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This perspective article discusses some broadly-known and some less broadly-known consequences
of Einstein’s special relativity in quantum chemistry, and provides a brief outline of the theoretical
methods currently in use, along with a discussion of recent developments and selected applications.
The treatment of the electron correlation problem in relativistic quantum chemistry methods, and
expanding the reach of the available relativistic methods to calculate all kinds of energy derivative
properties, in particular spectroscopic and magnetic properties, requires on-going efforts. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3702628]

I. WHAT ARE RELATIVISTIC EFFECTS?

Relativistic quantum chemistry is a research field that
once bordered on the obscure. It has made enormous strides
in the past decades. These days, many chemists are aware of
relativistic effects in structural chemistry and spectroscopy.
Some relativistic quantum chemistry software packages have
become quite user friendly, enabling non-specialists to per-
form all-electron relativistic quantum chemical calculations
routinely. Various undergraduate textbooks and educational
articles now discuss relativistic effects (e.g., Refs. 1–4 and
later editions of the cited textbooks). However, continuing ef-
forts are required to raise the awareness in the chemistry com-
munity of (i) the impact of relativity on chemistry beyond
discussing the celebrated consequences of relativity on the
yellow color of solid gold and the low melting point of mer-
cury, and (ii) new developments of relativistic quantum chem-
ical methods which allow for increasingly accurate calcula-
tions and give access to an increasing number of molecular
spectroscopic properties. As an example for point (i), an arti-
cle in Nature (London) by Gagliardi and Roos reporting cal-
culations for the U2 diatomic has received much attention.5

According to the study, in U2 there are three two-electron and
four one-electron bonds, adding up to a quintuple bond for the
septet ground state. Uranium is the heaviest naturally occur-
ring element, and relativistic effects play a major role in U2

and other actinide systems. Or consider the element lead: As
Ahuja et al. have recently found, relativistic effects account
for 1.7–1.8 V in a standard 2-V lead-acid battery cell.6 In the
authors’ words, “cars start due to relativity.”

Nature (not the journal) is relativistic, that is, Einstein
relativistic as opposed to Galilei relativistic (nonrelativistic),
due to the finite rather than an infinite speed of light. For
the purpose of this article, relativistic effects are defined as
the differences between results of (four-component or two-
component or one-component “scalar”) relativistic quantum
theoretical calculations using a finite and an infinite speed of
light, respectively, with results from the latter being equiva-
lent to results from conventional nonrelativistic calculations
based on the Schrödinger equation. Thus, relativistic effects

a)Electronic mail: jochena@buffalo.edu.

are generally not observable in the sense of the usual ob-
servables of quantum theory such as position, momentum,
energy, etc. However, manifestations of relativistic effects in
the chemistry and physics of heavy elements compounds are
ubiquitous. In the case when an atomic or molecular property
vanishes in the nonrelativistic limit (such as spin-orbit cou-
pling or electronic g-shifts (deviations from the free-electron
g value)), then the consequences of relativity are directly
observable.

At the size scale of atoms and molecules, and given the
small masses of protons, neutrons, and electrons, gravita-
tional effects on chemical phenomena can be neglected. In
relativistic quantum chemistry one deals with Einstein’s spe-
cial relativity. The effects become apparent as the velocities
of the particles approach the speed of light c. Consider a free
electron. Nonrelativistically, the energy of a free particle is
W nrel = p2/2m = mv2/2 where m is the rest mass of the
electron, p = mv is the linear momentum, and v is the veloc-
ity. According to Einstein, W rel = (p2c2 + m2c4)1/2 = mc2

+ p2/2m − p4/8m3c2 + · · · where p is now the relativistic
momentum. The rest-mass energy mc2 shifts the origin of
the energy scale. Relativistic correction factors (relative
corrections) to the kinetic energy are of leading order c−2

and increase with the momentum squared of the particle.
For an electron in the field of a nucleus with charge Ze
the nonrelativistic kinetic energy, being proportional to the
momentum-squared expectation value, is proportional to
Z2. The leading order relativistic correction factors of the
electron energies therefore go as Z2/c2 where, in atomic
units, c ≈ 137, leading to an approximately Z4 behavior
of the relativistic energies of one-electron atoms. One may
speculate, as some have done,7 that relativistic effects on the
chemical properties of heavy atoms are small because their
valence shells are subject to small effective (screened) nu-
clear charges. This turns out to be incorrect;8 valence orbitals
in heavy many-electron atoms have comparatively small
orbital energies but may have very large kinetic and potential
energies. As a result, in many-electron atoms and molecules
the leading order of relativistic effects for valence orbitals is
also Z2/c2 with Z being the full charge of the heaviest nucleus.
Relativistic effects on electronic structures increase with the
full, not the screened, charges of the nuclei in the system.
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Depending on the desired accuracy of a calculation, rela-
tivistic effects may be required even for light elements9–12 (H,
C, N, O, etc., with C, N, and O curiously sometimes termed
“heavy atoms” in the computational chemistry literature). For
truly heavy atoms such as I, Cs, Pt, Au, Hg, Pb, U, and so
on, (Z/c)2 reaches an appreciable magnitude, and relativistic
effects may alter the chemical and physical behavior qualita-
tively. The chemistry of light elements is well described by
nonrelativistic quantum mechanics, whereas heavy elements
require a relativistic theory. In particular, in the lower third of
the periodic table, the chemical characteristics of the elements
are strongly influenced by relativity.13, 14 For example, lighter
group 13 and 14 elements such as Al, Ga, Si, Ge, tend to favor
oxidation states of III and IV, respectively, whereas the heav-
iest members of the groups, Tl and Pb, favor the oxidation
states I and II, respectively. The rationale for such changes in
the chemical behavior when going down in the group is the
particular energetic stabilization of the valence s orbital in Tl,
Pb, and other heavy 6th row elements due to relativistic ef-
fects, creating the 6s “inert pair” effect.15 A large number of
such chemical trends, and many other manifestations of rela-
tivistic effects in chemistry, have been cataloged and rational-
ized by Pyykkö.16–18

Thus, relativistic effects can be observed in chemical
trends, for instance, when compounds with light and heavy
elements from the same group of the periodic table are com-
pared. There are also well-known “heavy atom effects” in
spectroscopy. For instance, in NMR spectroscopy the pres-
ence of a heavy halide (Br, I) bound to a light atom causes
the chemical shift of the light atom to be more negative (more
shielded) than in an analogous compound with Cl or F. This
so-called normal halogen dependence has been known for
quite some time19 to be caused by spin-orbit (SO) coupling,20

which is a relativistic effect. SO coupling also leads to the
splitting of multiplet levels that would be degenerate accord-
ing to nonrelativistic theory, and it is therefore directly ob-
served in atomic spectroscopy. Relativistic effects need not
be minor corrections on top of the nonrelativistic result, as the
expansion of the energy in orders of c−2 above may suggest.
For instance, relativistic effects on nucleus-electron hyperfine
coupling constants or on NMR J-coupling constants involving
heavy elements such as 199Hg may well exceed the magnitude
of the corresponding nonrelativistic value21 (sometimes by a
factor of three or more). Mössbauer isomer shifts have also
been associated with extremely large relativistic effects.18 The
difference between relativistic and nonrelativistic theory can
therefore mean the difference between “(approximately) cor-
rect” and “qualitatively wrong.” Even though bond lengths,
bond angles, valence orbital energies, and other chemically
relevant quantities may change less drastically than NMR or
EPR parameters due to relativity, percentage-wise, the differ-
ence can mean a correct versus an incorrect prediction of the
chemical behavior and spectroscopic properties of a heavy el-
ement compound.

In Secs. II and III, an account of some commonly
applied relativistic quantum chemistry methods is provided
(Sec. II), along with some representative examples from
structural chemistry and spectroscopy (Sec. III). For the
scope of this perspective on relativistic effects, neither of

these sections is intended to provide an exhaustive coverage
of the literature but rather to illustrate the overall approach
and some of the more iconic relativistic effects known
in chemistry. References to review articles are provided
where the reader can find additional information and a more
complete coverage of the literature. The material presented
herein reflects the author’s personal experience. A brief
outlook is provided in Sec. IV. Unless stated otherwise, we
use dimensionless atomic units,22 such that me = 1, ¯ = 1, e
= 1, 4πε0 = 1, and c = 137.03599976(50) = α−1 where α is
the fine structure constant.

II. RELATIVISTIC QUANTUM CHEMISTRY METHODS

In the hierarchy of physical models, a relativistic many-
body theory to describe the electronic structure in atoms and
molecules should be derived from a relativistic quantum field
theory. The methods currently in use have been described as
somewhat more ad-hoc.23, 24 The state of the art has recently
been reviewed again,23–28 and there are a number of text-
books available where detailed information on the topic can
be found.29–34 Collections of expert articles on the topic of rel-
ativistic quantum theory for molecules have been edited, for
instance, by Schwerdtfeger35, 36 Hirao and Ishikawa,37 Hess,38

Kaldor and Wilson,39 and Barysz and Ishikawa.40 The lat-
ter collection contains articles aimed at non-specialists. Nu-
merous older reviews are available as well; see Refs. 18 and
41–48 for a selection. We focus on the electronic motion and
adopt the clamped nucleus approximation for brevity.

Saue26 has pointed out that the level of relativistic treat-
ment adds a third dimension to the usual way of assessing
the quality of a model chemistry by the electron correlation
level and the quality of the one-particle basis. At the lowest
rung, there is the nonrelativistic treatment. Even with a com-
plete basis and full correlation, the solution of the Schrödinger
equation would give a poor description of a heavy-element
system. In four-component (4c) relativistic quantum chemi-
cal methods, the Dirac one-electron Hamiltonian reads

hD = c2β ′ + c α · p + V =
(

V c σ · p

c σ · p V − 2c2

)
, (1)

where V is the external potential, σ is the vector of the 2 × 2
Pauli spin matrices, σ = (σx, σy, σz), and p is the momentum
operator. Furthermore,

β ′ =
(

02 02

02 −2 · 12

)
; α =

(
02 σ

σ 02

)
(2)

are representations of the 4 × 4 Dirac matrices expressed in
terms of 2 × 2 sub-matrices. In (1), V and V − 2c2 are to be
multiplied by 12 which is the 2 × 2 unit matrix; this notation
is implicit from here on. The zero of the energy scale E has
been shifted to coincide with the electron rest mass energy
(Fig. 1). The operator hD acts on a 4-component spinor wave-
function which may describe an electron or a positron. The
Hamiltonian goes back to Dirac who obtained a wave equa-
tion for spin-1/2 particles by linearizing and quantizing the
relativistic energy expression of Sec. I with the help of a set
of 4 × 4 matrices. Related to the block structure of hD, the
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E = 0
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...
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energy states

...

FIG. 1. Sketch of the continuum eigenvalue spectrum of the Dirac Hamil-
tonian. Also indicated are bound positive-energy states below W = mc2,
E = 0 which are the states that are of main concern in quantum chemistry. E
is the energy scale adjusted to the electron rest-mass energy, conforming to
the definition of hD in Eq. (1).

wavefunction ψD is often written in terms of upper (“large”)
and lower (“small”) 2-spinor components,

ψD =
(

ψU

ψL

)
. (3)

The Dirac one-electron operator (1) has positive and negative
energy (W) solutions as indicated in Figure 1, with the discrete
set of energies W < mc2, E < 0 representing the sought-after
bound electronic states of atoms and molecules. The operator
hD may be used in place of the nonrelativistic one-electron
operator,

hnrel = 1

2
p · p + V, (4)

in electronic structure methods, for example, to realize a 4c
Hartree-Fock calculation. By using methods known from non-
relativistic correlated electronic structure theory, or alterna-
tively via density functional theory (DFT), such a 4c method
can then be extended to incorporate effects from electron cor-
relation. There are a number of caveats related to the def-
inition of the many-body Hamiltonian and the vacuum, as
well as the role of negative-energy states; see, for instance,
Refs. 23, 49, and 50.

A note on the lack of spin-dependence of the nonrel-
ativistic one-electron operator (4) is in order. Spin arises
naturally from Dirac’s theory, but in nonrelativistic the-
ory it is introduced in an ad-hoc fashion. Realizing that
(σ · p)(σ · p) = 12 p · p, a nonrelativistic Hamiltonian with
spin may be written as

hnrel = 1

2
(σ · p)(σ · p) + V. (5)

When magnetic fields are included in the Hamiltonian,
there are a number of spin-dependent terms such as the spin
Zeeman or the electron nucleus hyperfine operator that have
a non-vanishing nonrelativistic limit. These can also be ob-
tained by introducing the fields in Eq. (5), but not in Eq. (4).

When treating fields semi-classically, “minimal substitution”

p → p − q A; E → E − qφ (6)

allows for the inclusion of electric potentials φ and magnetic
vector potentials A in the equation for a particle with charge
q. For an electron, p → p + A in atomic units. In the
one-electron Dirac Hamiltonian, this substitution gives the
magnetic field dependent terms to be added to hD as

hD
mag = cα · A. (7)

From the spin-dependent version of the nonrelativistic
one-electron Hamiltonian one obtains instead the magnetic
perturbation operators

hnrel
mag = 1

2
( p · A + A · p + iσ · [ p × A + A × p] + A2).

(8)
The nonrelativistic (and two-component relativistic) mag-
netic part of the Hamiltonian affords a “diamagnetic” term
(proportional to A2) which is not present in the 4c operator
(7). In NMR calculations, for instance, the A2 term gives
rise to the diamagnetic shielding contribution when standard
gauges for A are employed. A diamagnetic contribution to
a second-order derivative property such as NMR shielding
or J-coupling is implicit in 4c theory. Such diamagnetic con-
tributions were numerically traced back to terms involving
negative energy eigenfunctions of hD if one were to express
the result in a sum-over-states expansion.51 The role of the
negative energy states for diamagnetic shielding has also
been emphasized by Pyykkö in early theoretical work on
NMR chemical shifts.52 When a matrix formulation in a
basis set, or suitable transformations at the operator level
are employed, diamagnetic terms may appear explicitly in
a 4c formalism.53–55 For additional references and further
discussion, see also Refs. 56 and 57.

The nonrelativistic electron-electron (e-e) repulsion,

g(1, 2) = r−1
12 , (9)

in the many-body electronic Hamiltonian H = ∑
ih(i)

+ (1/2)
∑

i �= jg(i, j) is an approximation in the relativistic
domain since it represents an instantaneous interaction
between two electrons neither taking into account the re-
tardation effects from the finite speed of light nor magnetic
interactions that arise in the equations from transforming
the electrodynamic potentials between the reference frames
of the electrons and nuclei. The aforementioned ad-hoc
approach includes corrections to the e-e repulsion that
were not rigorously derived from a higher-level many-body
relativistic molecular quantum field theory but originate in
the relativistic interaction between two classical charged
particles subject to quantization using the relativistic velocity
operator cα, to give in Coulomb gauge

g(1, 2) = 1

r12
− α(1) · α(2)

r12

+ 1

2

[
α(1) · α(2)

r12
− (α(1) · r12)(α(2) · r12)

r3
12

]
. (10)

The first correction term is a magnetic interaction known
as the Gaunt term, and the sum of the Gaunt term and the
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operator in brackets is the (frequency-independent) Breit
term. The Breit operator may be considered as an approxi-
mation of the quantum electro-dynamics (QED) correction
to the interaction between two electrons.58 There is a more
general frequency-dependent version, where the frequencies
correspond to differences in the energies of plane waves
used to represent the e-e interaction. In conjunction with
hD for the one-electron part, the resulting Hamiltonian is
the Dirac-Coulomb-Breit (DCB) Hamiltonian and serves
as a common starting point from which practical correlated
electronic structure methods can be implemented. Additional
QED based perturbative corrections O(c−3) may be added
to the operator. There has been some debate whether these
and/or the Breit term41, 59, 60 may be used in variational
calculations or if their effects must only be evaluated via
perturbation theory. In order to account for effects due to
the Breit term on atomic and molecular properties other than
total energies and orbital energies, a variational treatment
would be preferred.59 Although the DCB Hamiltonian is in
general not Lorentz-invariant, it has been said to provide “an
excellent approximation to the full theory.”46 There are, how-
ever, important conceptual issues connected with the DCB
Hamiltonian and the role of the vacuum in correlated rela-
tivistic quantum chemical methods that need to be addressed
in future work.23, 49 Effects beyond DCB lie in the realm of
QED which are discussed at some length in a recent review.25

The pairs of upper and lower components in Eq. (3) are
not independent from each other. Consider the Dirac equation
hDψD = ψDE for a one-electron system. A separation of the
equations for each 2 × 2 sub-block gives

ψL = X ψU with X = 1

2c
kσ · p, (11)

where

k =
(

1 − V − E

2c2

)−1

. (12)

The c−1 factor in Eq. (11) is the reason for calling ψL

the small component. For positive-energy solutions, it is
typically much smaller than ψU, hence the name is justified.
(It may happen that ψL is larger than ψU. An example
would be a hydrogen-like p1/2 orbital for high Z very close
to the nucleus.) If the relation (11) between the upper and
lower components is not enforced as a constraint this will
lead to serious problems in variational calculations of 4c
wavefunctions as one attempts to saturate the basis set.61

In the nonrelativistic limit,62 X = 1
2c

σ · p. Experience has
shown that when using a basis {χ} for the upper components
and a basis for the lower components that includes {σ · pχ} a
variational collapse can be kept under control. This is referred
to as “kinetic balance.”63 Restricting the lower-component
basis set to only {σ · pχ} means restricted kinetic balance
(RKB) which, however, allows the wavefunction coefficients
for the upper and lower components to be different (they
become proportional in the nonrelativistic limit). Unless the
upper component basis set has sufficient flexibility such that
the set of functions {σ · pχ} can describe the lower compo-
nents well enough, RKB may represent a restriction. As can
be seen from Eq. (11), the additional factor of k in the relation

requires flexibility in the lower-component basis in particular
in the atomic cores where k may differ significantly from
unity. Within an unrestricted kinetic balance (UKB) scheme,
one tries to make the lower-component basis more flexible
while keeping the important {σ · pχ} functions from a basis
designed to describe the upper components well enough.
Liu has strongly advocated in favor of RKB and abandoning
UKB, providing a number of reasons.24 The construction
of exact two-component Hamiltonians (see below) is also
facilitated by the use of RKB. For further discussion of these
and additional kinetic balance schemes, see Ref. 64.

Equation (11) allows for the elimination of the small
component (ESC) from the Dirac equation, yielding a pseudo
eigenvalue equation for an electron in terms of the upper com-
ponents alone,

hESCψU =
[
V + 1

2
(σ · p)k(σ · p)

]
ψU = ψUE. (13)

This indicates that, in principle, it is possible to perform cal-
culations with either ψU or ψL alone in a two-component (2c)
relativistic framework. As written, ψU in Eq. (13) is identical
to ψU in Eq. (3) and not normalized since ψD is supposed
to be normalized: 1 = 〈ψD|ψD〉 = 〈ψU|1 + X†X|ψU〉 with X
defined in Eq. (11). Accordingly, a re-normalized upper com-
ponent is obtained via √

1 + X†XψU. (14)

One should keep in mind that
√

1 + X†X is not simply a nor-
malization factor but an operator that changes the shape of
ψU. Consider a one-electron system. The 4c electron charge
density ρ(r) = ψD∗ψD involves both the upper and the lower
components. Therefore, ρ ′(r) = 〈ψU |ψU 〉−1ψU∗ψU cannot
be the same as the electron charge density. This is referred to
as picture change. The 2c density ρ ′(r) has been associated
with the position of the electron mass.65, 66 In order to calcu-
late the charge density from ψU, the position operator needs
to be transformed as discussed below, or a 4c charge density
needs to be reconstructed with the help of Eq. (11). From the
factor k in Eq. (11) it is seen that the lower components is
significant where V − E is comparable to, or larger than, 2c2

which is typically the case near the nuclei where V is very
large in magnitude, and for deep core states in heavy element
systems where E can also be very large in magnitude. Fig-
ure 2 shows the relativistic change of order c−2 for the radial
density of the hydrogen atom 2p1/2 state according to 4c and
2c theory.67 The relativistic contraction is readily apparent,
and so is the difference between ρ(r) and ρ ′(r) in particular
at smaller r. Picture-change effects are less pronounced in the
valence regions and therefore less of a concern when calculat-
ing dipole and higher multipole moments. For properties such
as electric field gradients (EFGs) which depend on polariza-
tions not only in the valence but also in (outer) atomic core
shells, picture-change effects can be pronounced.68–70 Addi-
tional examples are discussed in Sec. III.

Equation (13) is not practical since the operator, via k,
depends on E. More formally, one may seek a transformation
of a 4c Hamiltonian, written below as a more general many-
electron operator (e.g., the DCB Fock operator) with a 2 × 2
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2p1/2      Z = 1
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FIG. 2. Relativistic change r2�ρ of the radial density of the hydrogen atom
2p1/2 state (point nucleus) calculated with two-component (dashed) and four-
component (solid line) relativistic theory correct to order c−2; see Ref. 67.

block structure,

U †hDU = U †

(
hUU hUL

hLU hLL

)
U =

(
h′UU 0

0 h′LL

)
, (15)

in order to decouple the equations for ψU and ψL (Foldy-
Wouthuysen (FW) transformation66) and renormalize ψU.
The charge density, for instance, can then be calculated as
ρ ′(r ′) by transforming the position operator as r ′ = U †rU
instead of explicitly reconstructing the 4c density. Likewise,
for calculations of expectation values and response properties
the operators of other physical observables need to be
transformed as Â′ = U †ÂU where Â is the correct operator
for the 4c case. This is another example of a picture change.
The discussion follows Ref. 26: The transformation U can be
written as a product of a decoupling step Ud and a renormal-
ization step UN without the explicit energy dependence of
the ESC equation (13), as26, 71, 72

U = UdUN =
(

1 −X†

X 1

)(
N+ 0

0 N−

)
, (16)

where N+ = 1/
√

1 + X†X and N− = 1/
√

1 + XX† arise
from the renormalization of ψU and ψL in the decoupled
equations. One can show72 that an operator X that gives a
block-diagonal Hamiltonian from Ud†hDUd satisfies

2c2X = cσ · p − [X,V ] − Xcσ · pX. (17)

Including the normalization step, the wavefunction trans-
forms as

U †ψD =
(
N+(ψU + X†ψL)

N−(ψL − XψU )

)
. (18)

For the sought-after positive-energy electronic states, one
then demands that the lower components of U†ψD vanish,
which requires ψL = XψU, as in Eq. (11). The upper
component of U†ψD then becomes the function in Eq. (14).

Much activity has been directed in recent years at the
development of practical and efficient methods to construct
a fully decoupled 2c one-electron Hamiltonian from matrix
representations of the 4c Hamiltonian,73–77 allowing for a full
elimination of the lower components with explicit construc-
tion of a matrix representation of U. Information regarding

the development of these methods, now collectively termed
X2C (“eXact 2-Component”), and details about the construc-
tion of such operators, can be found in Refs. 24 and 26. In this
context, we also mention elimination schemes dubbed IOTC
to construct two-component relativistic operators by Barysz
and co-workers78–81 and normalized elimination of the small
component (NESC) methods82, 83 which have helped paving
the way for the development of X2C. There is no closed-form
expression available for the X2C one-electron Hamiltonian,
but its approximate construction in matrix form utilizing a fi-
nite basis set can be summarized in a few algorithmic steps,
none of which require the calculation of molecular integrals
that are not already available in 4c codes.26 The construction
of U in matrix form requires the solution of the 4c equations
first; the transformation matrix is then obtained from the rela-
tion between the wavefunction coefficients between the upper
and the lower components. As such, the X2C Hamiltonian is
as complex as the 4c Hamiltonian since knowledge of the lat-
ter is required to construct the former. An advantage of using
X2C instead of 4c can be expected in correlated relativistic
wavefunction methods where the computational effort is dom-
inated by calculations and transformations of two-electron in-
tegrals and a transformation of the one-electron part of the
Hamiltonian to 2c form may lead to significant computational
savings. An approximate form of the relation between the up-
per and lower components is already known. From Eq. (11),
X ≈ (2c)−1σ · p. Deviations from the exact relations are
significant mainly deep in the atomic cores, and therefore
favorably scaling atoms-in-molecules concepts can be em-
ployed in order to render the calculation more efficient.24 Fur-
ther, these approaches may be combined with 4c matrix for-
mulations for magnetic properties.84–86 For spin-free (scalar
relativistic) X2C and NESC, analytic methods for calcula-
tions of nuclear gradients and second derivatives have been
reported.87–89

Regarding magnetic properties such as NMR shield-
ing, the concept of “magnetic balance”51 becomes impor-
tant: The lower-component basis set should not only contain
{σ · pχ} functions, but also {σ · Aχ} (see Eq. (6) (Ref. 90)).
Implementations of 4c NMR shielding tensor calculations
with restricted magnetic balance have been reported not long
ago,86, 91, 92 including extensions to using gauge-including
(magnetic-field dependent) basis functions.86, 92 Olejniczak
et al. recently reported a simplified magnetic balance scheme
for 4c NMR calculations whereby the flexibility of unre-
stricted magnetic balance can be combined with the advan-
tages of a restricted magnetic balance formalism.93

Quasi-relativistic two-component Hamiltonians are ap-
proximate 2c operators where the decoupling of Eq. (15) is
achieved in an approximate, incomplete, way. In order c−2,
the Pauli operator is obtained from the one-electron part of the
DCB Hamiltonian. When the two-electron terms of O(c−2)
are included, the operator is referred to as the Breit-Pauli
Hamiltonian. In the field-free case, the one-electron part reads

hPauli = hnrel − p4

8c2
− ( p2V )

8c2
+ i

4c2
σ · [( pV ) × p]. (19)

For a list of operators, including some important two-electron
terms, that arise in the presence of magnetic fields see, for



150902-6 Jochen Autschbach J. Chem. Phys. 136, 150902 (2012)

example, Refs. 29 and 94. The first of the relativistic correc-
tion terms in Eq. (19) is seen to be a quantized form of the p4

correction of the kinetic energy discussed in Sec. I, which is
usually termed the mass-velocity correction (MV) and asso-
ciated with the relativistic mass increase of the electron. The
second term of O(c−2) is the one-electron Darwin term (Dar)
associated with the “Zitterbewegung” of the electron in ar-
eas where the potential is strong enough to create electron-
positron pairs.26 The last term on the right-hand side of
Eq. (19) is the SO coupling operator. The Pauli operator is not
variationally stable and creates diverging perturbation terms
in O(c−4) and higher95, 96 (in low order they can be grouped
to arrive at a non-singular result for hydrogen-like atoms,
but these terms would be very tricky to handle numerically
in many-electron codes). Its use is therefore deprecated, al-
though much work has been put into calculations of all rel-
evant Breit-Pauli magnetic perturbation operators until not
long ago.97–99 The large number of operators obtained in or-
der c−2, some of which are not suitable for calculations due to
their singular nature, renders variational methods with other
quasi-relativistic operators more convenient.

A variationally stable quasi-relativistic operator that is
presently in widespread use is obtained by rewriting k in
Eq. (13) as

k =
(

1 − V − E

2c2

)−1

= 2c2

2c2 − V

(
1 + E

2c2 − V

)−1

(20)

and expanding the term in parentheses in a power series in
E/(2c2 − V). The zeroth-order regular approximation (ZORA)
Hamiltonian100, 101 represents the zeroth-order term of this
expansion, yielding either directly from Eq. (13), or from
Eq. (16) with X ≈ 1

2c
2c2

2c2−V
σ · p and N+ = N− ≈ 1, the

operator

HZORA = V + 1

2
(σ · p)K(σ · p) (21a)

= V + 1

2
p · K p + i

2
σ · [ pK × p], (21b)

where

K = 2c2

2c2 − V
= 1

1 − V/(2c2)
. (22)

The nonrelativistic limit is obtained via K → 1, pK → 0.
The relation to the Pauli operator is furnished by K ≈ 1
+ V/(2c2) for V 
 2c2. The ZORA and Pauli spin-orbit
operators become identical in this case. The spin-free c−2

one-electron energy correction in first-order perturbation
theory from ZORA for small V is (1/2)〈ψnrel| p · K p|ψnrel〉
≈ T nrel + (1/4c2)〈ψnrel| p · V p|ψnrel〉. With V replaced by
V − E, the expectation value on the right would equate
to the sum of the Pauli MV and Dar terms. The opera-
tors (19) and (21) differ substantially in the atomic cores
where V is large and where the large potential leads to the
breakdown of the Pauli operator in terms of variational
stability but K serves to regularize the Hamiltonian.102 The
ZORA operator is not invariant with respect to a change
in the origin of the energy scale (gauge dependency), via
V in K of Eq. (22), such that V + � would not give the
correct value E + � for the resulting energy. Most of the

available implementations make use of model potentials in
K (sum of atomic potentials or the potential from a sum of
atomic densities plus the sum of nuclear potentials),103–105

which alleviate this problem. Likewise, a “scaled ZORA”
approach designed to match ZORA with 4c eigenvalues
for one-electron systems106 eliminates most of the gauge-
dependency errors and gives greatly improved energies for
core orbitals in heavy atoms. With X ≈ X0 = 1

2c
2c2

2c2−V
σ · p

and N+ ≈ 1 − 1
2X

†
0X0,N− ≈ 1 − 1

2X0X
†
0, one obtains a

first-order regular approximation; the corresponding working
expressions have been used to derive the scaled-ZORA equa-
tions more rigorously. Along the same lines, Dyall and van
Lenthe107 introduced an infinite-order regular approximation
(IORA) which takes the ZORA approximation for X fully into
account in the square roots in UN of Eq. (16). IORA is not
the same as an infinite-order expansion of Eq. (20). However,
unlike ZORA, the IORA Hamiltonian includes all relativistic
terms in order c−2 in addition to some higher order terms, and
a simple expression to eliminate picture change effects in or-
der c−2 is available.107 A nice feature of the ZORA operator is
that it is straightforward to derive magnetic perturbation terms
from it at the operator level.21, 108 For a given vector potential,

hZORA
mag = 1

2
([ p · KA + AK · p] + iσ · [ p × (KA)

+ (AK) × p] + KA2). (23)

The nonrelativistic limit (8) is obtained via K → 1.
Another quasi-relativistic Hamiltonian that has found

wide-spread use109, 110 is the Douglas-Kroll-Hess (DKH)
Hamiltonian which is constructed via a sequence of transfor-
mations U = U0U1U2··· in orders of the potential V. For a free
particle, the FW transformation to block-diagonal form can be
written in closed form. When the free-particle FW transfor-
mation is applied to the Dirac Hamiltonian with an external
potential, one obtains26

U
†
0hDU0 =

(
Ep − c2 0

0 −Ep − c2

)

+
(

K(V + RV R)K K[R,V ]K

−K[R,V ]K K(V + RV R)K

)
(24)

with

Ep =
√

p2c2 + c4; K =
√

Ep + c2

2Ep

,

R = R′σ · p; R′ = c

Ep + c2
. (25)

For V = 0, the Hamiltonian is indeed block diagonal and rep-
resents a quantized version of the relativistic classical free
particle energy. The DKH sequence for a molecular Hamilto-
nian starts with a free-particle FW transformation U0 (DKH0)
and subsequently decouples the upper and lower components
of the second term on the right-hand side of Eq. (24) in the
DKH1, DKH2, . . . sequence. Hess and co-workers found a
practical way to achieve the decoupling by formulating the
operators in a basis set that diagonalizes p2 in order to arrive
at a convenient formulation.111–113 Similar techniques have
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also been used for the RESC method developed by Nakajima
and Hirao.114 The construction of the DKH operator has been
pushed essentially to arbitrary order.115, 116 A comparison be-
tween different scalar relativistic decoupled two-component
methods (DKH, BSS, and X2C) has recently been made in
Ref. 117. Not surprisingly, the different methods work equally
well, with comparable computational effort. An important is-
sue is the inclusion of the two-electron potential in the trans-
formations; without doing so picture-change errors arise.

The subsequent introduction of magnetic-field dependent
terms in the DKH method in a rigorous way has taken a rather
long time and the efforts of several research groups.57, 118–122

At the DKH1 level, the expression for the magnetic perturba-
tion operator is relatively compact and may be written as120

hDKH1
mag = c(K[R′ p · A + A · pR′]K + iσ · K[R′ p × A

+ A × pR′]K). (26)

The structure of the paramagnetic (linear in A) terms is not
unlike ZORA in the sense that it resembles the nonrelativis-
tic expression but with additional kinematic factors that ac-
count for relativistic effects. The nonrelativistic limit (K → 1,
R′ → (2c)−1) recovers the terms from Eq. (8) that are linear in
A. A “diamagnetic” term proportional to A2 as in the nonrela-
tivistic and ZORA schemes appears in the next order, DKH2.
Additional significant efforts have been directed at avoiding
picture-change effects in molecular property calculations. The
transformation U is not constructed explicitly in DKH codes,
and therefore care needs to be taken that the matrix elements
for electric field perturbation operators, for instance, are prop-
erly transformed as well.70, 123

A relativistic perturbation theory that avoids the infini-
ties of the Breit-Pauli Hamiltonian in higher orders is the so-
called “direct” or “Dirac” four-component perturbation the-
ory (DPT). Following a change of metric between upper and
lower components in the Dirac-equation, an expansion of
the resulting four-component equation in powers of c−2 is
straightforward and leads to non-singular first- and higher or-
der expressions for the energy and the wavefunction.124–126 A
treatment of magnetic properties within the DPT framework
has been formulated.90 For an implementation of magnetic
properties see, for instance, Ref. 127.

As an alternative to direct relativistic methods that con-
sider special relativity directly in the Hamiltonian, relativis-
tic effective core potentials (RECPs) provide a way to in-
corporate relativistic effects in molecular computations. We
will not discuss such pseudopotential methods in detail herein
but focus on direct relativistic methods that are suitable for
all-electron calculations. See a recent review by Dolg and
Cao128 on RECPs for details and references to original arti-
cles. Consideration of spin-orbit coupling is also possible in
these methods. Extensive benchmark calculations have shown
that RECPs can yield reliable properties of heavy element
compounds. For molecular properties where the core tails
of the valence orbitals are not of concern, pseudopotentials
are also straightforward to apply, albeit with some caution as
far as magnetic properties and distributed gauge origin meth-
ods are concerned.129 For properties such as NMR shifts or
spin–spin coupling the all-electron electronic structure near
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FIG. 3. Electron charge density of the gold atom as a function of the electron-
nucleus distance r, for small radii. Four-component relativistic numerical
DFT calculations (Xα functional) with a point nucleus and with a finite Gaus-
sian nucleus model.190 Nonrelativistic results were obtained by scaling the
speed of light by a factor of 105 (nrel. point and finite nucleus data are indis-
tinguishable on the scale of the plot). The effective nuclear radius used for
the finite nucleus calculations was 1.03 × 10−4.

the nuclei is important and needs to be reconstructed if one
attempts to calculate such properties within a pseudopotential
method.130, 131

III. EXAMPLES OF RELATIVISTIC EFFECTS

One may distinguish between relativistic effects at
the one-electron level and those specific to many-electron
systems. At the one-electron level, there are the modifications
to the kinetic and potential energy operators, and SO cou-
pling induced by the nuclear potential(s). The e-e potential
interactions in many-electron systems give rise to additional
relativistic effects. Some of these resemble the one-electron
terms, with the nuclear potential replaced by the electronic
Coulomb potential. Examples are the two-electron Darwin
and the two-electron SO operators arising in the Breit-Pauli
Hamiltonian. Additional terms arise from magnetic inter-
actions between two electrons, such as the spin-other-orbit
term. For a full account of these operators in order c−2 see
Refs. 29, 41, and 132.

A. Atomic orbitals

For one-electron (hydrogen like) atoms, all orbitals are
relativistically stabilized and contracted. These effects are
largest for s1/2 and p1/2 and decrease with increasing principal
quantum number as well as with increasing angular momen-
tum. In nonrelativistic theory, s orbitals adopt finite values at
the nuclei and all other types of radial functions go to zero
for r → 0 (point nuclei). For point nuclei, the relativistic s1/2

and p1/2 radial orbital functions have weak negative-exponent
divergences at the nucleus. Higher angular momenta afford
non-divergent radial functions whose derivatives have weak
negative-exponent divergences. With finite nuclei,133 there are
no divergent terms. Qualitatively, these near-nucleus features
occur also in many-electron atoms. For large Z, there are
very pronounced differences between relativistic and nonrel-
ativistic calculations in particular for small electron-nucleus
distances. Figure 3 shows as an example the near-nucleus
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FIG. 4. Radial densities of selected valence orbitals of the gold atom. 6s
contracts relativistically, while 5d5/2 and the 4f orbitals expand due to in-
direct effects. Four-component numerical DFT calculations (Xα functional)
with Gaussian nucleus model. Nonrelativistic results were obtained by scal-
ing the speed of light by a factor of 105. The density of the relativistic 5d3/2
orbital (not shown, 〈r〉 = 1.57) closely resembles that of the nonrelativistic
calculation.

behavior of the electron density of the gold atom. At the scale
of the plot, the difference between the nonrelativistic point
and finite nucleus calculations is not visible. For the rela-
tivistic calculations, the finite-nucleus effects on the density
becomes noticeable for radii below 10−3 and very large for
radii less than the effective nuclear radius (about 10−4). Al-
though finite nucleus effects are not by definition “relativis-
tic,” they tend to be large only in relativistic calculations.
The pronounced increase of the electron density in the K-
shell and near the nucleus due to relativistic effects is evident
from the plots, both for the finite nucleus and for the point-
nucleus calculation. It is therefore not surprising that there are
very large relativistic effects on properties such as electron
nucleus hyperfine coupling or NMR parameters (in particu-
lar J-coupling) for heavy elements. One must keep in mind
that some of the density increase originates from the relativis-
tic effects on the tails of the outer core and valence orbitals
close to the nucleus and in the K-shell, in particular from s1/2

and p1/2 orbitals. Thus, genuine chemical properties that are
dominated by the valence orbitals may exhibit large relativis-
tic effects originating from the inner core regions of heavy
atoms.

In self-consistent calculations of many-electron systems
there are additional relativistic effects arising from the self-
consistency. These changes have been termed “indirect”
effects8 in order to distinguish them from the direct kinematic
effects on the electronic structure arising from the presence of
the relativistic modifications in the Hamiltonian. For instance,
because s1/2 and p1/2 orbitals tend to contract most strongly
due to relativistic effects, orbitals in the same shell but with
higher angular momentum experience a concomitant relativis-
tically increased screening of the nucleus. In self-consistent
calculations, the net effect is a relativistic destabilization and
expansion of d5/2 and orbitals with higher j. For p3/2 and d3/2

the direct stabilization and contraction, and the indirect desta-
bilization and expansion, tend to cancel to some degree, and
the final sign of the effect is not particular systematic. Repre-
sentative examples are shown in Figure 4 for the gold atom.
We point, in particular, to the large relativistic contraction of
the 6s orbital, reducing 〈r〉 from 3.4 to 2.9 bohrs which is
predominantly a result of direct relativistic effects, and the in-
direct relativistic expansions of orbitals in inner shells with
higher angular momentum.

For a given orbital expectation value y such as energy,
radial expectation values, momentum, kinetic, and potential
energy, and others, one may define a relativistic correction
factor γ , such that yrel = ynrel[1 + γy(Z/c)2] which allows
studying periodic trends more easily among atoms with very
different Z (keeping in mind that γ itself contains relativistic
corrections of O(c−2)). When plotted for the s1/2 orbital ener-
gies and the orbital radii in many-electron atoms, as shown in
Figure 5, a pronounced maximum is observed at Z = 79 for
the 6s orbital. This is the celebrated gold maximum of rela-
tivistic effects. The gold maximum arises from a variety of
factors, among those the lanthanide contraction and the filled
5d shell in combination with the 6s1 configuration. Indirect
effects amplify the 6s contraction in Au. If the third transition
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FIG. 5. Relativistic correction factors γ (see text) for energies ε and radii r of s1/2 orbitals neutral many-electron atoms. Figure generated from four-component
HF data reported by Desclaux, Ref. 191.
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metal row had systematic 6s2 configurations, the maximum of
relativistic effects in the period for the valence s orbital would
occur for Hg. For additional details and an investigation of the
periodic trends of various relativistic orbital correction factors
see Ref. 134.

Given the relativistic effects on s and p orbital radii, it
is not surprising that effective radii of atoms, particularly in
groups 1, 2, 11–14, but also in other groups, shrink due to rel-
ativity, leading to a reversal of the trend of increasing atomic
radii when going down a group in the periodic table. For in-
stance, because of the large relativistic contraction of the gold
valence shell, the radius of the gold atom is somewhat smaller
than that of silver when calculated relativistically. In nonrel-
ativistic calculations, the “normal” periodic trend of increas-
ing radius with increasing atom number is obtained instead
in group 11. Regarding the similarity between Zr and Hf, it
was found that it is caused by a near-perfect cancellation of
shell-structure and relativistic trends.135 About 10% of the
lanthanide contraction may be attributed to relativity. For de-
tails and further examples, see Pyykkö.18 Along with the sig-
nificant relativistic orbital contractions and expansions occur-
ring in the heavy-atomic part of the periodic table, there are
changes in the atomic shell structures which have been stud-
ied recently by relativistic MCSCF calculations with the help
of topological analyses of the electron densities.136 Topolog-
ical analyses of relativistic electron density changes in tran-
sition metal complexes M(C2H2) with M = Ni, Pd, Pt, have
also been reported.137

B. Bond distances in molecules

Considering the relativistic contraction of s and p1/2

shells in heavy atoms, one may expect that atomic distances
in many molecules with heavy atoms shrink relativistically
as well,42 and that chemical bonds are shorter when calcu-
lated with a relativistic formalism. Accordingly, one would
expect nonrelativistic calculations to overestimate interatomic
distances involving heavy elements. This is indeed found of-
ten; cases of relativistic bond length expansions appear to be
rare.18 Among the molecules that exhibit pronounced bond
length contractions (on the order of 0.2 to 0.3 Å depending on
the type of calculation) are the diatomics AuH and Au2. Due
to their small size these molecules have been studied exten-
sively by theory. One may ask the question whether the radial
extension of free atoms, and relativistic effects thereupon, has
any bearing on the relativistic chemical bond contraction in
molecules. One may refer to the atomic contraction as a pro-
molecular effect. Therefore, the question is whether the bond
length contraction is a promolecular effect. To first order in
c−2, the unintuitive answer is apparently “no.”138, 139 In order
to arrive at this result, consider the first-order (in c−2) rela-
tivistic correction of the energy, E(1) = 〈(0)|H(1)|(0)〉, where
H(1) is the relativistic correction to the Hamiltonian of order
c−2 and (0) is the nonrelativistic wavefunction. Relativisti-
cally corrected potential curves E(R) = E(0)(R) + c−2E(1)(R)
for AuH and Au2, for instance, where R is the interatomic
distance produce the bulk of the relativistic corrections of
the equilibrium bond length Re. Since (0) does not contain
any information about the promolecular relativistic effects the

conclusion must be that in leading relativistic order the mini-
mum of E(R) is unrelated to the relativistic effects in the pro-
molecule.

There is a different way to look at this problem:140 A
relativistic bond contraction or expansion is driven by a
non-vanishing relativistic contribution to the intramolecular
force F = −dE/dR at the nonrelativistic equilibrium distance
(with F nrel = 0). In other words, one needs to consider F(1)

= −dE(1)/dR. Differentiating E(1) = 〈(0)|H(1)|(0)〉 with
respect to R gives a term involving ∂(0)/∂R as well as one
with (0) exclusively, and there is still no promolecular
relativistic contribution. But the order of differentiation can
be switched, dE(1)/dR = d2E/dRdc−2 where one first calcu-
lates dE/dR and then takes the leading relativistic correction
of the force. One term of the resulting expression is the
Hellmann-Feynman electrostatic force calculated with ρ(1),
the electron density change in order c−2. The density change
ρ(1) = ρ(1)pro + �ρ(1) contains the promolecular relativistic
density change ρ(1)pro and the relativistic change of the
deformation density �ρ(1). For AuH, Au2, and selected other
examples, it was found that the promolecular contribution is
not dominant and that in this alternative calculation scheme
the main relativistic contribution to the binding force comes
from the relativistic effects on the deformation density.94, 141

Therefore, the two ways of analyzing the bond length effects
lead to comparable conclusions: The relativistic bond length
contractions (and rare cases of expansions) are predominantly
caused by relativistic effects on the molecular deformation
density, and atomic relativistic contractions or expansions
play only a secondary role.

C. Gold, mercury, lead, U2

In the introduction we have pointed toward several iconic
examples of relativistic effects. The first three are related
to the exceptional relativistic stabilization of the 6s orbital
around the end of the third transition metal series. The fact
that Hg is the only metal that is liquid at room temperature
has long been attributed to relativistic effects.41, 142 The strong
relativistic stabilization and contraction of the Hg 6s shell and
the atom’s closed-shell nature render Hg hard to polarize and
chemically relatively inert. It is indeed very likely that the low
melting point of Hg metal, −39 ◦C, is heavily affected by rel-
ativity. For comparison, the melting point of Cd metal, which
may be regarded as “nonrelativistic mercury,” is 321 ◦C. A
direct proof by comparing ab-initio relativistic and nonrela-
tivistic calculations of the melting point of large Hg clusters
appears to be forthcoming, based on recent developments of
Hg interatomic potentials.143 The yellow color of solid gold
has for a long time been attributed to relativistic effects.18 For
the atom, the relativistic stabilization of the 6s orbitals and the
destabilization of the 5d level decreases the gap between the
atomic orbital levels as compared to silver. In the solid, this
translates to a concomitant onset of an absorption in the vis-
ible region, around 2.4 eV, in the reflexivity spectra144 which
was assigned to a transition from the 5d to the 6s band.145

For silver metal, the corresponding absorption does not occur
until 3.7 eV which is already in the ultraviolet.144 Regard-
ing the origin of the very large relativistic contribution to the
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TABLE I. Dissociation energy D0 of dihydrogen (cm−1).

Calculation Theory Expt.

H2, Kołos and Wolniewicz 36 117.4 36 118.3(4)
1964–1968a

Bunker, 1969b 36 117.9
H2

c 36 118.069 5(10) 36 118.069 62(37)
D2

d 36 748.363 3(9) 36 748.362 86(68)

aCalculation: Ref. 11. Experiment: Ref. 192.
bAs reported in Ref. 192.
cCalculation: Jeziorski et al., Ref. 146. Experiment: Ref. 147.
dCalculation: Jeziorski et al., Ref. 146. Experiment: Ref. 148.

lead - acid battery voltage,6 most of the effect has been traced
back to the oxidative power of solid PbO2 which, in turn, is
related to the particular stabilization of the unoccupied Pb 6s
levels in the solid due to relativistic effects. Regarding the
quintuple bond in U2, Gagliardi and Roos noted in their ar-
ticle that, based on their spin-orbit CASPT2 calculations, U2

affords three fully developed electron-pair bonds, one σ and
two π , with the latter formed by combinations of 6d and 5f
uranium orbitals.5 Relativistic effects are in part responsible
for less pronounced atomic shell structures in heavy elements,
and the 6d-5f mixing in the U2 π bonds testifies to this. In
addition, the calculations identified two strong one-electron
bonds mainly of 6d character, and two relatively weak one-
electron bonds of 5f character. One may infer a bond order of
less than 5 but likely higher than 4 from these findings. The
concept of a quintuple bond is certainly intriguing.

D. Dihydrogen

Not only calculations on heavy-element systems benefit
from relativistic effects. Consider the celebrated calculations
by Kołos and Wolniewicz9–11 of the dissociation energy of H2

which disagreed with the then accepted experimental value
of 36 113.6(3) cm−1. The discrepancy was later resolved in
favor of quantum theory. Although the relativistic correction
was small, −0.5 cm−1, with additional radiative corrections
of −0.2 cm−1, it was already somewhat larger than the re-
ported experimental error bars at the time and consequently
it had to be included in the theoretical value. See Table I.
Jeziorski and co-workers have recently pushed calculations
on H2 and D2 to new limits (Table I).146 The H2 dissocia-
tion energy D0 includes relativistic and QED corrections of
−0.5319(3), −0.1948(2), and −0.0016(8) of orders c−2, c−3,
and c−4, respectively, and is seen to agree within the error bars
with the most recent experimental value.147 The calculated
dissociation energy of D2 prompted experimentalists to per-
form a new measurement148 because of disagreements. The
theoretical predictions are seen to be in excellent agreement
with the revised experimental value shown in Table I.

E. Electric field gradients, picture change effects

Regarding picture-change effects in 2c calculations, it is
noted that in X2C approaches the transformation U is avail-
able in matrix form, and therefore molecular property oper-
ator matrices for the 2c picture can be constructed in a con-

sistent manner; there should be no picture change errors as a
result. Electric properties in 4c calculations may be calculated
directly from the 4c density without picture-change errors.
Rather common are picture–change errors in quasi-relativistic
calculations of electric properties. EFGs have been particu-
larly well studied in this regard, owing to the fact that the
differences between 4c and 2c is more pronounced for atomic
core and semi-core shells than for valence shells (see discus-
sion of Figure 2 below Eq. (14)). Calculations of EFGs have
been reviewed by Schwerdtfeger et al.149 who highlighted
the overall importance of relativistic effects on this molecular
property. Mastalerz et al. have studied picture–change effects
on EFGs in detail using higher order DKH transformations70

of the EFG operator. For the iodine EFG in the HI molecule,
which is a particularly well studied benchmark system, the
scalar relativistic DKH result lowered by 11% in total mag-
nitude upon inclusion of picture-change effects. This change
amounts to roughly 40% of the relativistic correction and is
therefore highly significant. In order to eliminate most of the
picture-change errors in order c−2 from ZORA calculations
of EFGs, van Lenthe et al.150 took the alternative route of re-
constructing an approximate 4c electron density in DFT cal-
culations, via applying Eq. (11) with X consistent with the
ZORA approximation and subsequent renormalization of the
orbital densities (the method was termed ZORA-4). An al-
ternative route obtains the EFG as a derivative of the scaled-
ZORA DFT energy expression, leading to the same working
ZORA-4 expressions.151 The picture-change corrections be-
tween plain ZORA and ZORA-4 reported by van Lenthe et al.
for the nuclear quadrupole coupling constant of iodine in HI
amounted to −5% of the total in calculations with Slater-type
basis functions. Spin-orbit effects were on the order of −3%
in this case. Likewise, with an alternative implementation of
ZORA-4 EFGs using Gaussian basis sets,151 picture-change
corrections for the iodine EFG in HI amounted to −5% in
scalar relativistic calculations, and −3% in spin-orbit calcu-
lations (BP functional). See also Refs. 70 and 152. The cal-
culated iodine EFG of the Tl–I diatomic exhibits a particu-
larly large SO effect compared to the overall magnitude of the
EFG and its relativistic effects. For example, recent ZORA-
4 CAM-B3LYP calculations yielded V33 = 2.06 (nrel), 2.37
(scalar), and 2.61 (SO) a.u.151 The experimentally derived V33

is 2.70 where V33 is the largest-magnitude principal compo-
nent of the negative EFG tensor.

Other electric properties, e.g., static and dynamic polar-
izabilities, may also be affected strongly by relativity. For ex-
amples and references to original research articles see Ref. 21.

F. Hyperfine coupling, J-coupling

An example of a rather dramatic picture-change effect
is furnished by the magnetic electron–nucleus hyperfine
interaction needed, for instance, to calculate EPR hyperfine
coupling and NMR nuclear spin-spin (J-coupling) con-
stants. For a point nucleus, the magnetic vector potential in
Coulomb gauge is AN = μN × UN where UN = c−2rN/r3

N .
Here, rN is the electron-nucleus distance and μN is the
nuclear magnetic moment. In Coulomb gauge, p · A = 0,
but p × A which occurs in the nonrelativistic magnetic
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perturbation operator (8) (and in form of p × KA in its
ZORA analog, Eq. (23)) is nonzero. Considering that the
derivative from p in space representation acts on everything
to its right, one may write p × A + A × p = { p × A}
where the curly brackets indicate that the derivative only
acts on terms enclosed by {· · · }. Given that μN is constant,
{ p × A} = {μN ( p · UN ) − (μN · p)UN } in the nonrelativis-
tic case. The derivatives of UN give rise to dipolar terms
proportional to r−3

N , as well as a delta function δ(rN ) which
is commonly referred to as the Fermi contact term (FC). In
nonrelativistic computations the FC operator samples the
density values of s orbitals right at the nuclear positions. The
empirical fact that J(C–H) one-bond couplings in NMR are
proportional to the s character of the involved carbon153 is a
consequence of this behavior. In relativistic calculations with
point nuclei where the density diverges as rN → 0 (see Figure
3), the expectation value of the nonrelativistic FC becomes
singular. One may obtain finite matrix elements of the opera-
tor in relativistic calculations with finite nuclei, or with an in-
complete basis of functions that are finite at the nuclei, but the
results would then unphysically depend on the nuclear model
or how the basis set is truncated at the nuclei. As an example
how the operator is modified in a relativistic framework, the
point-nucleus ZORA version of the FC term instead involves
{ p × KA} = {μN ( p · KUN ) − (μN · p)KUN } where
the presence of K suppresses the δ term implicit in the expres-
sion. For point nuclei, K → 0 as rN → 0. The matrix elements
of the ZORA FC operator remain finite for moderately large Z
and the operator matrix elements can be converged in a mean-
ingful way with respect to the basis set size.154, 155 Instead
of sampling a finite electron density at a point nucleus, the
quasi-relativistic form of the FC operator samples the density
and its slope very close to the nucleus. If one were to use a
hyperfine operator that is inconsistent with the approximate or
an exact two-component method, such as the nonrelativistic
form of the FC term, the results would not be meaningful and
become singular in a complete basis. As a note aside, the 4c
form of the operator, α · μN × UN does not involve a deriva-
tive. However, since the Dirac α matrices couple the upper
and lower components of the 4c wavefunction, the derivatives
enter the result via the derivatives (from p) in Eq. (11).

It is interesting to consider the expectation value of
the hyperfine coupling operator for the ground state of a
hydrogen-like ion case because of the δ function term in
the ZORA analog of the FC operator. As long as K times
the density goes to zero at the nucleus, the matrix element
stays finite. The ZORA radial density can be calculated from
the upper components of the 4c wavefunction upon scal-
ing the coordinate.156 The 4c upper component radial func-
tion for a point nucleus is58 g1s∝(Zr)γ − 1exp (− Zr) with γ

=
√

1 − Z2/c2. That gives a 2c density ρ1s∝(Zr′)2γ − 2exp
(− 2Zr′) upon integration over the angular variables, with r′

scaled. With V = −Z/r, K goes as (2c2/Z)r′ for very small r′.
Thus, ρ1sK ∝ r ′2γ−1 for small r′. This term starts to diverge
for r′ → 0 if γ < 0.5, corresponding to Z > 118, in which case
the presence of the δ-function term in the FC operator would
cause problems. See Ref. 157 for a related discussion of an
approximate 2c method. The 4c result for a point nucleus
would not become singular until Z > c, around 137. The antic-

TABLE II. Isotropic 199Hg electron-nucleus hyperfine coupling constants
(MHz) for two radicals containing mercury.a

HgF HgAg

nrel. PN 9 173 2 068
DKH2 PN 25 102 4 165
DKH2 FN 21 490 3 456
ZORA PN 21 934 3 450
ZORA FN 19 154 3 109
Expt. 22 163 2 720

aPN = point nucleus, FN = finite nucleus (Gaussian model). nrel = nonrelativistic.
DKH2 data (DFT, B3PW91 functional) from Ref. 158. nrel. and ZORA data (DFT,
CAM-B3LYP functional) from Ref. 159. Experimental values as collected in Ref. 193.

ipated breakdown of ZORA hyperfine calculations for point
nuclei with Z > 118 (basis set permitting) must be attributed
to the incomplete (quasi-relativistic) treatment of relativistic
effects in conjunction with the strongly singular behavior of
the vector potential for a point nucleus. Similar situations be
expected for other quasirelativistic Hamiltonians and high Z.

Given the strong inverse dependence of the hyperfine op-
erator(s) on the electron – nucleus distance, one may expect
very large relativistic effects on properties that depend on
these operators, along with sizable finite-nucleus effects. This
is indeed the case. Consider the 199Hg hyperfine coupling con-
stant (HFCC) in the HgF and HgAg radicals listed in Table II,
taken from larger data collections reported in Refs. 158 and
159. The relativistic effects actually exceed the magnitude of
the nonrelativistic hyperfine couplings for the point-nucleus
calculations—for HgF by a large margin. Additionally, there
are sizable finite nucleus corrections on the order of 10% to
15%. Hyperfine coupling has been re-investigated recently by
Malkin et al. using 4c DFT calculations.160 Finite-nucleus ef-
fects for the Cs and Fr atomic HFCCs were reported as −2%
and −12%, respectively. For various Hg radicals, the mercury
HFCC finite-nucleus corrections were found to be lower than
previously obtained from DKH2, on the order of 11% to 15%,
and thus more in line with the ZORA data listed in Table II.159

Regarding the effects from a finite nuclear volume one
may conceptually distinguish between two types of effects.
First, there is the change in the electronic structure due to the
finite nuclear volume133 which is greatly amplified by rela-
tivistic effects. A second effect arises from modifications of
operators, such as those for hyperfine integrals, due to the
finite distribution of the nuclear current density that gives
rise to the nuclear magnetic moment. Consideration of finite
nuclear current–density distributions affecting the hyperfine
structure of heavy elements dates back to early 1950s papers
by Bohr and Weisskopf161, 162 and further back to the early
days of modern quantum theory.163 See also Ref. 164.

Relativistic and finite-nucleus effects comparable to
those for electron-nucleus hyperfine coupling have been
reported for NMR J-coupling involving heavy nuclei. For
instance, the reduced nuclear spin-spin coupling K(Hg–C)
in Hg(CN)2 was calculated nonrelativistically as 2266
× 1019 T2/J, and with scalar ZORA as 4408 (BP functional,
point nuclei).108 Similarly dramatic relativistic effects were
reported by Filatov and Cremer with an IORA implementa-
tion at the matrix level.165 The experimental coupling is 5778
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in methanol. The difference between the relativistic calcula-
tion result and experiment was later shown to be due to sol-
vent effects.166 Finite nucleus effects on J-coupling constants
between Hg and a light atom were shown to be comparable
to those of the HFCCs,155 also reducing the magnitude of the
coupling, and of comparable magnitude for Pb (below 10%
for Pt). For the Hg–Hg coupling in a crown-ether complex of
[Hg–Hg]2 +, the finite nucleus effects reached 19%, and went
up to 28% for the coupling in the free [Hg–Hg]2 + ion.155 As
far as the magnitude of the Hg–Hg coupling in the crown-
ether complex is concerned, a calculation at the hybrid DFT
level with finite nuclei155 determined K = 771 × 1022 T2/J
versus an experimental value of 721. The experimental value
translates into the world record for a J-coupling constant:
284 kHz.

Typically, with J-coupling and HFCCs, the dominant ef-
fect is from the scalar relativistic increase of the electron den-
sity near the nuclei. However, for a large set of J-coupling
constants with heavy elements it has been shown that among
non-hybrid and hybrid scalar and spin-orbit DFT calculations
the best agreement with experiment, on average, is obtained
at the SO hybrid DFT level.167 An example for which SO ef-
fects are particularly pronounced is the J-coupling in the Tl–I
diatomic. Both the isotropic coupling and the coupling tensor
anisotropy are dominated by SO effects.168

G. NMR shielding, chemical shifts

Many striking examples of relativistic effects on NMR
shielding constants and chemical shifts have been docu-
mented in the literature. See Refs. 169 and 170 for overviews
and pertinent literature. An old example is the heavy-atom ef-
fect on chemical shifts of nearby atoms, such as heavy halide
atoms bound to carbon in organic compounds. In its purest
form it is observed in the H–X series of diatomics, with X
= F, Cl, Br, I. For example, Manninen et al. calculated the
shielding constants with MCSCF wavefunctions and obtained
the relativistic corrections via perturbation theory using the
Breit-Pauli operator.98 Relative to hydrogen fluoride as a ref-
erence, the proton shift of HCl was calculated as −2.0 non-
relativistically and −2.7 relativistically (expt.: −2.6). For HI,
the relativistic effects are very pronounced: −2.7 (nrel) versus
−14.6 (rel); the experimental proton shift for HI is −15.3.171

Such calculations have been repeated numerous times with
different relativistic methods and different levels of correla-
tion treatment (including DFT). A collection of calculations
performed until 2008 for the proton and halide NMR shifts
in HX has been compiled in Ref. 169. It is customary to test
new relativistic NMR shielding implementations on the HX
series and, occasionally, on rare gas atoms; many of the re-
cent articles reporting new technical advances cited herein
provide new data for the HX series. With correlated methods,
the results for HI tend to be close to experiment whereas for
Hartree-Fock theory the shift is severely overestimated (cal-
culated typically between −19 and −22 ppm). The strong
deshielding of the proton in HBr, HI (and HAt) is predomi-
nantly caused by SO coupling. For a detailed analysis of such
effects see Kaupp et al.172 For NMR parameters of heavy nu-

clei such as Pt, Hg, etc., both scalar and SO relativistic cor-
rections are highly important.21

SO effects on chemical shifts of light ligand atoms have
also been reported for transition metal complexes with heavy
metals. We highlight two recent examples. Hrobarik et al.
have considered proton chemical shifts in a number of hy-
dride complexes, including the series [HMCl2(PMe3)2] with
M = Co, Rh, Ir, with the help of 4c DFT calculations.173 As
an example, for the Ir system, a substantial SO induced proton
shielding of about 30 ppm was observed. The correlation be-
tween calculated and experimental shifts for the whole range
of complexes was substantially improved upon inclusion of
SO effects. A strongly increased shielding of 29Si along a Ni,
Pd, Pt, triad of novel hypervalent silicon complexes with a
direct Si-metal bond has been observed experimentally and,
based on ZORA DFT calculations, been attributed to SO
coupling.174 Further, it was shown that SO coupling also has
a substantial effect on the 29Si shielding tensor span for the Pt
compound.

H. Electron g-factors, zero-field splitting

The deviations of atomic and molecular electronic
g-factors from the free-electron value ge ≈ 2.0023 may be
considered a purely relativistic effect in the sense that such
deviations vanish for vanishing SO coupling, and because
SO coupling is a relativistic effect. Thus, g-shifts represent
directly observable relativistic effects. Usually, g-shifts are
small and reported in parts per thousand (ppt). A 4c DFT
implementation utilizing non-collinear spin-densities has
been reported recently.175 In a series of test calculations
on d1 metal complexes, it was found that higher-order SO
effects in g-shift calculations may be larger than previously
thought.176 An interesting case with a particularly large
g-shift is NpF6 (along with other actinide-hexahalides); the
accepted experimental g-factor is −0.6 implying a g-shift on
the order of −2600 ppt. The experimentally derived g-factor
has been reproduced well by SO CASPT2 calculations177 and
more recently by ZORA DFT calculations.178, 179

For additional examples and broader coverage of the lit-
erature on relativistic NMR and EPR calculations the reader
is referred to some of the available reviews.21, 169, 170, 180–182

Another property that plays a role in EPR and other spectro-
scopic techniques for paramagnetic molecules (e.g., magneto-
circular dichroism) is the zero-field splitting. There have been
important recent advances regarding the calculation of this
property; see Schmitt et al.183 and references therein.

I. Contact densities

Knecht et al. recently performed a theoretical study of
Mössbauer isomer shifts of mercury in the series HgFn with
n = 1, 2, 4.184 DFT was compared to CCSD(T) reference
data and found to under-perform. Isomer shift calculations
have traditionally relied on determining the “contact” den-
sity, i.e., the density value at the nucleus of interest. With a
point-nucleus, this makes sense in nonrelativistic calculations
but not in relativistic calculations where the density diverges
(Figure 3). With a finite nucleus, ρ(0), the density at r = 0,
remains finite and may be used in calculations where contact
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densities are needed. Knecht et al. considered a Gaussian fi-
nite nucleus model in 4c and 2c DKH relativistic calculation,
along with a treatment of picture-change effects in the latter
case. (Picture-change effects on DKH contact densities were
also explicitly investigated in Ref. 185.) A reduction of about
10% of Mössbauer isomer shifts was obtained when using
an effective contact density, integrated over the finite nuclear
volume, as compared to using ρ(0) values. This effect has
been confirmed by scalar relativistic NESC calculations of
Mössbauer isomer shifts reported by Filatov et al.186 At the
uncorrelated HF theory level, the nonrelativistic calculations
of Ref. 184 underestimated the changes in the contact densi-
ties when going from the Hg atom to the molecules by factors
of 10 or more. In a related study, Mastalerz et al. investigated
the convergence of relativistic electron densities at the posi-
tions of finite nuclei with respect to the size and contraction
schemes of Gaussian basis sets.187 Knecht and Saue recently
considered the derivative of the effective contact density with
respect to the internuclear distance for a series of heavy di-
atomic molecules (TlI, PbTe, PtSi), with the aim of modeling
the isotopic field shift in the rotational spectra with the help
of 4c relativistic calculations.188 Finite nuclear volume effects
were found to be on the order of 10%, with associated rela-
tivistic contact density derivatives being roughly an order of
magnitude larger than the nonrelativistic results, in agreement
with the findings of the aforementioned Mössbauer isomer
shift study. Consideration of the picture change of the density
operator in related 2c calculations was found to be mandatory.

IV. OUTLOOK

The treatment of relativistic effects in molecular quan-
tum chemical calculations has made tremendous progress.
Dealing with electron correlation in such calculations,
either by correlated wavefunction methods or by relativistic
DFT, remains a work in progress.50 The state-of-the-art and
remaining challenges in relativistic DFT have been reviewed
recently by van Wüllen.189 It remains to be seen whether the
lack of a consistent derivation of a relativistic many-electron
Hamiltonian from a more general theory will eventually
cause practical problems, or if DCB based theories with QED
corrections will suffice. In practical applications the correla-
tion problem presents a major accuracy bottleneck. If a full
four-component or X2C relativistic treatment is too expensive
in terms of the required computational resources, there are
various variationally stable approximate two-component all-
electron Hamiltonians as well as relativistic ECPs available
that allow for very efficient quasirelativistic calculations.
Among the all-electron methods that have found widespread
use are ZORA and DKH, in particular DKH2. For many
applications, the relativistic treatment by these operators may
often be good enough for the desired target accuracy. For
example, ZORA (and scaled ZORA) as well as DKH2 tend to
furnish sufficiently accurate relativistic effects for and outer
core shells in heavy element compounds in order to allow for
meaningful calculations of many spectroscopic, structural,
and energetic properties at correlated theory levels that are
presently in widespread use. For core shell properties of
heavy element compounds, plain ZORA affords large errors

and should not be used. The “scaled ZORA” variant offers
significant improvements26 at little extra computational cost.
Obviously, for very high accuracy calculations the best avail-
able treatment of relativistic effects should be used. Errors
from an incomplete relativistic treatment may in this case be
comparable or larger than the errors from basis set truncation
or level of correlation. Finally, it is worthwhile repeating the
often stated fact that relativistic effects and electron correla-
tion effects are not additive. With regard to a computational
model for a molecule that is not in the gas phase and for cal-
culations at finite temperature, similarly non-additive effects
may arise, for instance, from solvent effects or vibrational
corrections of calculated spectroscopic parameters.
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