
A cluster-based mean-field, perturbative and coupled-cluster theory
description of strongly correlated systems

Athanasios Papastathopoulos-Katsaros,1, a) Carlos A. Jiménez-Hoyos,2 Thomas M. Henderson,1, 3 and Gustavo E.
Scuseria1, 3
1)Department of Chemistry, Rice University, Houston, Texas 77005, USA
2)Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
3)Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Dated: 19 February 2021)

We introduce cluster-based mean-field, perturbation and coupled-cluster theories to describe the ground state of
strongly-correlated spin systems. In cluster mean-field, the ground state wavefunction is written as a simple tensor
product of optimized cluster states. The cluster-language and the mean-field nature of the ansatz allows for a straight-
forward improvement based on perturbation theory and coupled-cluster, to account for inter-cluster correlations. We
present benchmark calculations on the 2D square J1− J2 Heisenberg model, using cluster mean-field, second-order
perturbation theory and coupled-cluster. We also present an extrapolation scheme that allows us to compute ther-
modynamic limit energies very accurately. Our results indicate that, even with relatively small clusters, the correlated
methods can provide an accurate description of the Heisenberg model in the regimes considered. Some ways to improve
the results presented in this work are discussed.

I. INTRODUCTION

Spin lattices and more specifically, Heisenberg models, are
of significant chemical importance. For example, iron-sulfur
clusters relevant to nitrogen fixation or photosynthesis, such
as ferredoxins, have been treated according to the Heisenberg
model.1 Single molecule magnets have possible applications
in quantum computers as the smallest practical unit for mag-
netic memory. These molecules are usually metal clusters,
and the magnetic coupling between the spins of the metal ions
can also be described by a Heisenberg Hamiltonian.2 Lastly,
electrides, conjugated hydrocarbons and a few superconduc-
tors have some of their features modelled after Heisenberg ex-
change interactions.3–5 A common feature of all those systems
is that they are strongly-correlated.

Despite tremendous effort and progress, the accurate and
efficient description of the ground state of strongly-correlated
systems represents an open problem in quantum chemistry.
The defining feature of strongly-correlated systems is their
multi-reference nature, which makes single-reference meth-
ods inadequate.6 Accordingly, approaches based on compos-
ite particles have been proposed for treating these systems,
e.g. resonating valence bond as a ground state candidate for
high-Tc superconductors, suggested by Anderson.7

In this work, which is a continuation of the work in Ref. 8,
we use composite many-spin cluster states to describe the
ground state of strongly-correlated spin lattices. More specif-
ically, we divide the lattice into clusters, each containing a
predefined number of sites which in this work are chosen us-
ing proximity in the lattice. These clusters can have any shape
and any size, although for 2D systems, compact shapes pro-
vide better results. The cluster states are a subset of all the
available many-particle states (most often all the states of the
Sz = 0 sector). We presume that an accurate zero-th order de-
scription of the ground state of the full system can be prepared
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as a product of cluster states. It is important to note that the
many-particle state in each cluster is determined in the pres-
ence of other clusters. The resulting cluster mean-field (cMF)
state is variational. The optimization provides not only the
optimal cMF state, but also a renormalized Hamiltonian ex-
pressed in term of cluster states. Traditional many-body ap-
proaches can then be used, on this renormalized Hamiltonian,
to account for the missing inter-cluster correlations.

In related work, Isaev, Ortiz, and Dukelsky9 considered,
in their hierarchical mean-field (HMF) approach, a similar
ansatz to ours for the same Hamiltonian. Our approach dif-
fers from that used in Ref. 9 in not requiring the individ-
ual clusters to share the same ground state. That is, the
ground state of each cluster is optimized independently allow-
ing for (translational and spin) symmetry-broken solutions.
In addition, we here consider two common approaches from
quantum chemistry, Rayleigh-Schrödinger perturbation the-
ory (RS-PT)10 to second-order and coupled-cluster (CC)11 as
a means to obtain a correlated approach defined in terms of
clusters. Our coupled-cluster approach is inspired by Li’s12

block-correlated coupled-cluster method. In that work, how-
ever, the ground state of each cluster was not optimized in
the presence of other clusters as we do here. Block-correlated
coupled cluster has been used with high success in quantum
chemistry to describe strongly-correlated molecular systems
using a complete active-space13,14 reference state. In addition,
Mayhall15 went beyond cMF by implementing a selective
configuration interaction framework and had very accurate re-
sults for fermionic systems. Lastly, a cluster product state
is also connected with tensor network (TN) techniques that
have been gaining popularity for treating strongly-correlated
systems.16 For more information on this connection and the
advantages of cMF in contrast to other more sophisticated ap-
proaches, we refer the reader to Ref. 8.

There are many positive aspects that cMF posseses, which
we would like to point out. First of all, straightforward sym-
metry breaking (S2 symmetry) can partially account for inter-
cluster correlations. Moreover, the fact that the cluster mean-
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FIG. 1. Nearest-neighbor (J1) and next-nearest neighbor (J2) inter-
actions.

field state constitutes the ground state of a mean-field Hamil-
tonian of which the full set of eigenstates can be easily con-
structed, allows us to exploit already developed techniques
from the single-reference family of methods, in order to ac-
count for the missing inter-cluster correlations.

Our objective with this work is two-fold. First, we present
the cMF formalism and provide details of the RS-PT (cPT2)
and the coupled-cluster formulation we use (cCCSD). Our
second objective is to apply these techniques to a sim-
ple strongly-correlated system: the Heisenberg model in a
2D square lattice. It is important to underline that the
1D case is exactly solvable,17 so we will focus our atten-
tion on the 2D model. This model has received numer-
ous studies in the past two decades, using various meth-
ods such as exact diagonalization,18–23 coupled-cluster,24–26

density-matrix renormalization group (DMRG),27 matrix-
product or tensor-network based algorithms,28–30 resonating
valence bond (RVB)31 and quantum Monte Carlo (QMC).32

We compare our results with calculations from Ref. 20, which
we use as a reference. Those results are not exact in the ther-
modynamic limit, because they are extrapolated from differ-
ent 2D shapes (more information in Ref. 20), but we consider
them useful for a semi-quantitative comparison. Our results
show that cPT2 and cCCSD significantly improve upon cMF
and can provide an accurate description of the ground state of
the square J1-J2 Heisenberg lattice.

The rest of the article is organized as follows. In Sec. II we
present the formalism behind cMF, cPT2 and cCCSD. Section
III provides some practical computational details regarding
the calculations presented in this work. In Sec. IV we present
the results of cMF, cPT2 and cCCSD calculations for the 2D
square J1− J2 Heisenberg model. A brief discussion follow-
ing the results is presented in Sec. V, as well as some ideas as
to how to improve the approaches presented here. Lastly, Sec.
VI is dedicated to some general conclusions.

II. FORMALISM

A. Heisenberg model

In this work, we focus our attention on the J1 - J2 Heisen-
berg model in two-dimensions on a square grid. The Heisen-
berg model describes a collection of spins in a lattice (of finite

FIG. 2. Néel (left) and collinear (right) antiferromagnetic phases of
the square J1 − J2 Heisenberg model. In between, there is a non-
magnetic phase whose exact form is debated.

size L) interacting through the Hamiltonian

Ĥ = J1 ∑
〈i j〉

~Si · ~S j + J2 ∑
〈〈i j〉〉

~Si · ~S j (1)

where ~Si is the spin- 1
2 operator on site i, J1 and J2 are the

nearest-neighbor and the next-nearest neighbor coupling co-
efficients respectively (see Fig. 1), and the notation 〈i j〉 im-
plies interaction among nearest-neighbors, while 〈〈i j〉〉 im-
plies interaction among next-nearest neighbors. In the fol-
lowing, we confine ourselves to the antiferromagnetic (AFM)
case J1,J2 > 0.

As mentioned previously, this model has been studied ex-
tensively in the past two decades, using various methods.
It has been established that in the regime 0 . J2/J1 . 0.4,
the ground state is an antiferromagnetic (AFM) phase with
Néel order, due to the dominance of the nearest-neighbor in-
teractions J1. In J2/J1 & 0.6, the ground state displays an
AFM phase with collinear long-range order character due to
the dominance of the next-nearest-neighbor coupling J2 (see
Fig. 2). In the regime 0.4 . J2/J1 . 0.6, the Néel and the
collinear orders compete. The nature of this intermediate
ground state is still a much debated issue,9,19,27,30,33–38 as are
the type of the phase transitions and the transition points. Be-
cause cMF has already been used to shed light on these topics
(see Ref. 39) we will not focus our attention on these issues,
but we need to mention there is a second-order transition from
the Néel to the paramagnetic phase, whereas there is a first-
order transition from the paramagnetic to the collinear anti-
ferromagnetic phase.

B. Cluster Mean-Field

Our formalism of cluster mean-field (cMF) is based on
Ref. 8, but in this paper we confine ourselves to the spin
case, which consists of a subset of configurations found in
fermionic systems. For more details we refer the reader to
that work, but below we present the general framework.

Let the lattice states be grouped, according to some crite-
rion (such as proximity in real space), into clusters of size
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l1, l2, ...ln, where n is the number of such clusters. Formally,
the Hilbert space of each cluster is of size 2li , as in each site we
can either have a spin-up or a spin-down. We choose to work
with eigenstates of Sz in each cluster, thereby reducing the ef-
fective dimension of the Hilbert space. Similarly to Ref. 27,
the Hilbert space of the full system is simply given by the ten-
sor product of the Hilbert spaces of all clusters.

A second-quantized formulation in terms of cluster product
states can also be established. Let A†

I,c(AI,c) create (annihilate)
the I-th state in cluster c. This I-th state is a linear combination
of many-spin basis states (possibly mixing states with differ-
ent Sz) constructed as products of the states in the cluster. We
formally write

|I〉c = A†
I,c |−〉c (2)

where |I〉c is the vacuum state in cluster c, a useful abstract
construct.

Each cluster product state is formally built as

|I〉1 |J〉2 ... |Z〉n ≡ A†
I,1A†

J,2...A
†
Z,n |−〉 (3)

where |−〉 is a vacuum state for the full system. In this work,
we consider a cluster product (mean-field) state as a varia-
tional ansatz for the ground state wavefunction. That is, the
ansatz |Φ0〉 for the ground state is given by

|Φ0〉= |0〉1 |0〉2 ... |0〉n (4)

where the 0 label indicates the ground state of each cluster
in the presence of the other clusters. The lowest energy cMF
state is obtained by a variational minimization scheme, as out-
lined in Ref. 8.

Defining excited configurations is straightforward. We can
write them as

|ΦIi〉= |0〉1 ... |I〉i ... |0〉n , (5)∣∣ΦIi;J j
〉
= |0〉1 ... |I〉i ... |J〉 j ... |0〉n , (6)∣∣ΦIi;J j;Kk

〉
= |0〉1 ... |I〉i ... |J〉 j ... |K〉k ... |0〉n (7)

for singly-, doubly-, and triply-excited clusters.
Before proceeding further, let us comment on the nature of

the cluster product states considered in this work. We indi-
cated above that the ground state of each cluster is expressed
as a linear combination of the many-spin basis states in it. The
expansion over those states can be restricted and for our pur-
poses, we confine ourselves to cases with a specific Sz. This is
done in order for the cluster product state |Φ0〉 to be an eigen-
function of Sz and to reduce the dimension of the ground state
vector in each cluster. Lastly, we choose to break S2 in each
cluster to develop long-range antiferromagnetic ordering.

C. Matrix elements and cMF optimization

The evaluation of the matrix elements is again similar to
Ref. 8, but an important difference that we need to point out
is that the spin cluster Hamiltonian has 1- and 2-cluster ele-
ments but not 3- or 4-cluster elements. This difference arises

because of the form of the Hamiltonian, which does not have
more than 2-spin interactions. This significantly simplifies the
procedure for both the cMF optimization, as well as the cPT2
and cCC extensions mentioned later. For details regarding the
cMF optimization, we refer the reader to Ref. 8. We note that
the zero-th order cluster Hamiltonian for a given number of
fermions is given by

Ĥ0
c = ∑

pr∈c
〈p| t̂ |r〉a†

par +
1
2 ∑

pqrs
〈pq| v̂ |rs〉a†

pa†
qasar

+ ∑
pr∈c

a†
par ∑

c′ 6=c
∑

qs∈c′
ρ

c′
sq(〈pq| v̂ |rs〉−〈pq| v̂ |sr〉) (8)

where ρc′
sq is the one-particle density matrix in cluster c′. We

choose to perform the optimization self-consistently, in order
to minimize the energy. The formula above was given in its
fermionic form, since we expect most readers will be more
familiar with fermionic Hamiltonians than spin Hamiltonians.
Lastly, we remind the reader that this is a spin system so there
is no orbital optimization to be considered.

We think one final comment contrasting cMF and standard
diagonalization techniques is necessary. Let us focus on the
case of a finite lattice with periodic boundary conditions. The
scaling of cMF with respect to cluster size is similar to that
of exact diagonalization performed on a full lattice of the
same size as the cluster. cMF, however, has a larger prefactor
since the equations need to be solved self-consistently and the
ansatz explicitly breaks the translational (and, possibly, spin)
symmetry of the lattice. Thus, we can reach cluster sizes com-
parable to those achievable with exact diagonalization results
(though of course cMF can have many clusters). In this work,
the largest cMF calculation reported used a 6x6 cluster, and
the length of the eigenvector in each tile is ∼ 1010. Note also
that we can use less costly approximate methods in each clus-
ter instead to reduce the scaling of cMF. Also note that cMF
allows us to find different solutions for different regimes.

D. Perturbation theory

Once again, the theory is very similar to Ref. 8, but sig-
nificantly simplified. Generally, in RS-PT, the second-order
correction to the ground state energy is evaluated as

E(2) = ∑
µ 6=0

|V̂0µ |2

ε0− εµ

(9)

where V̂ = Ĥ− Ĥ0 and V0µ = 〈Φ0|V̂ |µ〉. Here, µ labels the
eigenstates of Ĥ0 and εµ are the corresponding eigenvalues.
The excited states framework was explained in section B. As
mentioned earlier, the evaluation of the matrix elements is eas-
ier compared to the fermionic case, because there are no 3-
and 4-cluster interactions, so the cost of cPT2 is O(n2M2),
where M is the number of excited states in each cluster. We
would like also to remind the reader that we use all the states
in the Hilbert space of each cluster (although in practice for
cPT2 we only need states with Sz = m,m+1,m−1, where m
is the Sz value used in cMF), even though in the cMF optimiza-
tion only one Sz sector of the Hilbert space was considered. In
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addition, due to the structure of the Hamiltonian, we only have
two types of 2-tile interactions (Sz-preserving and Sz mixing),
as opposed to 5 (see Ref. 8) in the fermionic case.

E. Coupled-cluster theory

In this paper, our aim is to go beyond perturbation theory
to a coupled-cluster framework. Our work bears connection to
Ref. 12, but it is important to note that in that work, the ground
state of each cluster was neither optimized in the presence of
other clusters nor tested on the same model.

The cluster coupled-cluster (cCC) expansion of the ground-
state wave function can be written in an intermediate normal-
ized form as follows:

|Ψ〉= eT̂ |Φ0〉 (10)

where T̂ is the cluster operator. In this work, we focus our
attention to singles and doubles, therefore

T̂ = T̂1 + T̂2 (11)

and in the cluster language, T̂1 and T̂2 operators can be written
as

T̂1 = ∑
i

∑
I(i)

tIiB
+
Ii B−0i

(12)

T̂2 =
1
2! ∑

i
∑
j 6=i

∑
I(i)

∑
J( j)

tIiJ j B
+
Ii B−0i

B+
J j

B−0 j
(13)

where the coefficients tIi and tIiJ j are the single and double
amplitudes respectively, the operator B+

Ii excites cluster i to
state I and operator B−0i

de-excites cluster i to its ground state.
By projecting onto |Φ0〉 and the space of singly and

doubly excited configuration functions, and by utilizing
the fact that for spin systems we have up to 2-cluster ex-
citations, the cCCSD equations naturally truncate and become

EcCCSD = 〈Φ0|H |Φ0〉+〈Φ0|H |T1Φ0〉+ (14a)

〈Φ0|H
∣∣∣∣(T2 +

1
2

T 2
1 )Φ0

〉

EcCCSDtIi =〈ΦIi |H |Φ0〉+ 〈ΦIi |H |T1Φ0〉+ (14b)

〈ΦIi |H
∣∣∣∣(T2 +

1
2

T 2
1 )Φ0

〉
+

〈ΦIi |H
∣∣∣∣(T2T1 +

1
6

T 3
1 )Φ0

〉

EcCCSD(tIiJ j + tIitJ j) =
〈
ΦIi;J j

∣∣H |Φ0〉+
〈
ΦIi;J j

∣∣H |T1Φ0〉+

(14c)〈
ΦIi;J j

∣∣H
∣∣∣∣(T2 +

1
2

T 2
1 )Φ0

〉
+

〈
ΦIi;J j

∣∣H
∣∣∣∣(T2T1 +

1
6

T 3
1 )Φ0

〉
+

〈
ΦIi;J j

∣∣H
∣∣∣∣(1

2
T 2

2 +
1
2

T2T 2
1 +

1
24

T 4
1 )Φ0

〉
where eq. 14a is the equation for the energy, and 14b and 14c
are for the single and double amplitudes respectively. If we
insert eq. 12 and eq.13, we get a set of nonlinear equations
and like in traditional coupled-cluster, we solve the equations
self-consistently.

It should be emphasized that in a cCCSD calculation the
computation of the last term in the right-hand side of eq.14c
is the most time consuming step, which makes the cCCSD
method computationally a O(n4) procedure, where n is the
number of clusters.

Lastly, similar to the conventional truncated CC expansion,
the truncated cCC expansion is also size extensive. For more
information on the proof, we encourage the reader to check
Ref. 12.

III. COMPUTATIONAL DETAILS

The cMF, cPT2 and cCCSD calculations presented in this
work were carried out with a locally prepared code. In all
the calculations with even number of spins in each cluster,
we use the same number of up and down spins, whereas in
all the cases with odd number of spins, we use +/- number
of up and down spins in order to be able to construct Néel
and collinear antiferromagnetic phases respectively. In this
work, we choose to work with eigenstates of Sz in each cluster
for computational convenience. At this point, it is important
to note that the Sz of each cluster is not a symmetry of the
Hamiltonian, so this choice is a constraint on the cMF. The
full relevant Sz sector of Hilbert space within each cluster was
used in constructing the cluster ground state |0〉c. For small
cluster sizes, the ground state in each cluster was found by
a standard diagonalization of the local cluster Hamiltonian.
For larger cluster sizes, a Davidson40 algorithm was used to
solve for the ground state. In cPT2 and cCCSD calculations,
we loop over all the relevant excited cluster states (although
in principle the number of states can be truncated, which was
done in Ref. 8). For solving the cCCSD equations, the tradi-
tional CC iteration scheme was used.41

IV. RESULTS

In this section we present results of cMF, cPT2 and cCCSD
calculations on the 2D Heisenberg model. We start by pro-
viding the basic idea in Sec. IV A, where we dive into some
details regarding the optimization of cMF states and the way
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in which other results are presented. In Sec. IV B we show
and compare the results from cPT2 to cMF calculations. In
Sec. IV C, we show and compare our cCCSD results to the
cMF and cPT2 ones. These results are compared to accurate
numerical estimates from Ref. 20.

A. Basic idea

In this section we discuss most of the aspects regarding
the optimization of cMF states. In this way, we hope that
the results presented in subsequent sections will become more
transparent to the reader. We consider rectangular Heisenberg
periodic lattices with J1,J2 ≥ 0. As a first step, we choose the
corresponding tiling scheme (i.e., defining how the spins are
grouped into clusters). The optimized state in the cluster is
expressed as a linear combination of all the possible (combi-
natorial number) resulting configurations and it is optimized
by a self-consistent diagonalization of the appropriate cluster
Hamiltonian.

It is important to mention that we are interested in the ther-
modynamic limit properties (very large system sizes). This is
achieved by having both the cluster size l→∞ and the system
size L→ ∞. For this work, however, only a limited number
of sizes was tried, because the exact diagonalization in large
clusters becomes very expensive (recall that we require not
only the ground state in each cluster but also, in principle, all
excited states). However, we tried an extrapolation scheme
and we computed results to the thermodynamic limit (l→∞).
Lastly, we define the thermodynamic limit system size corre-
sponding to a specific cluster size (L→ ∞ for a fixed l) as the
the smallest system size for which the results do not change
if we increase it further. It is rigorously shown ‡ that for the
Heisenberg Hamiltonian and clusters of even dimensions, the
thermodynamic limit system size of cMF is twice as large as
the cluster size in each dimension of the rectangle, and for
cPT2 and cCCSD, it is three times larger.

B. cMF results

We start by considering the cMF results. It is important
to note that some of these results are already published in
Ref. 39. All calculations in this section were performed in pe-
riodic square lattices. Only uniform tiling schemes were con-
sidered; clusters were rectangles of l lattice sites, each filled
with l spins. All the results are assumed to be at the thermo-
dynamic limit L→ ∞ for a fixed l, as explained in the pre-
vious section. We note that broken-symmetry cMF solutions
can be achieved, that is, a non-zero magnetization develops

‡This is based on the fact that the cMF solution is uniform (same wavefunction
on every cluster) for the specific model for clusters of even dimensions. Also,
cPT2 and cCCSD only correlate neighbor tiles; there are no Hamiltonian ma-
trix elements between separated tiles. Therefore, it follows that cPT2 and
cCCSD yield the thermodynamic limit energy with a 3x3 supracluster lattice.
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FIG. 3. The magnetizations of a center site for different cluster sizes
are shown. The Néel (on the left) and the collinear (on the right)
antiferromagnetic phases can easily be observed as there is strong
magnetization. In between, there is a non-magnetic phase, which is
depicted by the zero magnetization.

on each lattice site. Regarding the collinear case and the rect-
angular clusters, the collinear correlations are observed in the
smaller dimension. This was chosen because its energy was
lower than the case with collinear correlations in the larger di-
mension. We present in Fig. 3 the magnetizations of a center
site (for the 2x2 case every site is equivalent) in cMF calcu-
lations for different values of l and J2/J1. For readers not
familiar with spin systems, magnetizations are equivalent to
spin densities. For recognizing the critical points, we com-
pared the paramagnetic and the antiferromagnetic solutions
and saw whether their energy difference changes sign. Dif-
ferent cluster sizes correspond to different critical points, so
an extrapolation scheme is needed to compute the phase tran-
sition points of the thermodynamic limit (L→ ∞ and l→ ∞).
This was performed in Ref. 39 and it was shown that cMF was
comparable to other methods in the field.

In Figs. 4-6 we demonstrate the energy per site obtained
in cMF calculations for different values of l and J2/J1 in the
thermodynamic limit (L→ ∞). Fig. 4 describes the conver-
gence of 2xN to the 2x∞ limit. It is interesting that in this
case the second critical point is at ∼0.6, while the square lat-
tices (see Fig. 6) seem to predict a slightly greater point. For
the square lattices with odd L we notice that there is no sharp
transition to a paramagnetic regime. Lastly, Fig. 5 describes
the convergence of 4xN to the 4x∞ limit. In this case, the
values predicted for the second transition point are the largest.

We emphasize the significance of the choice of the cluster,
which can be pointed in two different cases. First, the 2x2
cluster results are significantly different from all the other re-
sults, which suggests that at the cMF level, 2x2 clusters are
not sufficiently large to capture all the physics of the system
(luckily this is not the case for the correlated methods, as we
shall see later). Second, comparing the 2x8 to the 4x4 clusters,
we notice that each phase can be better studied by a different
cluster shape, although the total number of sites is the same.
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limit (black circles), extrapolated as described in Sec. III B.
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4x∞ limit.

This probably occurs because of the long-range order of the
collinear phase, which is better depicted in the 2x8 case. One
important observation to point out is that the paramagnetic so-
lution is exactly equivalent to the energy of a single tile with
open boundary conditions: ie, in cMF the inter-cluster inter-
action vanishes as there is no magnetization along the cluster
boundaries.

In this work, we also went one step beyond and tried to ex-
trapolate the cMF energy to the thermodynamic limit (L→ ∞

and l → ∞). In order to achieve that, we plotted the cMF
energy with respect to 1/N (note that N = l/x, where x is
one of the dimensions of the cluster). Figures 7 and 8 show
a nearly linear behavior as the size of the cluster increases,

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

 0  0.2  0.4  0.6  0.8  1

E
n

e
rg

y
 p

e
r 

s
it
e

 (
E

/N
)

J2/J1

cMF-2x2
cMF-3x3
cMF-4x4
cMF-5x5

FIG. 6. Energies per site at the cMF level for different square cluster
schemes are shown. cMF-2x2 stands for cluster mean-field with 2x2
tiles, etc. The purpose of this figure is to describe the convergence of
the NxN to the ∞x∞ limit.

which can also be explained rigorously *. The J2/J1 = 0 limit
has been well studied with careful extrapolations carried out
by several methods (see Ref. 20 and references therein). Our
results are summarized in Tab. I. It is shown that they gen-
erally agree with other methods in the field (Ref. 25, 32) and
the agreement with reference calculations (Ref. 20) is accu-
rate to (0.001 - 0.002) x J1. Lastly, an extrapolation of the
magnetization of the central site was attempted using a 1/N
behavior and square lattices, similar to the energy. The result-
ing extrapolated magnetization (for J2/J1 = 0) in the thermo-
dynamic limit (both L→ ∞ and l → ∞) is 0.320, which is in
good agreement with 0.310 from Ref. 20.

Clusters cMF (E/N)
2x∞ -0.62445
3x∞ -0.63836
4x∞ -0.64584
5x∞ -0.65035
6x∞ -0.65341

∞x∞ (1) -0.66873
∞x∞ (2) -0.66789

Reference Ref. 20 -0.67010
CCM Ref. 25 -0.66936
QMC Ref. 32 -0.66944

*The difference between a 2x6, a 2x8 and a 2x10 tile lies in the addition of
extra "internal" sites in the tile, ie., the boundaries have very similar magne-
tizations. If this is the case, then the error in the energy of the 2xN vs 2x∞

should behave linearly, as observed in the plot. On the other hand, the linear
nature of the NxN extrapolation with respect to 1/N can be explained because
the error is proportional to the surface (or in this case the perimeter) of the
cluster.
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FIG. 7. Energy per site obtained in cMF calculations for J2/J1 = 0
as a function of the inverse of the cluster size N. It is shown that
the behavior is nearly linear, so the extrapolation scheme is reliable.
Accurate estimates of the energies for the 2x∞, 3x∞, 4x∞, 5x∞ and
6x∞ clusters can be computed.
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FIG. 8. Energy per site obtained in cMF calculations for J2/J1 =
0 as a function of the inverse of the cluster size N. Nx∞ energies
refer to the extrapolated energies depicted in Fig. 7 and NxN refer to
energies computed with square clusters. The extrapolated results at
(1/N = 0) were obtained by fitting a line using the two largest cluster
sizes in each series and can be compared with extrapolated reference
calculations from Ref. 20 (see Tab. I.)

TABLE I. Energy per site obtained by extrapolating cMF calculations
at J2/J1 = 0. ∞x∞ (1) is the result from extrapolating
Nx∞→ ∞x∞, and ∞x∞ (2) is the result from extrapolating
NxN → ∞x∞. The extrapolated result from exact diagonalizations
(reference calculations) from Ref. 20 is shown for comparison, as
well as coupled-cluster (CCM) and quantum Monte Carlo (QMC)
results. The agreement with Ref. 20 is accurate to (0.001 - 0.002) x
J1.

C. cPT2 results

We continue by considering the cPT2 results. All the com-
putational parameters are the same as for the cMF results. We
remind the reader that all the possible excited states were used
to compute the cPT2 energy, except for the 4x4 case where
fewer states ¶ were used. It was ensured, however, that the en-
ergy was converged to at least 4 decimals, compared to when
using all the states. The criterion for choosing those states
was their corresponding eigenvalues, from which we chose the
lowest ones. In Fig. 9 we demonstrate the energy per site ob-
tained for different values of l and J2/J1. Even though cPT2
is not variational, there is evidence that the exact energy is
lower than the cPT2 energy, because of the results of Ref. 20.
There are three important observations. First, increasing the
cluster size is not as important for cPT2 as for cMF. This
can be useful for real systems, because for cCCSD, we do
not have to use large clusters, whose cost can be prohibitive.
We have to underline, however, that for our case, cPT2 and
cCCSD should converge to the exact answer as the size of the
cluster increases. Second, the energy improves very signifi-
cantly even for the 2x2 case, which suggests that a large part
of the inter-cluster correlations can be treated perturbatively.
Third, even though the second-order critical point does not
change significantly with the cPT2 correction, the first-order
one shifts significantly to J2/J1 ∼ 0.62, compared to ∼ 0.64
for most cMF calculations. Lastly, we also tried to extrapo-
late the cPT2 correlation energy to the thermodynamic limit
(L → ∞ and l → ∞). We have to remind the reader that it
should approach 0, because clusters of infinite size capture all
the energy at the cMF level. Similarly to the cMF analysis,
the correlation energy was plotted with respect to the inverse
of the cluster size, and at J2/J1 = 0 we found a correlation en-
ergy of −0.00185, which is reasonably close to the expected
0.

D. cCCSD results

We continue by considering the cCCSD results. All the
computational parameters are the same as for the cMF and
cPT2 results. We remind the reader that all the possible ex-
cited states were used to compute the cCCSD energy. In
Fig. 10 we demonstrate the energy per site obtained for differ-
ent values of J2/J1. We have also included, for comparison,
the extrapolated results (to the thermodynamic limit L→ ∞

and l → ∞) calculated from exact calculations computed in
Ref. 20. It is important to note that in the intermediate regime,
the extrapolated results are not reliable, for reasons mentioned
in Ref. 20 and that is why we do not show them. The energy

¶1250 states in each relevant Sz sector were used. More specifically,
1250/12870 states for Sz = 0, 1250/11440 for Sz = +1, 1250/11440 for
Sz = −1 and 0 states in other sectors, as the matrix elements vanish in that
case. As a result, the total number of states used is 3750 out of 65536 states
in the Hilbert space.
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FIG. 9. Comparison of cMF and cPT2 for different cluster schemes is
shown. cMF-2x2 stands for cluster mean-field with 2x2 tiles, etc and
cPT2-2x2 stands for cPT2 with 2x2 tiles, etc. The circles denote cMF
and the squares cPT2. It is worth noting that the cPT2 energies are
very close to each other, which suggests that for correlated methods,
a minimal cluster size is sufficient.
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FIG. 10. A comparison between cMF, cPT2 and cCCSD for the en-
ergy per site. cCCSD improves the energy significantly compared to
cPT2. The exact energy is taken from Ref. 20. Again, we need to
emphasize, that in the intermediate regime, the extrapolated results
are not reliable (a strange behavior is also depicted in the graph).

improves compared to the cPT2 energy in the two antiferro-
magnetic phases, but the correction is minimal for the para-
magnetic phase. We think that this is due to the nature of
the paramagnetic phase (see introduction for the debate of the
nature of the paramagnetic phase), which suggests that there
exist correlations that cannot be captured by using just 2x2
tiles and a low order coupled-cluster theory. One can argue
that the improvement over cPT2 is relatively small consider-
ing the error of cPT2. This may imply that triples or quadru-
ples are needed (discussed in the following section). We have
to emphasize, however, that at some point cCC should become
exact.

V. DISCUSSION

In Sec. II, we have described the cluster mean-field ap-
proach to treat strongly-correlated spin systems. A cMF state
is used as a variational ansatz for the ground state wavefunc-
tion, which is guaranted by construction to provide better vari-
ational estimates than HF when the size of the cluster is larger
than 1. Because of the simple cluster language, a RS-PT
scheme can be easily adopted to account for the missing inter-
cluster correlations. The results presented in Secs. IV B, IV C,
and IV D provide evidence that a cluster-based approach can
(semi)-quantitatively capture the physics of the ground state
of the 2D square J1− J2 Heisenberg model. Due to the nature
of the Heisenberg Hamiltonian, contributions to the second-
order energy arise only from two-cluster spin interactions.
From calculations performed in 1D (not in the manuscript),
cMF, cPT2 and cCCSD are not as efficient for 2D as for 1D.
A significant improvement to the ground state energy is ob-
tained with cPT2 as well as cCCSD, which gives the best re-
sults. We also notice that enlarging the size of the cluster in
mean-field calculations is worse than performing a cPT2 or a
cCCSD calculation. The good quality of cPT2 and cCCSD
results suggest that the zero-th order Hamiltonian is suitable
for describing spin lattices, at least for the antiferromagnetic
regimes.

In the rest of this section we discuss possible strategies that
can improve the results presented in this article. The simplest
strategy, also discussed in Ref. 8, is to use the full Hilbert
space (not restricted to a given Sz sector). This will give sig-
nificantly more variational freedom to the cMF ansatz. This
approach, however, requires a Hilbert space of much larger
dimension. As regards the cPT2 and the cCCSD methods, the
most straightforward way to go beyond those is to use cPTn
or cCCSDTQ, etc. To do so, we must truncate the number
of states used, because the computational cost will be pro-
hibitive. This truncation scheme could be either based on
the local character of the clusters or can be found stochas-
tically. Another possible route could be to exploit locality.
For example, we can treat the interaction between nearest-
neighbor clusters with cCC and with further clusters with
cPT. One more advantage of the cluster-based approaches,
is that even though we have used those approaches to study
strongly interacting systems, they may be used in other con-
texts. More specifically, systems which can be effectively rep-
resented in terms of weakly interacting fragments of strongly-
correlated subsystems can be very efficiently described by
cPT2 or cCCSD. Lastly, another route for correlating cMF
would be to write the ansatz as a linear combination of differ-
ent cMFs of different tilings. This has been tried for dimers
by Garcia-Bach42 and has yielded very promising results.

VI. CONCLUSIONS

In this work, the optimization of the cluster mean-field state
has been carried out with the restriction that the cluster state
has well-defined Sz quantum number. The restrictions are im-
posed in order to preserve total Sz in the full system and fa-
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cilitate the computation of the matrix elements. The cluster
product state constitutes an eigenstate of a mean-field (zero-th
order) Hamiltonian, which allows us to go beyond mean-field
in a perturbative and a coupled-cluster framework. We have
presented mean-field, second-order perturbative and coupled-
cluster results of the ground state energies (and magnetiza-
tions) of the square 2D Heisenberg model in the thermody-
namic limit (L→∞). Also, we have presented a very accurate
extrapolation scheme for thermodynamic limit (L → ∞ and
l → ∞) energies. In general, we observe that cPT2 energies
with small clusters are often better than cMF results with sig-
nificantly larger ones, and the same applies to cCCSD. Over-
all, the results of this work suggest that a cluster mean-field
approach can provide an excellent starting point and a path to
a highly accurate, efficient description of strongly-correlated
systems, while cPT2 and cCCSD provide an accurate quan-
titative description. Several strategies to improve the mean-
field description as well as correlated approaches built on top
of it have been suggested.
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