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The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24259

Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB

R
� EA � EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (�hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is

Ĥ ¼ T̂ þ V̂ee þ V̂; (2)

where the kinetic energy operator is

T̂ ¼ � 1

2

XN
j¼1

r2
j ; (3)

the electron–electron repulsion operator is

V̂ee ¼ 1

2

X
i 6¼j

1

jri � rjj
; (4)

and the one-body operator is

V̂ ¼
XN
j¼1

vðrjÞ: (5)

For instance, in a diatomic molecule, v(r) ¼ �ZA/r � ZB/|r � R|.

We use atomic units unless otherwise stated, setting

e2 ¼ �h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are

given in Table 1. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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computer time that does not become prohibitive as the

number of atoms (and therefore electrons) becomes large.

Basic DFT

The electronic density n(r) is defined by the requirement that

n(r) d3r is the probability of finding any electron in the volume

d3r around r. For a single electron with wavefunction f(r), it is

simply |f(r)|2. In density functional theory (DFT), we write the

ground-state energy in terms of n(r) instead of W. The first

DFT was formulated by Thomas[6] and Fermi.[7] The kinetic

energy density at any point is approximated by that of a uni-

form electron gas of noninteracting electrons of density n(r),

which for a spin-unpolarized system is:†

TTF ¼ aS

Z
d3r n5=3ðrÞ; aS ¼ 3ð3p2Þ2=3=10: (7)

The interelectron repulsion is approximated by the classical

electrostatic self-energy of the charge density, called the Har-

tree energy:

U ¼ 1

2

Z
d3r

Z
d3r0

nðrÞ nðr0Þ
jr� r0j : (8)

Because the one-body potential couples only to the density,

V ¼ hV̂i ¼
Z

d3r nðrÞ vðrÞ: (9)

The sum of these three energies is then minimized, subject to

the physical constraints:

nðrÞ � 0;

Z
d3r nðrÞ ¼ N: (10)

This absurdly crude theory gives roughly correct energies

(errors about 10% for many systems) but is not nearly good

enough for most properties of interest (for example, molecules

do not bind[8]). For same-spin, noninteracting fermions in 1d,

the corresponding kinetic energy is

TTF 1d½n� ¼ p2

6

Z
dx n3ðxÞ (11)

and makes only a 25% error on the density of a single particle

in a box. Hours of endless fun and many good and bad prop-

erties of functional approximations can be understood by

applying Eq. (11) to standard text book problems in quantum

mechanics,‡ and noting what happens, especially for more

than one particle.§

But modern DFT began with the proof that the solution of

the many-body problem can be found, in principle, from a

density functional. To see this, we break the minimization of

Eq. (6) into two steps. First minimize over all wavefunctions

yielding a certain density, and then minimize over all densities.

Because the one-body potential energy depends only on the

density, we can define separately[9,10]

F½n� ¼ min
W!n

hWj T̂ þ V̂ee

� �
jWi; (12)

where the minimization is over all antisymmetric wavefunc-

tions yielding a given density n(r).¶ This is transparently a

functional of the density, meaning it assigns a number to

each density, as was first proven by Hohenberg and

Kohn.**[11] Then

Kieron Burke is a professor of heretical physical and computational chemistry at the

University of California in Irvine. He spent the last two decades of his life in functionals.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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†Evaluate the TF kinetic energy of the H atom and deduce the % error. Repeat

using spin-DFT.

‡Calculate the TF kinetic energy for a 1d particle of mass m ¼ 1 in (a) a har-

monic well (v(x) ¼ x2/2) and (b) in a delta-well (v(x) ¼�d(x)). Give the % errors.

§Deduce the exact energy for N same-spin fermions in a flat box of width 1

bohr. Then evaluate the local approximation to the kinetic energy for N¼ 1, 2,

and 3, and calculate the % error.

¶Derive F[n] for a single electron. It has no electron–electron interaction, and is

known as the von Weizs€acker kinetic energy.

**Technically, HK only proved fact this for v-representable densities, i.e. den-

sities which are the ground-state of some external one-body potential.
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E ¼ min
n

F½n� þ
Z

d3r nðrÞ vðrÞ
� �

; (13)

where the minimization is over all reasonable densities satisfy-

ing Eq. (10). Hohenberg and Kohn proved (i) that all properties

are determined by n(r), i.e., they are functionals of n(r),†† (ii)

F[n] is a universal functional, independent of v(r), and (iii) the

exact density satisfies

dF
dnðrÞ ¼ �vðrÞ; (14)

where dF/dn(r) is the functional derivative of F with respect to

n(r). In fact, these days we use spin DFT,[12] in which all quanti-

ties are considered functionals of the up, n:(r), and down,

n;(r), spin densities separately. This makes approximations

more accurate for odd electron systems and allows treatment

of collinear magnetic fields. All functionals written without

spin dependence, such as the ones discussed thus far, are

assumed to be referring to a spin-unpolarized system.

The next crucial step in developing the modern theory came

from (re)-introducing orbitals. Kohn and Sham[13] vastly

improved the accuracy of DFT by imagining a fictitious set of

noninteracting electrons that are defined to have the same den-

sity as the interacting problem. They are still spin-1
2 fermions

obeying the Pauli principle, so like in HF theory, their wavefunc-

tion is (usually) a Slater determinant, an antisymmetrized prod-

uct of orbitals of each spin, fjr(r), j ¼ 1,…,Nr, r ¼ : , ;. These

KS electrons satisfy a noninteracting Schr€odinger equation:

� 1

2
r2 þ vS;rðrÞ

� �
/jrðrÞ ¼ �jr /jrðrÞ; (15)

and the ejr are called KS eigenvalues and fjr(r) are KS

orbitals.‡‡ By evaluating Eq. (3) on the KS Slater determinant,

the KS kinetic energy is the sum of the orbital contributions:§§

TS ¼ � 1

2

X
r¼";#

XNr

j¼1

Z
d3r /�

jrðrÞr2/jrðrÞ: (16)

If we write the energy in terms of KS quantities:

E ¼ TS þ Uþ V þ EXC; (17)

EXC is defined by Eq. (17) and called the exchange-correlation

(XC) energy.¶¶ KS showed that one could extract the unknown

KS potential if one only knew how the terms depend on the

density. Writing the Hartree potential as

vHðrÞ ¼
dU

dnðrÞ ¼
Z

d3r0
nðr0Þ
jr� r0j ; (18)

then vS;rðrÞ ¼ vrðrÞ þ vHðrÞ þ vXC;rðrÞ; (19)

where

vXC;rðrÞ ¼
dEXC

dnrðrÞ
: (20)

This is a formally exact scheme for finding the ground-state

energy and density for any electronic problem.*** In Figure 2,

we emphasize the exactness of the KS scheme by plotting the

exact KS potential for a He atom (which is trivial to find, once

the exact density is known from an accurate many-body calcu-

lation[14]):††† Two noninteracting electrons, doubly occupying

the 1s orbital of this potential, have a density that matches

that of the interacting system exactly.‡‡‡ But in practical

calculations, we always use approximations to EXC and hence

to vXC(r).

Traditionally, EXC is broken up into exchange (X) and correla-

tion contributions:§§§

EXC ¼ EX þ EC: (21)

The exchange energy is V̂ee evaluated on the KS Slater deter-

minant minus the Hartree energy, and typically dominates.¶¶¶

In terms of the orbitals:

Figure 2. Exact KS potential of He atom along z axis; for neutral atoms,

the KS potential goes asymptotically to 1/r for large r (data from Umrigar

and Gonze, Phys. Rev. A 1994, 50, 3827, VC American Physical Society, repro-

duced by permission). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

††Again, HK proved this only for v-representable densities.

‡‡Is the sum of the KS eigenvalues equal to the total energy?

§§Apply Eq. (12) to the KS system to define TS without ever mentioning vS(r).

Then prove that T� TS always.

¶¶Give the signs of E, T, Vee, V, U, EX, and EC for real systems (i.e., atoms, mole-

cules, and solids).

***Why is a KS calculation much faster than direct solution of the Schr€odinger

equation?

†††Write the formula that extracts vS(r) from n(r) for the helium atom. Can you

explain why this does not tell us the vital vXC[n](r) for any spin-unpolarized

two-electron systems?

‡‡‡Why is the helium KS potential less deep than the original potential, �2/r?

§§§What is EXC for a one-electron system?

¶¶¶What is the expectation value of the Hamiltonian (Ĥ ¼ T̂ þ V̂ þ V̂ee) eval-

uated on the KS Slater determinant? Use this to prove that the DFT definition

of correlation energy is never positive.
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EX ¼ � 1

2

X
r; i; j
occ

Z
d3r

Z
d3r0

/�
irðrÞ /�

jrðr0Þ /irðr0Þ /jrðrÞ
jr� r0j : (22)

This is precisely the same orbital expression given in HF,

though it makes use of the KS orbitals (which are implicit

functionals of the density[15] rather than the HF orbitals.****

Then the correlation energy is everything else, i.e., defined to

make Eq. (17) exact.††††

Real Calculations

Practical calculations use some simple approximation to

EXC[n:,n;]. The KS equations are started with some initial guess

for the density, yielding a KS potential via Eq. (20). The KS

equations are then solved and a new density is found. This

cycle is repeated until changes become negligible, i.e., this a

self-consistent field calculation.

The standard approximations are very simple. The local

(spin) density approximation (often just called LDA) is[13]:

ELDA
XC ¼

Z
d3r eunif

XC ðn"ðrÞ; n#ðrÞÞ (23)

where eunif
XC (n:,n;) is the XC energy density of a uniform gas of

spin densities n: and n;. The X contribution was first written

by Dirac,[16] and is found by inserting plane waves (the KS

orbitals of a uniform gas) into Eq. (22).‡‡‡‡ In the unpolarized

case, the result is§§§§

eunif
X ðnÞ ¼ �aX n4=3; aX ¼ 3ð3p2Þ1=3=ð4pÞ (24)

while eunif
C (n:,n;) has been calculated and accurately parame-

trized.[17] More accurate energetics are usually obtained with a

generalized gradient approximation (GGA), which includes de-

pendence on the gradient of the density

EGGA
XC ¼

Z
d3r eGGA

XC ðn"ðrÞ; n#ðrÞ; jrn"ðrÞj; jrn#ðrÞjÞ; (25)

where now the energy density is given by some approximate

form. The third standard form of approximation is a hybrid,

which mixes in a fixed fraction of the exact exchange energy

E
hyb
XC ¼ a ðEX � EGGA

X Þ þ EGGA
XC ; (26)

where a is a universal parameter (often about 1/4) and EX is

the exact exchange defined in Eq. (22).

Although LDA is uniquely defined, there are two basic fla-

vors of the more sophisticated functionals. There are those

that are derived without fitting to reference data on atoms

and molecules, using information from only the slowly varying

electron and known exact conditions on the functional. The

standard GGA of this type is PBE,[18] while the hybrid is PBE0,

mixing 25% exact exchange.[19] Of the empirical type, B88 is

the standard GGA for exchange,[20] LYP for correlation,[21] com-

bining to form BLYP. The most commonly used functional

today is a hybrid called B3LYP.[22]

The original LDA became a standard tool in solid-state

physics, yielding excellent lattice parameters, and fairly good

bulk moduli. But LDA typically overbinds by about 1 eV/bond,

which is too large an error to be useful in quantum chemistry.

GGAs reduce this error to about 0.3 eV/bond, and hybrids

reduce it another factor of 2. Table 1 shows typical results. Em-

pirical parametrized functionals are usually about a factor of 2

better than nonempirical ones, but with less systematic

errors.[25] Although hybrids are popular in chemistry, where HF

codes have been including exact exchange for decades, they

are much less popular for solids, due to the singularities in HF

for metals.

In contrast, many limitations of these functionals have been

identified. Perhaps the most well-known is the gap problem.

The fundamental gap is I � A, the difference between the ioni-

zation potential and the electron affinity of a system. This is

usually larger than the KS gap, the difference between the KS

HOMO and LUMO energy eigenvalues. Calculations with LDA

and GGA yield fundamental gaps of insulating solids close to

the KS gap, and so are too small (by about a factor of 2). This

is related to self-interaction error (that is, the functionals are

incorrect for one electron). Hybrid functionals often do better.

Other well known failures of these approximations include the

lack of asymptotic van der Waals forces, which can be impor-

tant for soft matter.[26]

There are many suggestions on how to improve these stand-

ards. Presently, meta-GGAs, which use KS kinetic energy densities

to approximate EXC, can produce accurate energetics without

using HF exchange.[27] Alternatively, including only the short-

ranged contribution to exchange can also avoid the difficulties of

applying HF to solids.[28] But so far, none of these is even close to

replacing the standard functionals in amount of use.

Computer codes also need some basis set to represent the

KS orbitals. Basis functions localized on atoms are used for

molecular systems in quantum chemistry. Most codes now use

Gaussians, but some use Slater-type orbitals (exponentials

Table 1. Differences in calculated [using Turbomole (http://

www.turbomole.com/)[23]] versus experimental values (from Ref. [24]) for

well depth (De) in kcal/mol and equilibrium distance (R0) in pm of N2.

D ¼ calc�expt

HF LDA PBE BLYP PBE0 B3LYP Expt.

De �110 40.4 16.2 13.0 �1.73 1.06 227.0

R0 �3.2 �0.33 0.41 0.40 �0.93 �0.80 109.8

****Derive a formula for EX[n:,n;] in terms of EX[n], evaluated on various den-

sities. Does the same formula apply to the KS kinetic energy, but with EX
replaced by TS? How about for EC?

††††This definition differs slightly from that of quantum chemistry.

‡‡‡‡Show that if electrons repelled via a contact repulsion, d(r � r
0
), the

exchange is given exactly by LDA, and give its expression, including spin-

dependence.

§§§§Use dimensional analysis to explain the powers of the density in the local

approximations of the kinetic energy in 1d and 3d, as well as the exchange

energy in 3d.
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centered on atoms) and localized basis sets. In solids and

materials, periodic boundary conditions are convenient for

extended systems, making plane waves a natural choice. Core

electrons are often treated as frozen or by pseudo-potentials,

saving calculational effort. A few codes use numerical grids.[5]

Electronic KS-DFT has been implemented in a huge variety

of codes, and is being applied in many areas of science. Mod-

ern computers allow routine calculation of hundreds of atoms,

far more than with traditional quantum chemical methods, but

with a reasonable (not very high) degree of accuracy and reli-

ability. In traditional areas of condensed-matter physics and

quantum chemistry, many experimental groups run codes

themselves, and many purely computational groups exist. For

example, new catalysts have been found by calculation, then

demonstrated in the lab, patented, and are being further

developed for industrial production.[29] But such calculations

and calculators are also appearing in materials science, geol-

ogy, and biochemical departments. Recent uses also include

protein science, soil science, and astrophysics. Liquids can be

simulated using ab initio molecular dynamics (AIMD).[30] There

is increasing interest in matter under high pressure and tem-

perature (but not high enough to be pure plasma) and here

DFT simulation is making a large impact.[31]

In its original form, electronic DFT focused purely on the

ground-state energy and density. Several approaches exist to

tackle excited states, but the most popular is time-dependent

density functional theory (TDDFT), based on a formal proof for

time-dependent one-body potentials.[32] In the linear response

regime, this leads to a simple scheme for calculating transition

frequencies which has become popular for molecules. The

response scheme uses the ground-state KS orbitals as its start-

ing point. In Figure 2, the (doubly occupied) 1s orbital is at

�24.57 eV, precisely �I, the ionization potential for the system.

The 2p orbital is at �3.429 eV, so the first allowed optical tran-

sition of the KS electrons has frequency 21.14 eV.[33] TDDFT

corrects these transitions to the exact value 20.97 eV,[34] but

once again requires knowledge of an unknown functional,

called the XC kernel, which depends on the perturbing fre-

quency.[35] Present applications all use the adiabatic approxi-

mation, which ignores the frequency dependence and allows

the kernel to be extracted from a ground-state XC approxima-

tion. Typical results give moderate accuracy for transition fre-

quencies (0.4 eV errors), but excellent results for the properties

of molecules in excited states.[36] Dramatic failures of these

approximations include double excitations, charge transfer,

and a missing contribution to the optical response of solids.[37]

Useful Resources

Tables 2 and 3 give a list of acronyms and notation used in

this essay. Perhaps the best pedagogical introduction of recent

years is ‘‘A Primer in DFT.’’[38] For physicists with some back-

ground in many-body theory, there’s nothing better than Drei-

zler and Gross,[39] or the more recent Engel and Dreizler.[40]

Analogously, if you are a chemist with knowledge of quantum

chemical methods, try Parr and Yang.[41] A more pragmatic

approach is that of Koch and Holthausen[42] who, in Part B,

discuss the accuracy of different approximate functionals for

different molecular properties. For TDDFT, the standard refer-

ence is that edited by Marques,[37] and there is a new intro-

duction by Ullrich.[43]

To check you have followed the essay, you should certainly

try the questions posed in the text, which are collected and

answered in the Supporting Information.

Keywords: density functional theory, electronic structure, local

density approximation
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