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Improved Theoretical Ground-State Energy of the Hydrogen Molecule* 
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(Received 13 February 1968) 

The potential-energy curve for the electronic ground state of the hydrogen molecule ha~ been calcul~ted 
for 1 <R <3.2 a.u. in double precision and using a 100-term expansion for the electrOnIc wavefunctron. 
Accu;;cy ~f the previously computed diagonal corrections for nuclear motion has been. tested. The vibrational 
equation has been solved for all isotopes of the hydrogen molecule and for th~ =o~atlOnal q~an.tum numb~r 
J < 10. The calculated adiabatic dissociation energy of H2, corrected for relatIvistIc and radiatIve effects, IS 
by-3.8 cm-I larger than the experimental value, hence the theoretical total energy is by the same amount 
lower than the experimental value. The calculated vibrational quanta for H2 are by 0.5-0.9 cm-1 larger than 
the experimental ones. 

I. INTRODUCTION 

Being a two-electron system the hydrogen molecule 
is, from the theoretical point of view, in an exceptional 
position. The Schrodinger equation for H2 can be solved 
accurately and even the higher-order corrections can 
be calculated. Since for the hydrogen molecule accurate 
experimental data can also be obtained, a possibility 
exists, similarly as for the helium atom, to confront the 
basic theory with experiment. 

The most accurate theoretical results obtained for 
the ground-state potential-energy curve of the hydro­
gen molecule are those given in Refs. 1 and 2 (referred 
to hereafter as I and II, respectively), and they result 
in a dissociation energy3 which corrected for the rela­
tivisticl •4 and radiative5 effects is Do= 36 117.3 cm-I • 

This result is in disagreement with the experimental 
value Do= 36 113.6±O.3 cm-1 obtained by Herzberg 
and Monfils.6 Since the theoretical result was obtained 
in the adiabatic approximation, the discrepancy pre­
sents a serious problem: A larger value of the dissocia­
tion energy means that the theoretical total energy of 
H2 is lower than the experimental one. However, it is 
well known that the adiabatic approach gives an upper 
bound to the total energy and therefore the theoretical 
and experimental results are inconsistent. 

Although the discrepancy is one order of magnitude 
larger than the experimental error, it appears onl~ in 
the sixth significant figure of the total energy. Smce 
the latter was calculated in single precision (eight sig­
nificant figures) it was conceivable that part, if not all, 
of the discrepancy was due to rounding errors and nu­
merical inaccuracies. To clarify this problem a double 
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Research Projects Agency through the U.S. Army Research 
Office (Durham), under Contract No. DA-31-124-ARO-D-447, 
ARPA Order 368. . 

t Permanent address: Department of Theoretical Chemistry, 
University of Warsaw, ul. Pasteura 1, Warsaw 22, ~oland. . 

precision calculation has been made and the results are 
reported below. 

II. METHOD 

The calculations were carried out in the adiabatic 
approximation.1•7 This corresponds to assuming the 
wavefunction in the form of the product 

\f1(r, R)=f(r; R)x(R), (1) 

where r denotes all electronic coordinates and R the 
internuclear distance. The function f(r; R), where R 
is treated as a parameter, is obtained by solving the 
electronic Schrodinger equation resulting from the com­
plete equation if infinite nuclear masses are assumed. 
To solve this equation the variational method was em­
ployed, and f( r; R) was put forward as an expa?,sion 
in terms of the elliptic coordinates and of the mter­
electronic distance. The basis set was identical with 
that used in 1. Assuming (1) , one gets from the complete 
Schrodinger equation a second-order differential equa­
tion for the vibrational function X (R). The correspond­
ing eigenvalue can be shown8 to be identic~l with t~e 
expectation value of the complete four-partIcle Hamil­
tonian calculated with (1). Hence it represents an upper 
bound to the true eigenvalue of the Hamiltonian. In 
the present work the equation for x,.(R). was solve.d 
numerically using the Cooley method. This method is 
known1o to give results accurate practically to as many 
figures as used in the computation. Therefore, it is not 
necessary to work in double precision when solving ~he 
vibrational equation. The only part of the computatlOn 
that might be seriously affected by rounding errors is 
that leading to the potential-energy curve, and there­
fore only these calculations have been performed in 
double precision. . 

The calculation of the matrix elements was earned 
out in a way completely analogous to that used in 1. 
First the cf>nnI>fl integrals for M = 0 were computed by 
numerical integration using Simpson's rule. For M = 1, :I: Permanent !lddress: D~partment of Theoreltcal PhYSICS, 

Nicholas Copermcus UnIversity, Torun, Poland. I' . R M d Ph 35 473 (1963) 
1 W. Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964.) 7 W. Kolos and L. Wo meWlCZ, ev. o. ys. , . 
2 W. Kolos and L. Wolniewicz, J. Chem. Phys. 43,2429 (1965). : ie*~.~.~!:~. tath. Computation 15, 363 (1961). 
3 L. Wolniewicz J. Chem. Phys. 45, 515 (1966). 10 See e g W Kolos and L. Wolniewicz, "Vibrational and 
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TABLE I. Clamped nuclei energy of H2•• 

No. of 
No. of integration 
terms points R(a.u.) E(a.u.) D(cm-i ) V/2E 

80 110 1.4011 -1.1744746 38292.7 
80 150 1.4011 -1.174474657624 38292.75903 
80 250 1.4011 -1.174474657935 38 292.75910 
80 350 1.4011 -1.174474657970 38 292.75911 

100 350 1.4011 -1.174474982924 38 292.830427 
100 500 1.4011 -1.177444982931 38 292.830428 
100 500 1.401075 -1.17447498301568 38 292.83044693 1. 00000074423 
100 500 1.401076 -1.17447498301674 38 292.83044717 1.00000052389 
100 500 1.401077 -1.17447498301743 38 292.83044732 1.00000030355 
100 500 1.401078 -1.17447498301776 38 292.83044739 1.00000008320 
100 500 1.401079 -1.17447498301771 38 292.83044738 0.99999986286 
100 500 1.401080 -1.17447498301730 38 292.83044729 0.99999964252 

• 1 a.u. of energy =219 474.62 em-'. 

2, 3 they were obtained by applying a recurrence rela­
tion. From the CPnnMI integrals the Iri;'s~ and Mri;'8~ 
integrals were evaluated, and these were used in the 
calculation of the required matrix elements. 

The numerical integration of CPniiMI is the only ap­
proximation involved in the calculation of the expecta­
tion value of the Hamiltonian, since the rest of the 
calculation is purely algebraic. Therefore, to get insight 
into the dependence of the final energy on the accuracy 
of CPnnMI , the program has been provided with an option 
to vary the number of integration points, up to 500, in 
the evaluation of CPnnMI • 

The matrix elements needed for the diagonal nuclear­
motion corrections, when expressed in terms of the Irs?'~ 
and Mr.?,!' integrals, are given by rather lengthy formu­
las. To double check the previous program, those ma­
trices which were not symmetrical in I have been now 
symmetrized yielding different formulas for the matrix 
elements, and these formulas were used in the calcula­
tion. 

III. RESULTS AND DISCUSSION 

A. Potential-Energy Curve 

Several test runs have been made to check the accu­
racy of the calculations and the most important results 
are given in Table I. In the first row we give, for com­
parison, the previous results obtained in single precision 
and with 110 integration points. The following three 
rows show the results obtained in double precision with 
the identical wavefunction and a varying number of 
integration points. In the next two rows we list the 
energies resulting from a more flexible 100-term wave­
function. The last six rows show the change in the 
energy caused by variation of the internuclear distance. 

The results listed in Table I indicate that (1) the 
number of points used in the numerical integration was 
sufficient to yield accurate results; (2) not very signifi­
cant, although not negligible, improvement of the en­
ergy is obtained by making the wavefunction more 
flexible. 

Using the virial theorem and the values of V /2E 
given in Table lone gets by linear interpolation the 
equilibrium internuclear distance R.= 1.4010784 a.u. 
The accuracy of the diagonalization is illustrated by 
the fact that a direct quadratic interpolation of the 
energy, for which a 15-figure accuracy is needed, gives 
the same value of R •. 

The same 80- and 100-term wavefunctions were used 
to calculate the energy for several other values of the 
internuclear distance. For the exponent a in the wave­
functions the values published in I were used (for 
1:=:;R:=:;2 from Table II and for R>2 from Table III) 
and the numerical integrations were carried out with 
350 points. The results are shown in Table II, where 
for each R the upper number gives the tOO-term result 
and the lower one corresponds to 80 terms in the wave­
function. If, for a particular R, only one set of numbers 
is given, it represents the 100-term results. In the last 
two columns we give the improvement of the energy 
[D(100) -D(80) in cm-I ] obtained by adding 20 terms 
to the 80-term wavefunction, and the improvement of 
the energy obtained in the present 100-term calculation 
over the best previous results [D( 1(0) - Dold in cm-l ]. 

It is seen that the previous results for 1:=:;R:=:;2 were 
quite accurate except for R= 1.6 where apparently a 
machine error occurred in the previous calculation. 
This has already been pointed out by Beckel and 
Sattler,u 

In the previous single precision calculation reported 
in I and II the 80-term wavefunction was used only 
up to R= 2.0 a.u. since for larger values of the inter­
nuclear distance the energy seemed to be affected by 
rounding errors. For larger R, a wavefunction with a 
smaller number of terms but with an additional non­
linear parameter was used. In double precision, no 
problems connected with rounding have been encoun­
tered and up to R= 2.8 the single-exponent 80-term 
wavefunction was still better than the previous two­
exponent 54-term wavefunction. However, at R> 3.2 

11 C. L. Beckel and J. P. Sattler, J. Mol. Spectry. 20,153 (1966). 
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TABLE II. Ground-state energies for H2 calculated in double precision.-

R E Vl2E D D(lOO) D(lOO) 
-D(80) -Do1d 

1.0 -1.12453881 1.14337569 27 333.11 0.04 0.1 
-1.12453864 1.14337609 27 333.07 

1.2 -1.16493435 1.05517553 36 198.90 0.05 0 
-1.16493411 1.05517593 36 198.85 

1.3 - 1 . 17234623 1.02477845 37 825.62 0.06 0 
-1 . 17234596 1.02477882 37 825.56 

1.39 -1.17445199 1.00247242 38 287.78 0.1 
1.4 -1.17447477 1.00023825 38292.78 0.1 
1.4011 -1.17447498 0.99999523 38 292.83 0.07 0.1 

-1.17447466 0.99999562 38292.76 
1.41 -1.17446041 0.99804848 38 289.63 0.1 
1.5 -1.17285408 0.98017172 37937.08 0.08 0.1 

-1.17285370 0.98017206 37937.00 
1.6 -1.16858212 0.96363860 36 999.50 0.11 0.5 

-1.16858164 0.96363874 36 999.39 
1.8 -1.15506752 0.93870361 34 033.38 0.12 0.1 

-1.15506694 0.93870376 34 033.26 
2.0 -1.13813155 0.92198243 30 316.37 0.17 0.1 

- 1.13813078 0.92198235 30 316.20 
2.2 -1.12013035 0.91150053 26 365.56 0.29 1.6 

-1.12012903 0.91150084 26 365.27 
2.4 -1.10242011 0.90601982 22 478.61 0.46 1.6 

-1 .10241799 0.90602039 22478.15 
2.6 -1.08578740 0.90468045 18828.16 0.75 1.4 

-1.08578400 0.90468139 18 827.41 
2.8 -1.07067758 0.90679365 15 511.93 1.10 1.6 

-1.07067254 0.90679401 15 510.83 
3.0 -1.05731738 0.91172200 12579.71 1. 73 1.2 

-1.05730948 0.91172216 12577.98 
3.2 -1.04578647 0.91880634 10 048.97 2.57 0.7 

-1.04577476 0.91880455 10 046.40 

• Rand E in atomic units; D and the differences in em-I. 

a.u. the latter becomes superior even to the lOO-term 
single-exponent wavefunction. 

It is seen from Table II, especially in connection 
with the previous results, that around the equilibrium 
the energy has almost converged and most probably 
an extension of the basis set would not give any signifi­
cant improvement. However, it is also seen that at 
R~3 a more extensive basis set, or a set carefully 
selected for this particular region, might improve the 
energy by at least a sizable fraction of a cm-l . 

As mentioned in the previous section, the diagonal 
corrections for nuclear motion have been recalculated 
in double precision and using an algorithm different 
from that employed in 1. For R= 1.4011 a.u., the 
previous results have been reproduced and by extend­
ing the expansion length from 54 to 66 terms the value 
of the corrections decreased by 0.013 cm-Ilowering the 
adiabatic potential-energy curve by the same amount. 
For R= 2.2 a.u., the decrease amounted to 0.014 cm- I • 

Since this is a smaller change than a possible inaccuracy 
in our clamped nuclei energy caused by incompleteness 
of the basis set, we concluded that the accuracy of the 
previously calculated corrections was satisfactory. 

B. Vibrational Levels 

To calculate the vibrational levels the corresponding 
one-dimensional Schrodinger equation was solved nu-

merically using the Cooley method.9 For 1::;R::;3.2 
the new energies from Table II were used. For smaller 
and larger values of R the single precision results2 were 
employed. The previously calculatedl diagonal correc­
tions for nuclear motion were also added to the clamped 
nuclei energies to yield the adiabatic potential. For 
R>3.6 the corrections were extrapolated graphically 
which seems to give more realistic results than a linear 
extrapolation. The following values were assumed: 
~Dnucl=5.5, 3.7, 1.5,0.5, and 0 cm-1 for R=3.8, 4.0, 
4.3, 4.6, and 5.0 a.u., respectively. Incidentally, it may 
be pointed out that any reasonable extrapolation of the 
corrections has been found not to affect the eigenvalues 
for v::; 9. 

Since for 1 ::;R::; 3.2 the double-precision calculation 
was carried out for only 17 values of R, and not for 29 
as in single precision, an additional test has been made. 
It consisted in solving the vibrational equation with 
the old potential in which, however, the 12 values not 
calculated in double precision were omitted. The result­
ing eigenvalues differed from those calculated with the 
complete potential by not more than 2.10-7 a.u. (=0.4 
CnlI). This shows that the interpolation method em­
ployed in the calculation works quite satisfactorily. 

The dissociation energies of Hz for all bound vibra­
tional levels are listed in Table III for several values 
of the rotational quantum number (O::;J::;lO). For 
other isotopes the dissociation energies only for J = 0 
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TABLE IV. Dissociation energies (in em-I) for nonrotational 
(J =0) states of various isotopes of the hydrogen molecule." 

"II 

o 36 748.69 
1 33 754.72 
2 30879.90 
3 28 122.11 
4 25479.71 
5 22 951.50 
6 20536.76 
7 18 235.31 
8 16 047.58 
9 13 974.60 

10 12 018.14 
11 10 180.90 
12 8 466.42 
13 6 879.60 
14 5426.75 
15 4 115.52 
16 2 955.93 
17 1 960.26 
18 1 144.61 
19 529.01 
20 138.42 
21 
22 
23 
24 
25 

37 028.89 
34 564.16 
32 179.44 
29 873.46 
27 645.22 
25 493.86 
23418.77 
21 419.50 
19 495.89 
17 648.01 
15 876.22 
14 181.12 
12 563.67 
11 025.27 
9567.63 
8 192.96 
6 904.20 
5 704.79 
4598.79 
3 591.33 
2 688.40 
1 897.34 
1 227.26 

689.05 
295.51 
62.67 

HD 

36 405.92 
32 773.09 
29317.76 
26 036.43 
22 926.63 
19 986.97 
17 217.25 
14 618.65 
12 193.79 
9947.25 
7885.72 
6018.75 
<l 359.14 
2 923.67 
1 734.91 

823.33 
228.97 

HT 

36 512.35 
33 076.86 
29 799.53 
26 677.31 
23 708.00 
20 890.20 
18 223.44 
15 708.32 
13 346.51 
11 141.05 
9 096.65 
7219.77 
5 519.53 
4007.46 
2 698.86 
1 613.65 

778.59 
227.90 

DT 

36 881.63 
34 138.00 
31 493.98 
28947.89 
26 498.41 
24 144.50 
21 885.44 
19 720.86 
17 650.85 
15 675.83 
13 796.70 
12 014.91 
10 332.54 
8 752.22 
7 277 .55 
5 913.17 
4664.43 
3 538.33 
2 543.25 
1 689.70 

991.01 
463.24 
126.21 

a The following nuclear masses were used: M p =1836.12. Md=3670.42. 
M, =5496.74. 

are given12 in Table IV. In Table V the theoretical 
values of the vibrational quanta are presented and the 
discrepancies with the experimental results are also 
shown. Finally, in Table VI we give the expectation 
values of R-2 which are directly related to the rota­
tional constants. 

TABLE V. Calculated vibrational quanta (in em-I) and 
discrepancies with experiment (~=~Gth.oret-~G •• vtl). 

v 

-! 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

~G("II) 

2179.69 
4162.06 
3926.65 
3696.14 
3468.68 
3242.24 
3014.50 
2782.82 
2543.89 
2293.65 
2026.81 
1737.14 
1415.54 
1048.98 
620.16 

0.42 
0.92 
0.67 
0.90 
0.67 
0.68 
0.77 
0.64 
0.75 
0.69 
0.55 
0.48 
0.56 

-0.20 
-1.80 

HD 

~G(v) 

1890.62 
3632.84 
3455.33 
3281.33 
3109.80 
2939.66 
2769.72 
2598.60 
2424.86 
2246.54 
2061.53 
1866.97 
1659.61 
1435.47 
1188.76 
911. 57 
594.36 

0.2 
0.6 
0.6 
1.5 
2.7 
0.3 
0.0 
4.3 

-4.2 
-2.4 

4.6 
-1.9 

2.2 
-0.4 

0.2 
-2.0 

~G(v) 

1546.62 
2993.96 
2874.82 
2757.79 
2642.40 
2528.21 
2414.75 
2301.45 
2187.72 
2072.98 
1956.46 
1837.24 
1714.48 
1586.83 
1452.84 
1311.23 
1159.59 
995.67 
815.66 
615.60 
390.59 

-0.4 
0.2 
1.2 
0.5 
0.9 

-0.5 
0.9 
0.3 
1.3 
0.2 
1.2 

-0.3 
1.0 

-0.3 
0.0 

-0.2 
0.4 
1.0 
0.2 

-0.1 
7.4 

12 The dissociation energies for isotopes other than H2 and for 
0::; J::; 10 will be published in the Technical Report (1967) of 
this Laboratory. 
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TABLE VI. Expectation values of R-2 (in atomic units) for various isotopes of the hydrogen molecule. 

11 H2 D2 T2 HD HT DT 

0 0.4964227 0.5002768 0.5019664 0.4981907 0.4988406 0.5010802 
1 0.4716615 0.4826216 0.4874864 0.4766667 0.4785161 0.4849296 
2 0.4474458 0.4652762 0.4732231 0.4555773 0.4585850 0.4690441 
3 0.4235996 0.4481799 0.4591457 0.4348099 0.4389576 0.4533780 
4 0.3999337 0.4312728 0.4452206 0.4142480 0.4195333 0.4378849 
5 0.3762253 0.4144857 0.4314131 0.3937579 0.4002042 0.4225140 
6 0.3522131 0.3977507 0.4176872 0.3731860 0.3808482 0.4072160 
7 0.3275902 0.3809793 0.4040055 0.3523634 0.3613262 0.3919291 
8 0.3019336 0.3640856 0.3903203 0.3310808 0.3414832 0.3765874 
9 0.2747283 0.3469714 0.3765872 0.3090726 0.3211117 0.3611246 

10 0.2452425 0.3295036 0.3627562 0.2860317 0.2999835 0.3454623 
11 0.2125416 0.3115419 0.3487750 0.2615020 0.2777843 0.3294901 
12 0.1750356 0.2929242 0.3345614 0.2350059 0.2541232 0.3131118 
13 0.1300893 0.2733959 0.3200492 0.2057448 0.2285495 0.2961996 
14 0.0724396 0.2527331 0.3051596 0.1726324 0.2003232 0.2785627 
15 0.2305967 0.2897750 0.1338081 0.1684446 0.2600316 
16 0.2065337 0.2737433 0.0861109 0.1312751 0.2403933 
17 0.1799327 0.2569845 0.0859912 0.2193026 
18 0.1498389 0.2392775 0.1964155 
19 0.1149466 0.2204012 0.1711123 
20 0.0724753 0.2001135 0.1426350 
21 0.1779678 0.1098310 
22 0.1534741 0.0702327 
23 0.1259076 
24 0.0940930 
25 0.0552815 

The constants have been measured13- 16 for H2, HD, 
and D2• For H2 the calculated values of (R-2) agree 
with the experimental ones up to four decimal places 
or better. For HD and D2 they agree up to three 
decimal places; however, the experimental values given 
by different authors also disagree among themselves in 
the third decimal figure. 

For some of the isotopes, additional vibrational levels 
located just below the dissociation limit were also ob­
tained. They are given separately in Table VII, since 
their accuracy and even their existence are not quite 
certain. To obtain these levels, the potential-energy 
curve was extended by calculating the energies and 
derivatives for R= 10.5, 11.0 (1.0), 15.0 a.u. from the 
formula 

E= -1 +b(BsR-6+ BsR-8+ B1oR-10). 

The Bn constants were taken from a perturbation cal­
cuiationJ7 and b was adjusted to give for R= 10 the 
energy coinciding with the variational result. To check 
how sensitive the vibrational energies are to the form 
of the potential assumed for R> 10, a calculation was 
also made in which the interaction energy was repre­
sented by a single term BIo'R:-lO. The resulting energies 
did not differ by more than 0.1 cm-I from those given 
in Table VII. 

By extrapolating the experimental results, Takezawa 
et al.H concluded that for D2 the highest vibrational 

13 G. Herzberg and L. I. Howe, Can. J. Phys. 37,636 (1959). 
14 S. Takezawa, F. R. Innes, and Y. Tanaka, J. Chern. Phys. 46, 

4555 (1967). 
16 K. Mie, Z. Physik 91, 475 (1934). 
16 C. K. Jeppesen, Phys. Rev. 49,797 (1936). 
17 W. Kolos, Intern. J. Quantum Chern. 1, 169 (1967). 

state should be v= 21; for HD the existence of the v= 17 
state, although less certain, could not be excluded. 

It is likely that the nonadiabatic effects would make 
the levels listed in Table VII significantly more stable. 
However, on the other hand, the location of these 
states is determined mainly by the outer section of the 
potential-energy curve which is less accurate than in 
the vicinity of the equilibrium and for which the 
nuclear-motion corrections have not been computed. 
Therefore, the existence of these states, although very 
probable, does not seem to be conclusively established. 

The most important conclusion of the present work 
concerns the ground-state dissociation energy of H2. 
For 1::;R::;3.2 the potential used in the calculation 
was (a) free from rounding errors; (b) improved by 
the use of 100- rather than 80-term wavefunction. The 
region 1::;R::;3.2 is sufficient to determine unambigu­
ously the energies of the seven lowest vibrational levels. 
Therefore, the energies of the seven lowest vibrational 
levels would not be affected by any change of the po­
tential for R> 3.2, and in consequence they also do not 
depend on the extrapolation method assumed for the 
diagonal nuclear-motion corrections. 

TABLE VII. Highest vibrational levels for some isotopes 
of the hydrogen molecule. 

E D. (R) (](2) 
Molecule v (a.u.) (em-I) (a.u.) (a.u.) 

D2 21 -1.0000051 1.12 9.768 0.0153 
HD 17 -1.0000117 2.57 9.008 0.0194 
HT 18 -1.0000230 5.05 8.272 0.0235 
DT 23 -1.0000090 1.98 9.205 0.0175 
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As mentioned above, it does not seem very probable 
that in the close vicinity of the equilibrium internuclear 
distance the clamped nuclei energy could be signifi­
cantly improved by using a more flexible wavefunction. 
On the other hand, there is not much doubt that, e.g., 
at 2.5~R~3.0, an extension of the expansion length 
could lower the clamped nuclei energy by a sizable 
fraction of a cm-I • However, the energies of the two 
lowest vibrational levels of H2 are not affected by any 
changes of the potential for R> 2.2. Therefore, any 
improvement of the electronic wavefunction is not 
likely to change the energies of the two lowest vibra­
tionallevels by more than a small fraction of a cm-l . 

The calculated energies of H2 disagree with the ex­
perimental results in two respects: (1) The theoretical 
ground-state dissociation energy is larger than the 
experimental value; (2) the theoretical vibrational 
quanta are larger than the experimental ones. We think 
that the nature of the disagreement is quite different 
in these two cases. 

Let us first discuss the ground-state dissociation en­
ergy. The adiabatic ground-state energy represents an 
upper bound to the exact lowest eigenvalue of the com­
plete four-particle Hamiltonian. Therefore, if by making 
the electronic wavefunction still more flexible the en­
ergy could be improved, it would lower the total energy 
and hence it would still increase the dissociation en­
ergy. If we went beyond the adiabatic approximation, 
this would correspond to introducing more freedom into 
the wavefunction, and hence it would also lower the 
total energy, the lowering being of the order of (m/J.L)2. 
For instance, in the case of the H2+ ion the nonadiabatic 
ground-state energy has been found to be about 0.1 
cm-l lower than the adiabatic value. ls The fact that in 
a previous nonadiabatic calculation4 a higher value of 
the total energy was obtained than in the adiabatic 
approach indicates only that the nonadiabatic energy 
had not yet converged to the proper eigenvalue. 

The energies given in Tables III-V are the non­
relativistic values; however, they can be readily cor­
rected for the relativistic and radiative effects. The 
relativistic corrections, calculated in the Pauli approxi­
mation, when averaged over the zero-point vibrations,4 
change the dissociation energy by ADre1 = -0.5 cm-I • 

The radiative corrections contribute5 to the dissocia­
tion energy ADrad = -0.2 cm-I • The latter is not a 
value averaged over the zero-point vibrations; how­
ever, the effect of averaging would be probably negligi­
ble, although it might be not completely negligible for 
higher vibrational states. It may be worth mentioning 
that the exact upper limit to the radiative corrections 
has also been calculated,3 and by using it one gets 
ADrad> -0.36 cm-I. If the nonrelativistic adiabatic 
dissociation energy from Table III, Do= 36 118.1 cm-I, 
is corrected for the relativistic and radiative effects, 

18 W. Kolos and L. Wolniewicz (unpublished); G. Hunter and 
H. O. Pritchard, J. Chern. Phys. 46, 2153 (1967). 

one gets the final theoretical value Do= 36 117.4 cm-1 

which is by 3.8 cm-I larger than the experimental 
value. Hence, the theoretical total energy is by the 
same amount lower than the experimental one. 

The experimental dissociation energy was obtained6 

by measuring the far ultraviolet absorption edges cor­
responding to dissociation of the molecule from the 
electronic ground state via the B' Il:r+ excited state; 
the dissociation occurring with different rotational 
quantum numbers. Although an extrapolation is needed 
to J = 0 for the upper state to get the dissociation en­
ergy, it has been shownl7 that for H2 the extrapolation 
does not throw any shadow on the experimental results. 

Let us now discuss the second type of discrepancy 
between the theoretical and experimental energies, viz., 
the fact that the theoretical vibrational quanta are 
larger than the experimental ones. Our l00-term wave­
function has been selected from a larger basis set. The 
selection was made for the equilibrium internuclear 
distance and using the energy criterion for retaining 
or discarding certain terms. Therefore, the outer sec­
tions of the potential calculated with this wavefunction 
have a larger error than the region close to the equilib­
rium. This kind of error, obviously, raises the vibra­
tional levels and also the values of the vibrational 
quanta. Hence, it may account for part of the discussed 
discrepancy. However, we have mentioned before that 
any improvement of the wavefunction is not likely to 
change appreciably the potential for R < 2.2. Hence it 
is also not likely to change the theoretical value of 
AG(O) and a different reason for the discrepancy with 
experiment must exist. 

General arguments and numerical results obtained 
for the H2+ ion strongly suggest that at least part of 
the discrepancy is due to the adiabatic approximation. 
In the case of the nonrotationall: state the nonadiabatic 
effects are caused by interaction with other, in this case 
excited, l: states. The energy difference between the 
interacting states decreases with increasing vibrational 
excitation in the ground electronic state. Hence the 
interaction energy is likely to increase and the lowering 
of the higher vibrational states caused by the non­
adiabatic effects may be larger than that in the lower 
states. If this is the case, a nonadiabatic calculation 
should yield smaller vibrational quanta than the adi­
abatic one. This general conclusion is confirmed by 
the numerical results obtained recently18 for the H2+ 
ion. For this system, the lowering of the energy due to 
the nonadiabatic effects for the three lowest vibra­
tional states was 0.12, 0.21, and 0.35 cm- , respectively. 
Hence, the two lowest nonadiabatic vibrational quanta 
were by 0.09 and 0.14 cm-I, respectively, smaller than 
their adiabatic counterparts. The conclusion is also 
supported by estimation of the nonadiabatic effects 
made by Poll and Karl,l9 

There is also no doubt that part of the discrepancy 

19 J. D. Poll and G. Karl, Can. J. Phys. 44,1467 (1966). 
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between the theoretical and experimental values of the 
vibrational quanta can be removed at least for some 
states by taking into account the relativistic effects. 
For R<R. the relativistic corrections decrease quite 
rapidlyl and therefore their averaged value decreases 
for excited vibrational states. It has been found4 that 
for the two lowest vibrational states of H2 the relativ­
istic corrections to the dissociation energy are tlDrel = 
-0.48 and -0.34 em-I, respectively. Hence, they de­
crease the theoretical value of tlG(O) by 0.14 cm-l. 

In Table V we also compare with experiment the 
theoretical vibrational quanta calculated for HD and 
D2. In contradistinction to H2, the errors for these two 
isotopes are quite random. In all three cases the theo­
retical values were obtained from the same clamped 
nuclei potential by applying only a different mass factor 
to the nuclear-motion correction. Therefore, the rather 
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consistent discrepancy obtained for H2 seems to suggest 
that for the two other isotopes the experimental results 
are responsible for the inconsistency. 

Summarizing the preceding discussion we may say 
that the nonadiabatic and relativistic effects are likely 
to remove at least part of the discrepancy between the 
experimental and theoretical values of the vibrational 
quanta. However, the authors do not know any effect 
which when taken into account might bring the the­
oretical and experimental dissociation energies into 
agreement. 
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Detailed expressions in terms of fundamental molecular parameters are given for the fourth-order 
centrifugal distortion constants of the nonlinear XYX molecule. It is shown how these expressions can be 
used for the determination of the cubic potential constants of the XYX molecule if they are considered in 
conjunction with the reduced-Hamiltonian theory of Watson. Three reduced Hamiltonians are treated in 
detail, and a generalization of Watson's theory is presented, and its need is justified. 

I. INTRODUCTION 

In a studyl appearing in this journal in 1963, Chung 
and Parker (CP-I) developed the general form of the 
molecular asymmetric-top vibration-rotation Hamil­
tonian in the Nielsen-Amat-Goldsmith formulation 
for all possible equilibrium configuration point-group 
symmetries. Olson and Allen2 (OA) subsequently pro­
duced an important simplification of the Hamiltonian 
for the orthorhombic point groups through judicious 
use of angular-momentum commutation relations. 
Chung and Parker extended their previous work by 
publishing a study3 (CP-II) of the fourth-order cen­
trifugal distortion effect, and by specifically applying 
their considerations to the nonlinear XYX (H20-type) 

* The research reported in this paper was sponsored in part by 
the U.S. Air Force Cambridge Research Laboratories, Office of 
Aerospace Research, under contract. 

1 K. T. Chung and P. M. Parker, J. Chern. Phys. 38, 8 (1963). 
2 W. B. Olson and H. C. Allen, Jr., J. Res. Nat!. Bur. Std. A67, 

359 (1963). 
3 K. T. Chung and P. M. Parker, J. Chem. Phys. 43, 3865 

(1965) . 

molecule4 (CP-III). It was then shown by Kneizys, 
Freedman, and Clough5 (KFC) that the Hamiltonian 
for the orthorhombic point groups in general, and for 
XYX in particular, could be given in much simplified 
form through extensive rearrangement, again based on 
angular-momentum commutation relations. The form 
of the resulting Hamiltonian is, for a given vibrational 
state, a power series in the angular-momentum com­
ponents which needs for its specification, to fourth 
order of approximation, three coefficients, A, B, and C, 
of terms of the second power in the body-fixed angular­
momentum components (these being the three effective 
rotational constants); six coefficients T, of fourth­
power angular-momentum terms (these being the 
second-Older centrifugal distortion constants Ti plus 
fourth-order corrections to them); and 10 coefficients 
of sixth-power angular-momentum terms (these being 
the fourth-order centrifugal distortion coefficients <1>;). 

4 K. T. Chung and P. M. Parker, J. Chem. Phys. 43, 3869 
(1965). 

6 F. X. Kneizys, J. N. Freedman, and S. A. Clough, J. Chem. 
Phys. 44, 2552 (1966). 
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