496 1.087 1748.8 -1.0079682 =1.9629963 .57374C5 0117639
4,6000 35 2.551 1.120 1507.9 ~1,00687cC3 -1.9667241 3766525 .0102208
4,7000 35 2.606 1.152 1298.8 -1.005917b -1.9701804 9792949 .0C88628
4.,8000 35 2,662 1.185 1117.6 =1.0050923 -1.3733754 .5616866 .0C76686
4.900C 35 2.7 L.217 960.9 -1.0043782 21.97629117 -5438344 -0C66254
5.0000 35 2.142 1.25%0 825.8 -1.0037626 -1.9789434 .9857627 0057164
35 2.8117 1.295 709.1 -1.0032309 -1.98134173 9874832 L0C43244
35 2.861 1.339 608.8 -1.,0027740 -1.383%2C2 .5890166 .CC42361
a5 2.906 1. 384 522.3 -1.00238C0 ~1.9854763 .0036384
35 Z2.951 1.429 448.2 =1.0020423 ~1.98720€¢ N TCU3T256
a5 2.589 1l.464 384.5 -1.0017521 ~1.9887450 .5926353 .0C26828
35 3.G33 1.51¢ 329.9 -1.0015030 -1.9901214 .$4935674 .0C23008
a5 3.076 1.569 283.1 -1.0012899 =-1.991333¢ +5943441 WGC19730
35 3.120 1.622 242.9 -1.0011069 ~1.9924043 .59510C7 .0C16913
15 3.164 1.675 208.5 -1.0009498 -1.9933786 .99574135 .0C14442
35 3.2G7 1727 178.9 =1.0008150 —1.99421¢E6 5962964 “CC12355
35 3.251 1.780 153.7 -1.0007002 -1.99493176 5967709 .0C10595
ET) 3.295 1.833 13273 ~1.0006030 ~1.9955517 9971745 .0C0912C
25 3.190 2.930 113.3 -1.0005162 -1.9962159 .9975930 .0CUT645
25 2 3.06C0 98.0 ~1.00U4466 -1.99669¢% .5979026 .0CC6557
25 3 3.070 84.8 ~1.0003864 ~1.9971259 5981773 .0C05611
25 37150 73.0 ~T1.0003328 “1.9975160 5984260 LCLORTTT
25 3,230 63.8 -1.0002906 -1.9978183 .998018Y .0CC4124
25 3.310 54.6 -1.0002466 -1.9981423 L9968232 L0C03462
25 3.396 47.3 -1.0002154 -1.995395¢ .5989823 .0CU2950
25 3.4170 41.5 ~1.0001889 9906055 +9991140 .CCL2532
23 3.58C 31.5 -1,0001434 -1.9989473 .$59933C3 .0C61860
23 3.690 23.8 ~1.000108¢ =1.9992067 599494y L0C01366
23 3.8C0 19.1 -1.000CR68 -1.9993920 .53796096 .0C0162¢4
23 3.9C0 i5.0 -1.0000682 ~1.99953%%4 .$996985 L0CLOTT3
23 4,000 11.6 ~1. 0000528 -1.9996605 .5997175 L0CC0556
13 4,125 8.9 -1.00004C4 “1.9997621 .39985C7 0CLO362
8.5000 17 44250 649 -1,0000314 -1.9998%1c .5 45 .0CCC248
9,0000 17 4.5C0 4.1 =1.C00CT18% ~1.9998754 3 12 LOCJUTITS
9.5000 14 4,750 2.7 ~-1,000C121 =1.9999437 .5999598 .GCCCOBY
10,0000 14 5.0C0 2.G -1,600C0951 149999556 .39997¢C7 L0CCU059
® N denotes the number of terms in the wavefunction; R, E, and V are in atomic units, D in em~*. The results for 0.4 <R<Z2.0are from Ref. 1.
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TasLE II. Comparison of the computed potential-energy curves for the ground state of H; with the classical turning points
Rynin and Ry, for the sth vibrational level obtained by using the RKR method.»

v Rmh,b AR1 AR2 ARs Rm,xb AR; ARz AR;
0 0.633 0 0 0 0.883 0 0 0
1 0.571 0 0 0 1.013 0 0 1
2 0.535 —1 -1 0 1.120 0 0 0
3 0.509 0 0 0 1.219 0 0 0
4 0.489 0 0 0 1.316 0 0 0
5 0.473 0 0 0 1.413 0 0 0
6 0.460 0 0 0 1.513 0 0 0
7 0.449 0 0 0 1.618 -1 —1 0
8 0.439 0 0 0 1.730 -1 -1 0
9 0.432 0 0 0 1.853 -1 -1 0

10 0.425 0 0 0 1.992 -1 -1 0

11 0.420 0 0 0 2.158 —1 -1 0

12 0.416 0 0 0 2.370 -1 -1

13 0.413 0 0 0 2.675 -2 -1

14 0.411 0 0 0 3.260 0 -1

& R in angstroms, AR: in 10~ &. b See Ref. 5.

based on the WKB approximation, gives the classical
turning points for the rotationless vibrational energy
levels, and these points are believed to determine the
most probable potential-energy curve. The reference
point for the energy in the RKR method, is fixed at
the bottom of the energy curve rather than at the
dissociation limit. However, to compare different en-
ergy curves, it seems more natural to use the dissoci-
ation limit as the reference energy, for this is the only
really well established point of such curves. This point
of view was adopted in the present calculation, i.e.,
the lowest vibrational level in the electronic ground
state was assumed to lie, according to the most recent
data,”® 36 113.6 cm™! below the dissociation limit.

Having computed the potential-energy curve E(R)
one can use the experimental values® of the vibrational
levels, E,, to find the corresponding classical turning
points to be compared with those obtained in the RKR
approach. The turning points for the sth vibrational
level are solutions of the equation

E(R)=E, (v=0,1,---14). (13)

For each v the two roots of this equation Rpmin and
Runax have been found by approximating the E(R)
curve piecewise by polynomials. The results are pre-
sented in Table II. In Columns 2 and 6 we give the
most accurate RKR results obtained by Weissman
et al’ By AR; we denote the differences (in 10-% A)

TasLe III. The changes of the energy due to a shift by 5.10~* &
of the classical turning points from Table II.

E(cm™) E(cm™)

v at Rymin  at Rpax ] at Rypin  at Ryax
0 22.9 13.2 8 139.7 10.4
1 46.3 17.7 9 152.3 8.3
2 62.2 18.7 10 159.0 6.3
3 78.6 18.3 11 166.0 4.3
4 94.3 17.3 12 173.3 2.5
5 107.6 15.9 13 181.0 1.1
6 122.6 14.3 14 181.0 0.2
7 133.7 12.4

between our results obtained from Eq. (13) and the
corresponding RKR values. The first two sets, AR,
and ARy, were computed by using the energies from
Table I and approximating the E(R) curve, for the
region under consideration, by the second and fifth
degree polynomials, respectively. In the computation
of AR; the diagonal corrections for nuclear motion
computed previously' were added to the total energy,
interpolation being made by using the second-degree
polynomials. Unfortunately, the corrections had been
computed only for internuclear distances up to Ra22 A.
For this reason the corrected turning points could not
be calculated for larger values of R.

It is seen from Table II that by taking into account
the corrections for nuclear motion, we obtained a very
good agreement with the RKR resuits. The slight dis-
agreement for the »=1 level may be due to the WBK
approximation and/or to the fact that, in the Weissman
et al. calculations, a zero-point energy was used that
is by 8 cm™ smaller than the most recent experimental
value.® In the RKR procedure the differences Rp.x—
Ruin and 1/Rpin—1/Ruax are given by integrals over
the energy extended from the minimum of the energy
curve to the respective vibrational level. Hence, the
turning points of the lowest levels may be expected to
be sensitive to the assumed value of the zero-point
vibration energy.

It must be pointed out, however, that one should
not overestimate the significance of the agreement seen
in Table II; an accuracy of 5X10~4 A is not sufficient
for a precise comparison of the energies. This is best
seen from Table IIT where the changes in the energy,
AE=(dE/dR) AR, resulting from a shift of the turning
points by AR=5X10~* A are given.

It is well known that energy is not a good criterion
to judge the accuracy of an approximate wavefunction.
The root-mean-square error in the wavefunction is
known® to be roughly equal to the square root of the
relative error in the energy. However, the accuracy of
the expectation values of other operators may be quite

% C. Eckhart, Phys. Rev. 36, 878 (1930).
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TasiLe IV. Convergence of various expectation values (in atomic units) with increasing number of terms in
the wavefunction for the ground state of H; (R=1.4 a.u., a=1.0).

N et 12 gt 1% Z15 x? 7

3 «57362929, 221344626+1 »54303682+1  -.85479393-1  -.11731840 « 77130383 88429883

4 “H8075049 «21733954+1 «56586955+41  —.846T0779-1 —.11573395 81056153 +32314918

5 59323335 »21563Q71+1 +55756360+1  —.74076626-1 —.11475130 76824885 .98841577

6 +59325559 +21520873+1 +55444906+41  -,71582015-1 -.11127432 - 16589057 . 98602582

7 +59051903 «21560938+1 ~55541124+1  =.59616121-1  -.14791937 275998549 = 98933361

8 +58963352 2163039141 .55943549+41 —-.62749395~1 —-.15390254 76224474 .99353667
9 +58978286 22153317941 «55666148+1 —.58070142-1 -.15030859 .76186388 «99313079
10 ~58948506 «21613656+1 .55903657+1 ~.58004440~1 -.14989334 - 76604208 99719652
11 .58931394 22162014441 .55936858+1 —-.57611389-1 -.15088866 76164982 +10074318+1
12 <.58930283 .21620015+1 .55930877+1 —.57565821-1 <~.15072635 JTE164372 .10073984+1
13 «58806045 <21661674+1 «56146476+1 -.57221144-1 ~.15023551 . 76516978 .10123065+1
14 .58786829 -21671589%1 «56195879+1  —.54884664-1 —.15666240 - 76475856 .10138451+1
15 .58788525 221664599+1 256125720+1  =.54423004~1 —.15564285 16434486 .101310744}
16 <58763646 -21670479+1 <56159426¥1 —.54655546-1 ~.155B8867 - 76317602 LTOT64195+1
17 +58754618 .2167720141 5621973141 -.54770852-1 —.15809507 76309744 21017154941
18 «58754817 -21677436+1 +56220956+1  ~.54726542-1 ~.15%824364 276307214 .10172068%1
13 +58756222 +21679889+1 25626119241  -.55443109-1 §§%3821 . 76294740 .10171404+1
20 <58752695 2168212741 .56275524+%1 -.55385573-1 5935714 JT6131093 J0210261+1
21 58753619 .21681872+1 .56274265+1 -.55375639-1 -.15934260 . 76129057 .10210382+1
22 .58753601 .21681828+1 .56274811+41  —.55385580~1 —.15934990 JT6TZ25135 <10210368%1
23 258752304 «216B1781+1 .56273359+1 ~-.55461119-1  ~.15910576 . 76133481 .10209704+1
24 58752731 2168077641 .56266212+1  ~.55703891~-1 -.15836629 JT6135800 J10208205+1
25 .58752386 .21680801+1 .56265319+1  —.55735955-1  -.15823569 <76137958 «10207992+1
26 58737694 2168347041 .56318333+1  ~.55742672-1 -.15821574 <T62721369 L10217882+1
27 .58738029 +21689529+1 -56318398+¢1  -.55448448-1 -.15877550 76195989 .10223277+1
28 58737145 .21690072+1 .506322284+1 =U55046279-1  -U15968845 76189338 .1022545%+%1
29 .58737301 .21689613+1 5631611141  —.55055405-1  -.15951297 .76187273 1022436341
30 58737612 e21689313+1 25631443541 -.55037074-1 -.15951120 ST6188041 .10223756+%1
31 .58737788 .21689265+1 .56314738+1  ~.55008707-1 -.15961099 . 76186062 .10223873+1
32 58736761 42169046241 .56328659+1 -.35031761-1 -.15965013 JT6205164 JID226034+1
33 58736932 +21690148+1 -56327126+1  —.55031102-1 ~.15946517 . 16203754 210227538+1
34 «58737240 221689839+ +«56328026+1 ~.55106864-1 —.15940975 76189879 .10279803+1
35 +58738133 .21688863+1 -56320240+1  —.55130024~-1 -.15944921 +76174130 .10228202+1
36 587379517 .21688900+1 .$56320378+1  ~.55129054-1  -.15944993 J18174478 J10228213+1
31 «58736748 22168942741 -56323242+41  -—.55081207-1 -+15962445 76168618 .10230029+1
38 58736825 .21689381+1 .56323014+¢1 -.55076625~1 -. 15964694 16168016 -16229%902+1
39 58736826 .21689361+1 +56322863+1 —.55073197~1 ~-.15965407 . 76167708 .10229885+1
40 58736356 .21689829+1 .56326523+) . 55076174-1 ~.15964385 JT8TT3756 <T0230549+1
41 .58736096 .21689948+1 5632705841  ~.55062420-1 ~.15967242 76167231 .10232110+1
42 .58736326 2168971641 5632547341  ~.55081576-1 -.15965473 “T6164722 BUFEICIEINE
43 +58736280 22168979741 5632621041  —-.55085555-1 —.15967499 «76163205 .10232003+1
44 58736264 -21689814+1 .56325783+1 -.55116683-1 —.15956994 . T6168495 L10231159+1
45 +58736226 .21689834+1 .56325880+¢1  -.55118125-1 -.15956932. .76168182 -10231248+1
46 .58736214 .21689837+1 .56325862%1 =.55119311-1 -.15956535 Y JTI0Z231361+1
47 +58736165 .21689857#1 5632598041 ~.55112451-1 -.15958289 76167217 «10231457+1
48 58736162 -216898TT+1 .56326143+1  =.55090310-1 -~.15962605 - 15158289 JT0TITIRTL
49 -58736170 +21689878+1 .56326135¢1  ~-.55090400-1 -.15962606 <76168273 1023134441
50 «58736167 .21689872+1 .56326089+1 -.5%5090400-1 -~.15962392 16168142 <10231369+1
51 58736210 .21689835+1 +56325815+¢1 —,55095220-1 -.15962366 76167119 «10231343¢1
52 58736255 .21689806+1 .56325857+1 —.55100506-1 -.15961510 . 76166516 . 1023146441
53 58736247 .21689817+1 .56325785+1 —.55104210-1 -.15961312 76165169 .10231643+1
54 58736278 .21689824+1 5632624641  —~.55099727-1 -.15963913 . 76166105 1623151641

different due to the fact that, if the approximate wave-
function is particularly poor in a certain region of
configurational space, different operators may weigh
this region differently. To test the accuracy of our
S4-term wavefunction, we have computed expectation
values of several operators starting with a three-term
expansion and then gradually increasing the expansion
length. Some of our results are shown in Table IV. It
seems that most of the expectation values have con-
verged to five-six figures. In some cases, however, e.g.,
in {x%s), {%%), and {3z22—r?), only four figures seem to
be constant. It may be also pointed out that for these
operators, as many as 20 terms in the wavefunction
were needed to get 999 accuracy. Obviously, if the
wavefunction is known, it may be expressed in terms
of the natural spin orbitals and in this representation
the 999, accuracy could probably be achieved with a
few terms only.

The absolute accuracy of the computed expectation
values are, unfortunately, not known. The convergence
seen in Table IV means only that we have obtained
limiting values for our particular limited set of basis
functions. It is possible that the apparent accuracy of
our expectation values will decrease by, say, one order
of magnitude if a larger basis set is used in the compu-
tation.

Expectation values of several operators have been
computed as functions of the internuclear distance.
The results are listed in Table V and some are also
shown graphically in Fig. 3. The dependence of the
expectation values on the internuclear distance is of
two main types. In the case of an operator which de-
pends explicitly or implicitly on the internuclear dis-
tance, the R dependence of the operator determines
the R dependence of the expectation value. Thus, e.g.,
{r*), and (2?) increase approximately as R? with in-
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TasLE V. Expectation values (in atomic units) for the ground state of Hy computed with 54-term wavefunction.

~—1

2

R a B D(cm™) E g 12 719
.40: +407 20 -193093.0 -.1202034 +34847655 +15640188+1 «30157642+1
.60 .522 .0 -50561.5 ~.7696250 78455209, 1676475441 +34449086+1
<80 675 o0 .4400.2 -1.,0200486 72620851 «17953610+1 .39266022+1
1.00 .403 .0 27331.8 -1.1245329 67431513 «13177557+1 244535560+ 1
1.2C .915 .0 36197.8 ~1.1649292 62833072 «20423423+1 +50220534+1
1.35 1.CC0 .0 38179.4 -1.1739580 59718645 «21370934+%1 25475133341
1.40 1.627 .0 38291.7  ~-1.1744699 +53736591 J21689528+1 .56323895+1
1.45; 1.C54 .0 38199.8 ~1,1740511 57780323 .22009628+1 «5T918526+1
1.60; 1.132 .0 36998.4 ~1.1685773 .55053774 .22979959+1 «62878147+1
1.80 1.249 .0 34032.0 ~1.1550612 51701286 «24301993+1} «69935660+1
2200 1.313 +2C0 30315.1 -1.1381257 43631379 225666243+1 J17577478+1
2.20 1.400 «250 26364,0 -1.1201234 45773359 227083073+1 .85892101+1
2.40, 1.490 «325 22477.0 -1.1024129 « 43090991 +28566722+1 «94991159+1
2.60 1.575 «375 18826.8 -1.0857810 240553341 23012120041 +106499792+2
2.80 1.68C, +450 15510.3 -1.0706700 «3314C426 «31773835+1 .11601357+2
3.00 1.780 519 12578.5 -1.0573118 .35843488 +33511496+1 «12814635+2
3.20 1.888 578 10048.2 ~1.0457832 .33663534 .35337753+1 e L4144345+2
3.40 2.G00 +640 7913.8  -1.0360578 .31608606 +317243859+1 «15591382+2
3.60 2.100, 706 6151.3 -1.0280272 +29690237 «39214527+1 «LT150991+2
3.50 24200 775 4725.2 -1.0215297 221319251 4123032641 .18813963+2
4.00, 2.300 « 848 '3592,.6 -1.01636H9 .26301818 +43271482+1 «20569042+2
R Ta rg ! 7a? Yal'y "a’2a Tat2p
«40 «10420740+1 «14278761+1 . 14598111+1 .14335621+1 +10455717+1 . 1047681241
.60! «11347286+1 21282044341 «17023414%1 .16435054+1 +12435786+1 .12492023+1
.50 .12345082+1 «11607586+1 «1985C480+1 .18802535+1 21475217041 +14871885+1
1.00..  ..13379287+1 210614637+1 «23035795+1 22138655441 21734691641  .17571585+1
1.20 *e14430520+1 98001988 .26546327+1 2414294941 “20178711+1 .20567266¢1
1.35 152234521 .92843267 .29381047+1 42630342241 +22437877+1 .23001529+1
1.4o| «15488034+1 «9127885% .30363543+1 .27039128+1 22321414541 2384837021
1,45, .15752600+1 89785163 +31364572+1 +27781883+1 .24001180+1 +24712894+1
1. 60' «16545502+1 85692682 3447757641 .30048090+1  ..264218686+1 2741305341
1,800  +175928739+1 .81028477 +38881903+1 £33143041+1 +29768785+1 -31265632+1
2. oo‘ L18645390+1 .T7124029 24357731141 .36300731+1 +33220315+1 -35417884+1
2. 20. «196833064+1 +13855836 .48562358+1 43949249841  .36736159+1 .39885454+1
2,400 «20711512+1 71129077 -53842799+1 +42693485+1 4027449941 4469089341
2.60 21129643+1 .68867087 .59429316+1 4588070741 4379254741 +49861841+1
2.80 «22737490+1 L67006838 . 65329049+1 4902844641 «47246049+1 . 5542476641
3.00 «23736039+1 .654921G60 «71562219+1 .52123918+1 +50601877+1 -61410187+1
3.20 $24725921+1 64271952 . 78140058+1 .55151633+], .53832312+1 . 67837660+1
3.40 L25708751+1 «63295122 L B5079159+41 <58109975+1 «56927618+1 <« 7472073041
3.60 +26686027+1 62513607 +92391048+1 .61002236+1L © +59892226+1 . »82059861+1
3480 e27659114+1 61882851 .10008187+2 -63836840+1 «62743695+1 «89844150+1
4.00 2 28629362+1 .613631C9 . 10815469+2 .66626900+1 . .65508834+1 +98055585+1
R X1%2 %1% %2 22 r? Q=R?—2(322—)
-.27999162-1  -,32072652-1 .46763929 . 48453253 .14198111+1 .92421077-1
-.33128824=1  ~.43855265-1 +52410166 56413807 1612341441 19985436
-.318714378-1 -.60824308~1 +58358550 65787765 <18250480+1 +34283379
-.B4410927-1 «64403591 - 765507173 +20535795+1 .51411271
99292231  -.11653551 . 70380435 . BET024C6 .22946328+1 10712121
-.53855458-1 -.14767606 .74745319 .9875721C $24524797+1 86202675
-.55102913~1 =-.15963461 76169285 . 1022968641 . 2546354341 91489695
-+56314342-1 —-+17246538 17575380 + 1059324641 .2610G8322+1 «96821672
~+59706252-1 ~-.21673/(21 .81668533 - 1174387C+1 2801757641 1129193441
-+63545180-1  ~.29150237 86789586 < 1342398641 .30781903+1 1341989141
-.66445408-1 -,38825198 .91432311 - 15290749+1 <33577311+1 +15410130+1
-.68244742~1 -,S1187977 .95535625 .17355233+1 «36462358+1 1719331941
~+688366T8=-1  —.606760465 99026628 «19637474¢1 23944279941 L1666075641
-.68149118-1 -.86066628 «10185136+1 .22159045+1 $42529316+1 1970436341
-.66185155-1 ~.10954034+1 «10400471+1 .24923108+1 45T726049+1 <20289451+1
045871-1  -.13750038+1  .10547499+1 22796722141 ,490622193+1 .20321115+1
946528-1 7002736+1 +10631311+1 3127743741 52540058+1 1951549541
-.54124776-1 =.20695253+1 . 10660457+1 «34858246+1 .56179160+1 L18808843+1
488884531 ~e24786097+1 «10646085+1 «38698917+1 +«59991088+ L < 173886 74+1
~e43560157=1  —-,29216739+1 1060067241 «42780529+1 +63981873+) +15640574+1
~+38407540~1 —.33922365+1 «10536475+1 4708174341 L68156694+1 «138518932+1

creasing R, (r1z) is an almost linear function of R, and
(¢) goes to infinity with decreasing R. On the other
hand if the operator does not depend on R, a different
effect determines the R dependence of its expectation
value. It is known that when two hydrogen atoms
approach each other, there is first a slight expansion

of the electronic charges around each of the atoms
and then, for smaller distances, a contraction. This
has been first shown by Rosen,® who employed a
Heitler-London wavefunction with a variable orbital

16 N, Rosen, Phys. Rev. 38, 2099 (1931).
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exponent «. He found the value of the orbital exponent
to be a<1 for R>R* and 1<a<1.675 for R*>R>0,
R* being approximately equal to 2.7 a.u. These changes
in the wavefunction seem to be mainly responsible for
the R dependence of (x?), (x1x2), etc.

Some of the expectation values are related to the
experimentally measurable quantities. However, accu-
rate comparison with experimental values requires av-
eraging of our results over vibrations and rotations
of the molecule. Results of computations of the vibra-
tional and rotational energies as well as the averaged
expectation values of various operators will be pub-
lished shortly.

An approximate comparison of the expectation val-
ues with experiment can be made by using the theoret-
ical values for R= (R) rather than those for R=R..
In Table VI we give the experimental values' of 7
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Fic. 3. Expectation values for the ground state of H..

and 332—7?, the values computed with an accurate
vibronic wavefunction®® and those obtained from Table
V for R=1.449 a.u. which is the expectation value of
R for the vibronic ground state.’® The good agreement
of the results listed in the two last columns obtained
in two different approaches and using different and
independently written programs increases our confi-
dence in the theoretical results.

For the 3Z,* state the energy calculation was similar
to that for the ground state. Only two nonlinear pa-
rameters were varied assuming a=a and 8= —§. For
small values of R similarily as for the ground state it
has proved sufficient to put 8=8=0. The results are
given in Table VII and the energy curve is also shown
in Fig. 2.

17 N. F. Ramsay, Science 117, 470 (1953); R. G Barnes, P. J.
Bray, and N. F. Ramsey, Phys Rev. 94, 893 (1954).
( “‘V\; Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3674
1963).
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Fi16. 4. Computed potential-energy curves for large internuclear
distances in Ha.

The computed energies for all values of R are lower
than any previous results obtained by the variational
method for the 3%, * state. The van der Waals minimum
has been found to appear at R=7.85 a.u. and to be
only 4.3 cm™ deep. Estimation shows that for H, this
is not sufficient to accomodate even the zeroth vibra-
tional level, although for D; and T, the zero-point
energy may be smaller than 4.3 cm™. A significantly
deeper minimum has been obtained by Dalgarno and
Lynn? however, since this was an approximate per-
turbation calculation, it provides neither an upper nor
a lower limit and it is impossible to decide whether
their results are more accurate than those given in
Table VIL.

For the 3Z,* state, similarily as for the ground state,
we had to reduce the number of terms for large values
of R. This was indispensible for avoiding significant
rounding errors resulting from near redundancy which
appears in the wavefunction for large R. For the finally
chosen wavefunction, the errors in the energy are be-
lieved not to exceed 0.1 cm~!. The significant oscilla-
tions of V and dE/dR seen in Table VII for R>8.0
a.u., are due to the fact that for this region we were
not able to determine accurately the optimum values
of the exponents; the total energy was very insensitive
to the changes of the exponents thus making an accu-
rate_interpolation impossible. This hardly affected the

Tasre VI. Comparison of some expectation values
(in square angstroms) for the ground state of Ha.

Theoretical
Experimental®  VibronicP for R=(R)
{r*) 0.726£0.002 0.732 0.731
(3z2—+2) 0.167+£0.010 0.160 0.159
® See Ref. 17.
b See Ref. 18.
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Tasre VII. Theoretical energies computed in the Born-Oppenheimer approximation for the 3Z,* state of Ha.»

R N «a B D E 14 V/2E dE/dR
1.0000 53 .5136 .0 -83066.2 -.6215221 -1.8543818 1.4918101 -.6113423
1.1000 53 .586 .0 -71169.7 -.6757268 -1.8804968 1.3914624 ~.4809484
1.2000 53 .636 .0 -61680.3 ~. 7189640 -1.9049860 1.3248132 -.3892150
1.3000 53 .687 .0 -53902.2 -. 7544033 -1.9289081 1.2784329 -.3231549
1.4000 53 .738 .0 ~47373.6 -.7841501 -1.9521286 1.2441417 -.2741632
1.5000 53 .790 .0 -41785.9 ~.8096095 —1.9741300 1.2191865 ~.2366073
1.6000 53 .843 .0 ~36932.4 -.8317238 -1.9942686 1.1988768 ~.2067632
1.7000 53 .895 .0 -32672.2 -.8511347 -2.0120441 1.1819779 ~.1822208
1.8000 53 .948 .0 -28906.7 -.8682913 -2.0272111 1.1673565 -.1614603
1.9000 53 1.000 .0 -25564.7 -.8835186 -2.0396922 1.1543006 -.1435026
2.0000 53 1.053 .0 -22591.9 -.8970636 ~2.0495843 1.1423852 -.1277286
2.1000 53 1.106 .0 ~19945.2 -.9091230 ~2.0570807 1.1313545 -.1137309
2.2000 53 1.155 -0 -17588.9 -.9198593 -2.0624268 1.1210556 -.1012310
2.3000 53 1.206 .0 -15492.2 -.9294123 ~2.0659098 1.1114066 -.0900371
2.4000 53 1.243 .235 ~13628.3 ~.9379051 —2.0677969 1.1023487 ~.0799944
2.5000 53 1.300 .300 ~11973.2 - 9454463 ~2.0683706 1.C938594 -.0709912
2.6000 53 1.357 <365 -10505.2 -.9521346 -2.0678612 1.0859080 -.0629200
2.7000 53 1.415 .430 -9205.1 -.9530585 -2.0664862 1.0784760 ~.0556923
2.8000 53 1.463 .495 -805%5.0 -.9632985 -2.0644339 1.0715442 -.0492275
2.9000 53 1.511 .560 -7039.2 -.96792171 -2.0618709 1.0650961 - 0434540
3.0000 53 1.559 .625 ~6143.0 -.9720104 -2.0589384 1.0591133 -.0383059
3.1000 53 1.600 .538 -5353.6 -.9756071 -2.0557534 1.0535765 -.0337223
3.2000 53 1.640 .650 -4659.1 -.9/87717 -2.0524120 1.0484630 -.0296464
3.3000 53 1.680 .663 ~4048.9 -.9815517 ~2.0489952 1.0437530 ~.0260278
3.4000 53 1.720 .675 ~3513.6 -.9839910 -2.0455687 1.0394245 -.0228196
3.5000 53 1.760 .688 ~3044.6 -.9861279 -2.0421809 1.0354543 -.0199786
3.6000 53 1.801 . 101 -2634.2 -.9879977 -2.0388792 1.0318239 -.0174677
3.7000 53 1.843 .T14 -2275.7 -.9896312 ~2.0356899 1.0285094 ~-.0152507
3.8000 53 1.884 .726 -1962.9 -.9910564 ~2.0326374 1.0254903 -.0132959
3.9000 53 1.92% .739 -1690.4 -.9922979 —2.0297374 1.0227459 -.0115747
4.0000 53 1.967 .752 -1453.3 -.9933781 -2.0270065 1.0202592 -.010062%
4.1000 53 2.01% . 785 -1247.4 -.9943164 —2.0244439 1.0180079 -.0087344
"4.2000 53 2.061 817 -1068.8 ~e9951304 ~2.0220571 1.0159759 -.0075706
4.3000 53 2.109 .850 -914.0 ~e9958355 ~2.0198438 1.0141453 ~.0065518
444000 53 2.156 .882 -780.1 -.9964456 ~2.0178050 1.0125013 -.0056622
4.5000 53 2,203 .915 -664.7 —.9969715 -2.0159252 1.0110244 ~.0048849
4.6000 53 2.250 <948 ~-565.1 9974252 -2.0142059 1.0097027 -.0042077
4.7000 53 2.297 .980 -479.4 -.9978159 ~2.0126397 1.0085226 -.0036187
4.8000 35 2.358 1.002 -406.0 -.9981500 -2.0112257 1.0074766 -.0031095
4.9000 35 2.404 1.036 ~342.8 -.9984382 -2.0099357 1.0065399 -.0026652
5.0000 35 2.450 1.070 -288.6 -.9986849 -2.0087720 1.0057086 -.0022804
5.1000 35 2.496 1.104 -242.3 -.9988960 ~2.0077277 1.0049734% -.0019482
542000 35 2.542 1.136 -202.17 -+9990763 -2.00679C5 1.0043229 -.0016611
5.3000 35 2.588 1.172 -169.2 -.9392292 ~2.0059471 1.0037473 -.0014130
5.4000 35 2.634 1.206 -140.5 -.9993597 -2.0051946 1.0032397 -.0011991
5.5000 35 2.680 1.240 -116.3 -.9994703 -2.0045320 1.0027972 -.0010166
5.6000 35 2.740 1.292 -95.8 -.9995635 -2.0039368 1.0024060 -.0008589
5.7000 35 2.800 1.344 -78.3 -.9996432 -2.0034242 1.0020696 -.0007259
5.8000 35 2.860 1.396 -63.8 ~e999 1094 ~2.0029613 1.0017717 -.0006108
5.9000 35 2.920 1.448 ~51.5 ~e9997655 -2.0025563 1.0015130 -.0005128
6.0000 35 2.950 1.500 -41.1 -.9998125 -2.0022055 1.0012904 -.0004301
6.2000 35 3.03% 1.520 -32.6 ~-.9998515 -2.0018892 1.0070933 -.0003584
642000 35 3.690 1.540 ~25.4 ~.9998842 -2.0016168 1.0009243 -.0002981
6.3000 15 3.145 1.560 -19.5 ~.9999112 -2.0013738 1.0007758 -.0002463
6.4000 35 3.200 1.580 -14.6 49999337 —2.0011655 1.0006491 -.0002028

- 645000 35 3.255 1.600 -10.5 -.9999521 -2.0009870 1.0005414 ~.0001666
6.6000 35 3.310 1.620 ~T.2 ~+9999670 -2.0008311 1.0004486 -+0001359
6.7000 35 3.365 1.640 ~4.5 -+9999795 -2.0006929 1.0003670 -.0001095
6.8000 25 3.274 1.720 -2.5 -.9999887 -2.0005656 1.0002940 -.0000865
649000 25 3.342 1.760 -7 -.9999966 -2.0004703 1.0002386 -.0000691
7.0000 25 3.410 1.800 .7 ~1.0000030 ~2.0003923 1.0001931 -.0000552
7.1000 25 3.478 1.840 1.7 -1.0000076 -2.000317% 1.0001511 -.0000426
7.2000 25 3.546 1.880 2.6 -1.0000117 ~2.0002569 1.0001167 ~.000032%
7.3000 25 3.614 1.920 3.1 -1.0000143 ~2.0002055 1.0000885 -.0000242
7.4000 25 3.682 1.960 347 -1.0000167 ~2.0001649 1.0000658 -.0000178
7.5000 25 3.750 2.000 3.9 -1.0000180 -2.0001247 1.0000444 -.0000118
7.6000 25 3.770 2.050 4.2 ~1.0000191 ~2.00009%6 1.0000287 ~.0000076
7.7000 25 3.790 2.100 4.3 -1.0000195 -2.0000710 1.0000160 -.0000041
7.8000 25 3.805 2.150 4.3 -1.0000197 ~2.0000524 1.01000065 -.0000017
7.9000 25 3.820 2.200 4.3 ~1.0000194 -2.0000268 . 9999940 .0000015
8.0000 25 3.840 2.250 4.3 -1.0000196 -2.0000076 +9999842 .0000040
841000 25 3.892 2.300 4.2 -1.00001%2 -1.9999923 .9999770 .0000057
8.2000 25 3.944 2.350 4.2 ~1.0000191 -1.999997> .9999796 .0000050
8.3000 25 3.996 2.400 3.9 ~1.0000180 ~1.9999924 .9999783 .0000052
8.4000 25 4.048 2.450 3.8 -1.0000173 149999841 .9999748 .0000060
8.5000 25 4.150 2.500 3.6 -1.0000164 -1.9999733 .9999702 .0000070
8.6000 25 4.220 2.540 3.5 -1.0000158 -1.9999805 .9999745 .0000059
8.7000 25 4.290 2.580 3.3 -1.0000152 ~1.9999582 .9999640 .0000083
8.8000 25 4.360 2,620 3.1 ~1.0000143 -1.9999769 < 9999741 .0000059
8.9000 25 4.430 2.660 3.1 ~1.0000143 -1.999989% .9999807 .0000043
9.0000 25 4.500 2.700 2.8 ~1.0000127 -1.9999599 -9999672 .0000073
9.2500 18 4,625 2.837 2.4 -1.0000109 -1.9999805 <9999794 .0000045
9.5000 14 4750 2.975 2.1 -1.0000095 ~1.999975L .9999781 .0000046
9.7500 18 4,815 3.112 1.7 ~1.0000076 -1.9999672 .9999760 .0000049

10.0000 18 5.000 3.250 1.5 -1.0000067 -1.9999722 . 9999794 .0000041

3 R, E, and V in atomic units, D in em™1,
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total energy, however, the separation of the total en-
ergy into the kinetic and potential parts was found to
be critically dependent on the value of « and 8.

Let us now consider the energy curves for both the
1Z,+ and 3Z,* states at large internuclear separations
shown in Fig. 4. Long-range interaction due to the
dispersion forces between two hydrogen atoms has
been studied by several authors.3:41%20 The usual pro-
cedure consists in expanding the interaction potential
in terms of inverse powers of the internuclear distance.
This series, which represents all multipole-multipole
interactions, is employed to compute the second and
higher-order corrections to the energy. The dispersion
energy in the second-order perturbation theory is then
given by the formula

Egiop=—2_(C:/ RH¥). (14)
=0

The first three C; coefficients have been computed by
Pauling and Beach? who obtained Cy=6.49903, C,=
124.399, and C,=1135.21 (in atomic units). More re-
cent values of the first two coefficients calculated by
Hirschfelder and Lowdin® are Co=6.499026 and Ci=
144.8497. Unfortunately, there is some disagreement
between the two C; values and the reason for the
discrepancy is not clear.

The energy resulting from Eq. (14) as well as the
energy resulting from the first term in (14) is also
shown in Fig. 4.

Since the exchange or valence interaction energy
decreases roughly exponentially with R, it is not neces-
sary for large internuclear distances to symmetrize or
antisymmetrize the wavefunction. Thus, in the case
of very large R the wavefunction

T=va(1)¥5(2)

may be used in the zeroth approximation for both the
1Z,* and the 32, state, and this type of wavefunction
was employed in the derivation of (14). The differ-
ences between accurate 'Z,% and *Z," energies and
those calculated from (14) represent the magnitude
of the valence interaction at large values of R. Our
results for the two states show that even for R=10.0
a.u. the exchange interaction is not negligible. There-
fore for R<10 the 'Z;+ and *Z," energies are not
directly comparable with those obtained from the for-
mula (14). However, since the exchange interactions
in the two states have approximately the same abso-
lute value and opposite signs, the average of the 1=+
and 3Z,T energies, for given R, may be compared with
the value obtained from Eq. (14). This comparison
is made in Table VIII. One can see that for R<8.5 a.u.
the exchange repulsion in the Z,* state seems to be-
come stronger than the exchange attraction in the =+
state.

The form of the van der Waals minimum calculated
for the 3Z,* state is also of considerable interest. It is

BT, Pauling and J. Y. Beach, Phys. Rev. 47, 685 (1935).

2 7. O. Hirschfelder and P.-O. Léwdin, Mol. Phys. 2, 229
(1959).
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TaBLE VIII. Average energies for the !Z,* and 3Z,* states of H.
at large internuclear separations.»

— Egisp from
Eq. (14)

R —3[E(Z N+ EC2ZN] b c
10.0 1.7: 1.744 1.724
9.5 2.4 2.419 2.393
9.0 3.45 3.423 3.390
8.5 5.2 4.949 4.911
8.0 7.9 7.336 7.300

2 R in atomic units, energies in reciprocal centimeters with respect to the
energy of two separated H atoms.

b Calculated with C; values from Ref, 20.

¢ Calculated with C; values from Ref. 19.

well known that, with the exception of a few cases,
the calculated dispersion energies disagree with the
so-called experimental values.? The latter were ob-
tained from the viscosity measurements assuming the
intermolecular interaction to be correctly represented
by the Lennard-Jones potential

V=4 (¢/R)2— (¢/R)?]

and determining from the experimental results the two
parameters e and o. The value of 4es® may then be
said to represent the experimental dispersion energy
(multiplied by R®) for the system under consideration
and can be compared with a mean value of the C’s
defined in Eq. (14). In most cases the two values
disagree by a factor of 2.0-2.5, and the reason for this
discrepancy is not clear. To some extent the method
can be tested by using our results for the 3Z,* state
and fitting the Lennard-Jones potential to the com-
puted van der Waals minimum. If the two parameters
of the Lennard-Jones potential are determined by re-
quiring the minimum of this potential to coincide with
the minimum of the variational potential, one gets
4e08=9.17. The mean value of Cy, C;, and C, can be
calculated from the formula®

C=Co+(Ci/o?) +(Co/a*).

By using the Hirschfelder and Lowdin® values of Co
and Cj, one gets C=9.461, whereas the Pauling and
Beach? values of Co, Cy, and C. give C=9.517. The
relatively good agreement between these results and
the corresponding value obtained by fitting the Lennard-
Jones potential to the variationally determined mini-
mum suggests that at least for two H atoms, the
Lennard-Jones potential may be used to represent the
long-range interaction due to the dispersion forces.

As the last potential-energy curve we computed the
curve for the lowest 'II, state of H,. Since this is a
1sa2pw state, we could not assume a=a, 8=—§, and
all four exponents had to be varied independently for
each internuclear distance. This made the computa-

21 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular

Theory of Gases and Liguids (John Wiley & Sons, Inc., New York,
1954), p. 966.
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TastrE IX. Theoretical energies computed in the Born—-Oppenheimer approximation for the I, state of Hp.*

R N @ & 8 B D E 14 dE/dR
1.000 .21 «330 .830 -.100 +360 ~11524.4 ~e5724911 -1.6610400 ~+.5160579
1.125 21 <370 +911 -+530 +429 117.9 -e6255371 -1.6407573 -+3463850
1.250 2¢ <410 +992 -.098 498 T954.1 -+6612415 -1.6119309 -.2315583
1.375 27 450 1.072 -.540 «567 13137.7 -.6848598 -1.5812100 ~-.1538112
1.500 217 <490 14153 -.095 +636 16562.4 -.7004638 -1.5417238 -.0978642
1.625 217 +520 1.210 -.111 <665 18678.0 -.7101032 -1.5153688 -.0585615
1.750 217 <546 1.267 -.128 «693 19874.8 -+7155565 ~1e4840439 -.0302463
1.850 el +568 l.314 -.141 «715 20345.0 ~. 7476989 ~1.4600595 -.0133307
1.900 27 579 14340 -.147 . 726 20452.2 -.71818173 -l.4484101 -.0063661
1.950 21 «590 1.360 -.154 « 738 20487.7 ~+ 7183489 ~1.4371620 -.0002381
1.951 217 «590 1.360 -.154 «738 20487.8 ~.7183492 ~1+4369386 -.,0001231
1.992 21 +5490 1.360 -.154 «738 20487.8 ~«7183492 -1.4367147 -.0000084
1,953 27 «590 1.360 -.154 738 20487.6 ~+7183491 -1.4364909 +0001062
1.954 27 «590 1.360 - 154 +738 20487.7 ~.7183490 -1.4362669 +0002206
1.960 21 <595 l1.364 -.152 « T44 20487.1 -+7183460 ~1.4349465 »0008906
1.970 I <600 1.368 -.150 « 750 20483.8 ~.7183310 -1.4327296 +0019962
2.000 27 o514 1.480 -.140 « 170 20460.1 -.7182230 -1.4261640 «0051%10
2.100 21 o637 1.430 ~+150 +820 2024542 ~«7172439 -1.4050377 .0140238
2.250 21 o672 1.500 -.170 +895 19614.5 ~«71437C3 -1.3756404 +0236001
2.500 ef «730 1.620 -.200 1.020 18036.1 -+ 7071783 ~1l.3326864 .0326681
2.750 2/ «780 1.710 -.170 1.050 16121.8 ~.6984564 -1.2968287 +0363942
3.000 2/ .« Y30 1.800 -.150 1.080 14098.4 ~-.6892372 ~1.2676921 .0369274
3.500 27 «930 2.010 -.268 1.285 10216.2 ~.6715486 -1e227412Y 0330527
4,000 21 1.033 2.225 ~.387 1.490 6937.7 -+6566106 -1.2073402 .0264702
4,500 217 | P 1 2.430 -.506 1.700 4418.4 -.6451316 ~1.2025252 «0194973
5.000 217 1.236 2+650 -e625 1.900 2631.3 -+6369889 ~1.2014744 .0133007
5.500 21! 133/ 2,860 -. 744 2.100 L456.1 ~+6316345 -1.2167615 +0084559
6,000 2f 1.439 3,070 -.863 2.310 733.6 ~a6283423 -1,2202515 .0050722
0,500 I l.804 3.150 -1.020 2.880 305.6 ~.6263925 -1.2348501 +0027592
1.G00 24 l.967 3,414 -1.260 3.125. 88.0 ~+6254011 -1.2405282 «0014677
7.500 24 24110 3,800 . -1.500 3.370 -24.4 -.62488486 ~1e2442544 +0007364
T.750 4 2.176 3.949° ~1.603 3.498 ~56.3 -.6247433 -1.2456047 .0005009
8,000 24 24233 4.126 -l.742 3.615 -78.7 -46246415 -1.2466319 «0003314
8,240 24 24290 4,263 -1.821 3.732 -92.7 ~s6245775 -142474455 «0002072
8.500 24 2.350 44400 -1.900 3.850 -101.0 ~e6245398 -1.24808717 .0001167
8.740 24 24525 4,640 -1.480 4.030 -104.5 -46245240 ~1l.2486229 +0000486
9,000 24 2.700 4.870 ~2.060 4,200 -105.5 ~e6245195 ~142490412 ~+0000002
9.250 24 2.815 5,106 ~2.140 4,370 -104.8 -.6245223 ~1.2493712 -.0000353
J.50u 24 3.050 5.330 -2.220 44540 -102.5 -e6245331 ~1.2496404 -.0000604

10.000 24 3.225 5.560 -24300 4.700 -95.3 ~e62456060 -1.2498371 -.0000705

2 R, E, and V in atomic units, D in cm™.

tions a very time-consuming procedure and therefore
the calculations have been carried out with a relatively
small number of terms in the wavefunction.

The results of the energy computations are collected
in Table IX. The equilibrium internuclear distance,
calculated from the virial theorem, is R,=1.9521 a.u.=
1.0330 A which is in a very good agreement with the
experimental value? R,=1.0327 A. The experimental
binding energy for the 'II, state, according to Nami-
oka,? is® D,=20488.5 cm™, whereas the older term
values® and spectroscopic constants give D.=20 509
cm?, The theoretical binging energy from Table IX
is D,=20487.8 cm™. To check the accuracy of the
theoretical value, we have made an additional calcula-
tion for R=R,. Namely, the expansion of the wave-
function was extended to include all terms which in
the test runs improved the energy by at least 0.1 cm—.
Thus, the expansion length was increased from 27 to
58 terms and this resulted in an energy improvement
of 2.2 cm™, the final theoretical binding energy being
D,=20490.0 cm™. This is in very good agreement
with Namioka's experimental value. The small dis-
crepancy between theory and experiment amounting

2T, Namioka (private communication).

28 Not corrected for rotation—vibration interaction (¥o).

% From G. Herzberg, Molecular Spectra and Molecular Structure
(D. Van Nostrand Company, Inc., New York, 1950), Vol. 1.

to 1.5 cm™ is certainly™not larger than the probable
values of the nuclear motion and relativistic corrections
which have not been calculated for the II, state.
Similarly, to check the accuracy of our results for
larger internuclear distances, we have made some addi-
tional test runs for R=8.0 a.u. Having tested many
terms not included in the 24-term expansion used in
the final computation of this section of the potential-
energy curve, we selected the next six most important
terms. The energy improvement achieved by adding
the six terms to the 24-term wavefunction and re-
optimizing all parameters was only 1.5 cm™!. Hence,
it seems that for the II, state, our energies are already
quite close to the corresponding accurate eigenvalues
of the nonrelativistic clamped nuclei Hamiltonian.
The results also show that the van der Waals maxi-
mum in the C I, state definitely exists. In comparison
with the results of Browne? the maximum has been
flattened out by about 40 cm™' and shifted to larger
internuclear distance of 9.0 a.u. in perfect agreement
with Mulliken’s prediction? that the repulsive disper-
sion forces in the C I, state should lose their domi-
nance over attractive valence forces at R=9 a.u. The
existence of the maximum seems to eliminate definitely

the C I, state as the possible upper state of the far-

% R. S. Mulliken, Phys. Rev. 120, 1674 (1960).
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ultraviolet absorption continuum which plays crucial
role in the experimental determination! of the ground-
state dissociation energy. The results are also in agree-
ment with the conclusion of Namioka” who from his
recent experimental study of the C'II, state predicts
the height of the maximum to be at least 50 cm™.

Namioka? has also employed the RKR method to
calculate the classical turning points Rmin and Rpayx
for vibrations in the C'II, state. His results are shown
in Table X. Similarly, as for the ground state we have
used the energy values from Table IX and the experi-
mental energies of the vibrational levels to find the
classical turning points for vibrations for all vibrational
states. The differences, AR, between our results ob-
tained by quadratic interpolation from Eq. (13) and
Namioka’s RKR results are also given in Table X.

The relatively poor agreement may be due to several
factors: (a) to the lack of the corrections for nuclear
motion, (b) to the error in the RKR results which is
believed” to be about 1%, due to inaccuracy of the
B, values, (c) to the errors introduced by interpolation
of our results for the energy which are certainly larger
than in the case of the ground state, (d) to the in-
accuracies of our variational energies, (e) to possible
inaccuracies of the WKB method used in the RKR
procedure.

Time did not permit us to extend the present investi-
gation to still other excited states. However, we were
able to make a calculation for the B !Z,* state which
is of considerable interest. For the internuclear dis-
tance R=2.5 a.u., we selected a 49-term wavefunction

TaBLE X. Comparison of the computed potential-energy curve
for the ', state of H, with the classical turning points, Rpnin and
Rinax, for the 1th vibrational level obtained by using the RKR
method.»

v Ruicb AR R AR
0 0.888 -1 1.223 -2
1 0.805 0 1.399 0
2 0.756 0 1.543 -1
3 0.721 1 1.677 -2
4 0.694 1 1.808 ~1
5 0.673 1 1.940 0
6 0.655 0 2.076 0
7 0.641 0 2.219 -1
8 0.629 ~1 2.374 ~2
9 0.619 -1 2.545 —4

10 0.611 -1 2.742 -3

1 0.604 -1 2.981 -9

12 0.599 -1 3.303 ~10

13 0.59 -1 3.843 —~44

& R in angstroms, AR in 10- A.
b See Ref. 22.

T, Namioka, J. Chem. Phys. 41, 2141 (1964).
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TaBLE XI. Energies of the lowest 12, state computed with a
49-term wavefunction.

R(a.u.) —E(a.u.) D(cm™) —V(a.u.) V/2E
2.40 0.75662269 28 887.8 1.5160211 1.0018343
2.41 0.75663223 28 889.9 1,5151357 1.0012366
2.42 0.75663821 28 891.3 1.5142538 1.0006458
2.43 0.75664034 28 891.7 1.5133747 1.0000621
2.44 0.75663804 28 891.4 1.5124994 0.9994855
2.45 0.75663401 28 890.3 1.5116271 0.9989157
2.46 0.75662547 28 888.5 1.5107578 0.9983524
2.47 0.75661374 28 885.9  1.5098915 0.9977954
2.48 0.75659848 28 882.5 1.5090274 0.9972445
2.49 0.75658003 28 878.5 1.5081669 0.9967002
2.50 0.75655841 28 873.7 1.5073085 0.9961614

and computed the optimum exponents a=1.37, a=
0.815, 8=0.98, and §= —0.20. The 49-term wavefunc-
tion with these values of the nonlinear parameters was
then employed in a calculation in which the inter-
nuclear distance was varied. The numerical results are
shown in Table XI. The theoretical internuclear dis-
tance R,=2.431 a.u.=1.286 A is only in a fair agree-
ment with the experimental value® R,=1.2925 A.

The experimental binding energy for the B 1Z+ state
can be easily found from the published data®® as the
difference between the energy of the dissociation prod-
ucts in the 'Z,*+ state (120 551.9 cm™) and the energy
of the potential minimum for the !Z,* state (91 699.1
cm™), both energies being measured with respect to
the minimum of the ground-state potential-energy
curve. In this way one gets D,—=28 852.8 cm™!, which
is by 38.9 cm™ smaller than the theoretical value.
Since, in view of the other results obtained with the
present program, it does not seem likely that there
are errors in our calculation, we are more inclined to
attribute the existing discrepancy between theory and
experiment mostly to the neglected coupling between
electronic and nuclear motion, though the small value
of these corrections obtained for the ground state' does
not seem to justify this point of view.
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