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Basic Theory 
  Dirac (1929)  

  The general theory of quantum mechanics is now almost 
complete, the imperfection that still remain being in 
connection with the exact fitting in of the theory with 
relativistic ideas. These give rise to difficulties only when 
high speed particles are involved, and are therefore of 
no importance in the consideration of atomic and 
molecular structure and ordinary chemical reactions in 
wich it is, indeed, usually sufficiently accurate if one 
neglects relativity variation of mass with velocity and 
assumes only Coulomb forces between the various 
electrons and atomic nuclei.  

  The fundamental laws necessary for the mathematical 
treatment of large parts of physics and the whole of 
chemistry are thus fully known, and the difficulty lies only 
in the fact that application of these laws leads to 
equations that are too complex to be solved. 
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  Non-relativistic gold is silver 
  The 5d-6s transition is shifted from the UV to the visible part of the spectrum 

by relativistic effects 

6s 

Visible Relativistic Effects 

5d 

6s 

5d 

Non-Relativistic Relativistic 

  Phosphoresence 
  Singlet-triplet transitions and intersystem crossing is allowed due to 

 spin-orbit coupling: spin is not a good quantum number ! 

Visible Relativistic Effects 

! 

1D2"
3P2

Lifetime 110 s 

! 

1S0"
1D2

Lifetime 0.75 s 
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The hydrogenic atom 
  The exact non-relativistic energy 

  The exact relativistic energy  

  Spin-orbit couping : 
! 

E = mc 2 / 1+
Z /c
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Day 1: Basic theory, qualitative discussion 
  Basic Theory 

  Special relativity 
  The Dirac equation 
  Relation to quantumelectrodynamics 
  Treatment of the electron-electron interaction 

  Relativistic Effects in Chemistry 
  Orbital radii and energies 
  Reaction energies 
  Molecular structure 

  Day 2: Approximate Hamiltonians 

  Day 3: Frozen cores and Effective Core Potentials 
 Relativistic effects on molecular properties   
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Galilean transformation 
  Consider 2 coordinate systems that move relative to each 

other with a velocity v in the x-direction	

  Galilean transformation leaves distance invariant	


	

  Simple addition of velocities, no speed limit	


! 

w =
dx
dt

=
d( " x + vt)

dt
=

d " x 
dt

+ v = " w + v
! 

x = " x + vt
y = " y 
z = " z 

! 

r12 = x1 " x2( )2 + y1 " y2( )2 + z1 " z2( )2

# r 12 = # x 1 " # x 2( )2 + # y 1 " # y 2( )2 + # z 1 " # z 2( )2

r12 = # r 12
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In a galaxy far far away….. 
  Two rotating double stars A and B	


  Does their light reach earth at different times ?	

  Do we observe one star at two positions ?	

  NO -> The speed of light (c) does not depend on the motion 

of the emitting stars	

  Is there some immobile substance (ether) that transmits the 

radiation? NO -> Need better transformation of coordinates	
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Special relativity 
  Measurement of c gives a constant value that is 

independent of the motion of the coordinate system	


	

	

  Define a new transformation to satisfy this condition	


! 

c =
r12
t12

=
" r 12
" t 12

c2t12
2 # r12

2 = c2 " t 12
2 # " r 12

2 = 0

! 

x = " # x + v # t ( )
y = # y 
z = # z 
t =$ # t + % # x ( )

Scaling factor 

No dependence on y and z because 
motion is in the x-direction 

General expression for t 
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Lorentz transformation 
  Substitute this ansatz in the unprimed equations and solve	


  Lorentz transformation	


  Time and spatial coordinates transform into each other	

  4-dimensional space-time coordinate system	

  Nonrelativistic limit (c → ∞) gives Galileo transformation	

	
	


! 

x = " # x + v # t ( )
y = # y 
z = # z 

t = " # t +
v
c2

# x 
$ 

% 
& 

' 

( 
) 

! 

r = " r + v
v # " r ( ) $ %1( )

v 2
+ $ " t 

& 

' 
( 

) 

* 
+ 

t = $ " t +
v # " r ( )
c 2

& 

' 
( 

) 

* 
+ 

Generalize to 3d 
! 

" = # = (1$ v
2

c 2
)$1/ 2 % =

v
c 2
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Special relativity 
Postulate 1:  All inertial frames are equivalent 
 
Postulate 2:  The laws of physics have the same form in 

  all inertial frames 
 

Postulates hold for electromagnetism (Maxwells relations)	

Postulates do not hold for Newtonian mechanics (invariant 

under Galilean transformations, not under Lorentz 
transformations)	
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Relativistic Quantum Mechanics 

  1905 : STR 
  Einstein : “E = mc2” 

  1926 : QM 
  Schrödinger equation 

  1928 : RQM  
  Dirac equation 

  1949 : QED 
  Tomonaga, Schwinger & 

Feynman 

The nonrelativistic Hamilton function 
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Quantization 
 ! 

H =T +V =
p2

2m
+ q" r( )

  

! 

H " i! #
#t

 ;  p"$i!%  

ˆ H &(r, t) = i! #
#t
&(r,t)

ˆ H = $ !
2m

ˆ % 2 + q ˆ ' (r)

Non-relativistic quantization 1 
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Quantization 
 

! 

H = T +V =
" 2

2m
+ q# r( )

" = p$ qA

  

! 

H " i! #
#t

 ; p"$i!%  

ˆ H &(r, t) = i! #
#t
&(r,t)

ˆ H = $ !
2m

ˆ % 2 +
iq!
2m

ˆ % ' ˆ A + ˆ A ' ˆ % ( ) +
q2

2m
ˆ A 2 + q ˆ ( (r)

Non-relativistic quantization 2 
The nonrelativistic Hamilton function 

Mechanical (π) and canonical momentum (p) 
Principle of minimal electromagnetic coupling 
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Spin and non-relativistic quantization 1 

We can, however, also write the the Hamilton function as 

Quantization 
 

! 

E = q" +
# $ %( )2

2m
# i# j = &ij + i'ijk# k

  

! 

ˆ H = q ˆ " +
1

2m
# $ %i! ˆ & + q ˆ A ( ){ }

2

= q ˆ " %
!2

2m
# $ ˆ & ( )

2
+

q2

2m
# $ ˆ A ( )

2
+

iq!
2m

# $ ˆ & ( ), # $ ˆ A ( )[ ]+

Kronecker delta and Levi-Civita tensor,  
Summation over repeated indices 

! 

" xyz = "zxy = " yzx =1
" xzy = "zyx = " yxz = #1



! 

ˆ " #A r( ) f (r) = ˆ " # f (r)A r( )( )
= ˆ " f (r)( ) #A r( ) + f (r) ˆ " #A r( )

= $ ˆ A # ˆ " f (r)( ) + Bf (r)

  

! 

ˆ H = " !
2m

ˆ # 2 + q ˆ $ +
q2

2m
ˆ A 2

+
iq!
2m

ˆ # % ˆ A + ˆ A % ˆ # ( ) " q!
2m

& % ˆ # ' ˆ A + ˆ A ' ˆ # ( )

Spin and non-relativistic quantization 2 
! "u( ) ! " v( ) = u " v( ) + i! " u # v( )

! 

ˆ H = ˆ T + q ˆ " + iq ˆ A # ˆ $ +
q2

2
ˆ A 2 % q

2
& #B

A is a multiplicative operator 

chain rule 

Use definition of B 

in atomic units 
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Spin in NR quantum mechanics 
The Pauli Hamiltonian in two-component form 

Second derivatives w.r.t. position, first derivative w.r.t. time 
Linear in scalar, quadratic in vector potential 
→ Can not be Lorentz-invariant 
 
L  Ad hoc introduction of spin.The anomalous g-factor (ratio 

of 2 between magnetic moment and intrinsic angular 
momentum) is not explained 

L  No interaction between angular momenta due to the 
orbital and spin : spin-orbit coupling is relativistic effect 

! 

"
1
2
#2 + q$ + iqA % # +

q2

2m
A2 " q

2
Bz "

q
2
Bx " iBy( )

"
q
2
Bx + iBy( ) "

1
2
#2 + q$ + iqA % # +

q2

2m
A2 +

q
2
Bz

& 

' 

( 
( 
( 

) 

* 

+ 
+ 
+ 
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Relativistic quantization 1 
Take the classical relativistic energy expression 

! 

E " q# = m2c 4 + c 2$ 2[ ]
1/ 2

Quantization recipe gives 
 
 
 
After series expansion of the square root this could provide 
relativistic corrections to the Schrödinger Equation 
 
Disadvantage : Difficult to define the square root operator 
in terms of a series expansion (A and p do not commute). 
Not explored much. 
 

! 

"E = mc 2 "

  

! 

i!"#
"t

= q$# + m2c4 + c2% 2 #

Without EM-fields 
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Relativistic quantization 2 
Eliminate the square root before quantization 
 

! 

E " q#( )2 = m2c 4 + c 2$ 2

Quantization 
 
 
 
Klein-Gordon Equation  
 
J  Lorentz invariant 
L  No spin 
L   
 
The KG-equation is used for spinless particles (e.g mesons) 
 

  

! 

i! "
"t
# q ˆ $ 

% 

& 
' 

( 

) 
* 

2

+ = m2c 4 + c 2 ˆ , 2( )+

! 

"* r( )" r( )# dr = f (t) Charge is conserved, particle number is not 
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Relativistic quantization 3 
Define a new type of “square root” 

 
Quantization 
 
 
 
The Dirac equation  
 
Suitable for relativistic description of electrons 

  

! 

i!"#
"t

= $mc 2 + c% & ˆ ' + q ˆ ( ( )#! 

E " q# = $mc 2 + c% & '

% i,% j[ ]
+

= 2(ij ) % i,$[ ]+
= 0 ) $ 2 =1
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The Dirac equation 

  

! 

"mc 2 + c# $ % + q&( )' r,t( ) = i!
(' r,t( )
(t

J First derivatives with respect to time and position 
J Linear in scalar and vector potentials 
 
J Lorentz invariant (should be proved !) 
 
Alpha and Beta are conventionally represented by  
the following set of 4-component matrices 
 
 

! 

"x =
0 # x

# x 0
$ 

% 
& 

' 

( 
)  "y =

0 # y

# y 0
$ 

% 
& 

' 

( 
)  " z =

0 # z

# z 0
$ 

% 
& 

' 

( 
)  * =

I 0
0 +I
$ 

% 
& 

' 

( 
) 
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Densities 

! 

" r, t( ) = q#† r, t( )# r, t( )

•  Charge density 

•  Current density 

•  Continuity relation 
! 

j r,t( ) = q"† r,t( ) c# " r,t( )

! 

"# r, t( )
"t

+$ % j r,t( ) = 0

cα is the relativistic velocity operator 
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Time-independent Dirac equation  
  The nuclei do not move with relativistic speeds with 

respect to each other 
  Take a stationary frame of reference (clamped-

nucleus approximation) 
  Separate the time and position variables 

   

! 

ˆ H "(r, t) = i!#"(r,t)
#t

"(r, t) = $(r)%(t)

ˆ H $(r) = E $(r)
%(t) = eEt / i!

Time dependent Dirac equation 

Time independent Dirac equation 



 

 
25 

The Dirac Hamiltonian 

! 

ˆ H = "mc 2 + c# $ ˆ % + q&

=

mc 2 + q& 0 c% z c(% x ' i% y )
0 mc 2 + q& c(% x + i% y ) 'c% z

c% z c(% x ' i% y ) 'mc 2 + q& 0
c(% x + i% y ) 'c% z 0 'mc 2 + q&

( 

) 

* 
* 
* 
* 

+ 

, 

- 
- 
- 
- 

 
 
 
 
 
 

Four component wave function 
 
1) Spin doubles the components 
 
2) Negative energy solutions: E < -mc2 
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Free particle Dirac equation  
  Take simplest case : φ= 0 and A = 0 
  Use plane wave trial function 

  

! 

"(r) = eik#r

a1
a2
a3
a4

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

E *mc2( )a1 * c!kza3 * c!k*a4 = 0

E *mc2( )a2 * c!k+a3 + c!kza4 = 0

*c!kza1 * c!k*a2 + E + mc2( )a3 = 0

*c!k+a1 + c!kza2 + E + mc2( )a4 = 0

! 

k± = kx ± iky

Non-relativistic functional form with constants ai 
that are to be determined 

After insertion into time-independent 
Dirac equation 
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Free particle Dirac equation  

  Two doubly degenerate solutions 

  Compare to classical energy expression 

  Quantization (for particles in a box) and prediction of 
negative energy solutions 

  

! 

E2 "m2c4 " c2!2k2( ) = 0

E+ = + m2c4 + c2!2k2

E" = " m2c4 + c2!2k2

E = m2c4 + c2 p2
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Free particle Dirac equation  
  Wave function for E = E+ 

  Upper components are the “Large components” 
  Lower components are the “Small components” 

  

! 

a2 = 0  ; a3 = a1
c!kz

E+ + mc2  ; a4 = a1
c!k+

E+ + mc2

! k " p << mc

a3 = a1
cpz

mc2 + m 2c4 + c2p2
# a1

pz
2mc

a4 # a1
p+

2mc

For particles moving with “nonrelativistic” velocities 
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Free particle Dirac equation  
  Wave function for E = E- 

  Role of large and small components is reversed 
  Charge conjugation symmetry 
  Can we apply the variational principle ? 
M Variational Collapse  

  

! 

a4 = 0

a1 = a3
c!kz

E" "mc
2  # a3

pz
"2mc

a2 = a3
c!k+

E" "mc
2 # a3

p+

"2mc
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Dirac sea of electrons 
  All negative energy 

solutions are filled 
  The Pauli principle 

forbids double 
occupancy 

J  Holes in the filled sea 
show up as particles 
with positive charge : 
positrons (discovered in 
1933) 

L  Infinite background 
charge  

mc2 

-mc2 

2 e– 3 e– + 1 e+ 
2mc2 
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Quantum Electro Dynamics  
  Introduce a m-dimensional Fock space F(m) 

  States are defined by the occupation number vector n 

  The vacuum has all n=0 

  We use an orthonormal basis 

  

! 

n = n1,n2,…,nm
ni = 0,1

  

! 

vac = 0,0,…,0

n k = !nk
vac vac = 1
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Second Quantization  
  Second quantized operators 

  Creation operator 

  Annihilation operator 

  Define all operators in terms of these elementary operators 

  

! 

ai
† n1,…,ni ,…,nm = 0  (ni =1)

ai
† n1,…,ni ,…,nm =Ci n1,…,1,…,nm  (ni = 0)

ai
† vac = 0,…,1,…,0

  

! 

ai n1,…,ni ,…,nm =Ci n1,…,0,…,nm  (ni =1)

ai n1,…,ni ,…,nm = 0  (ni = 0)

ai vac = 0

ˆ ! = !kl ˆ a k
† ˆ a l

k ,l =1

m

"
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Fock space Hamiltonian  
Positive and negative energy solutions define a Fock space Hamiltonian 

! 

ˆ H Total = ˆ H ++ + ˆ H +" + ˆ H "+ + ˆ H ""

ˆ H ++ = H pq ˆ a p
† ˆ a q

p,q

E#E +

$                ˆ H "" = H%& ˆ a %
† ˆ a &

% ,&

E#E"

$

ˆ H +":pair creation = H p% ˆ a p
† ˆ a %

%

E#E"

$
p

E#E +

$

ˆ H "+:pair annihilation = H%p ˆ a %
† ˆ a p

p

E#E +

$
%

E#E"

$
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Renormalization  
1.  Subtract energy from the occupied negative energy 

states 

2.  Re-interpretation 

3.  Normal ordered Hamiltonian 

ˆ a p† = ˆ b p†       ˆ a p = ˆ b p
ˆ a !† = ˆ b !       ˆ a ! = ˆ b !†

! 

ˆ H QED = H pq
ˆ b p

† ˆ b q
p,q

electrons

" + H p#
ˆ b p

† ˆ b #
† + H#p

ˆ b # ˆ b p( )
#

pos.

"
p

el.

" $ H#%
ˆ b #

† ˆ b %
# ,%

positrons

"

! 

ˆ H QED = ˆ H Total " E 0 = ˆ H Total " ˆ H Total

Due to the anticommutation relation 
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Quantum Electro Dynamics  

  Positive energy for positrons 

  Total charge is also redefined 

! 

Qvac
QED = "e vac ˆ N QED vac

= "e vac bp
† bp " b#

†b#
#

positron
states

$
p

electron
states

$ vac = 0

  

! 

E(1p;0e) = …, 1,…;… ˆ H QED …,1,…;…

= …,1,…;… " H#$b#
†b$

#,$

positron
states

% …,1,…;… = "E& ' mc 2

Neg.  Pos.  Neg.  Pos.  

γ  
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Dressed particles  
  The QED Hamiltonian depends on the positive and 

negative energy solutions of the Dirac equation. The 
Dirac equation depends on the external potential  

  Common choices 
  Free particle solutions (Feynman,1948) 
  Fixed external potential (Furry,1951) 
  External + some mean-field potential (“fuzzy”) 

  Particles in one representation are quasiparticles 
(dressed with ep-pairs) in another representation 

  Different no-pair approximations possible 
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Electron-electron interaction  
  Quantize also the EM-field 

  Electron-electron interaction is automatically retarded 
by the finite velocity of light 

  Corrections to the Dirac equation and the 
instantaneous Coulomb interaction can be derived 
  Feynman (NP 1965) diagrams  

•  Breit interaction (1929) (Order c-2) 
•  Vacuum Polarization + Self Energy = Lamb shift (NP 1955) (c-3) 

= p ! states;e! states; photons
ˆ H QED , full = ˆ H e+ p + ˆ H photons+ ˆ H e+ p, photons
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Electron-electron interaction  
  Three terms up to order c-2 

  Coulomb, Gaunt and retardation terms 
  First correction describes the current-current interaction 
  Second correction describes retardation ! 

gCoulomb"Breit 1,2( ) =
1
r12

"
1

c2r12
c#1 $ c#2

"
1
2c2

c#1 $%1( ) c#2 $% 2( )r12
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The hydrogenic atom 
  Starting point for the LCAO approach 
  Like the S.E. the D.E. can be solved exactly by 

separating the radial and angular variables (various 
textbooks, e.g. Dyall & Faegri, Reiher & Wolf) 

  Knowing the properties of the exact solutions helps 
in devising basis set approaches and in 
understanding the chemical bonding in the 
relativistic regime 

! 

mc 2 " Z
r

c# $ p

c# $ p "mc 2 " Z
r

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

+ L r( )
+ S r( )

% 

& 
' 

( 

) 
* = E

+ L r( )
+ S r( )

% 

& 
' 

( 

) 
* 
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Hydrogenic orbitals 
  Write orbitals as product of radial and angular (2-spinor 

functions) 

  Solutions to the radial equation 
! 

" L r( )
" S r( )

# 

$ 
% 

& 

' 
( =
1
r

Pn) r( )*) ,m + ,,( )
iQn) r( )*-) ,m + ,,( )
# 

$ 
% 

& 

' 
( 

! 

Pn" r( ) = Nn"
P e#$rr% F1 r( ) + F2 r( )( )

! 

Qn" r( ) = Nn"
Q e#$rr% F1 r( ) # F2 r( )( )

! 

Rnl r( ) = Nnl
Re" "2E( )rrl+1F r( )

Large component  
Small component  
Nonrelativistic  ! 

" = # #2E 1+
E

2mc 2
$ 

% 
& 

' 

( 
) 

! 

" = # 2 $
Z 2

c 2
< #

l 0 1 1 2 2 3 3 
j	
 1/2 1/2 3/2 3/2 5/2 5/2 7/2 
κ -1 1 -2 2 -3 3 -4 

s1/2 p1/2	
 p3/2	
 d3/2	
 d5/2	
 f5/2	
 f7/2	




 

 
41 

 

 
42 

Relativity and the periodic table 
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Orbital stabilisation 
Alkali metals
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Orbital destabilization and spin-orbit splitting 
B, Al, Ga, In, Tl, 113 

Group 13
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Orbital contraction 
  The outermost s-orbital becomes more compact 

Alkali metals
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Orbital expansion 
  The outermost p- and d-orbitals expand 

Group 13
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Ln-An contraction 

  Ln-An contraction is partly caused by relativistic 
effects 

  Trend expected from the atomic calculations is 
indeed seen in calculations on LnF, AnF, LnH3 and 
AnH3 molecules. 
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Spin-Orbit coupling 
  Spectroscopy 

  Energy levels are split 
  Spin selection rules are broken 

  Molecular structure 
  The hybridization that occurs when chemical bonds are 

formed makes the effects on structure usually only relevant 
when comparing to high-precision experiments  

  But: bonds to heavy and “superheavy” elements can be 
qualitatively different if SOC is included 

  Thermochemistry, reaction barriers 
  Lowering of open shell states (atomization energies) 
  Coupling between singlet and triplet surfaces, intersystem 

crossing 
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Atomization energies 
•  Example: Halogen molecules	

•  Molecular energy is hardly affected by SO-

coupling (SO quenching) 	

•  First order perturbation theory	


σg	


σu
*	


πg
*	


πu	


σg,1/2	


σu,1/2
*	


πg,1/2
*	


πu,1/2	


Relativistic Nonrelativistic 

πu,3/2	


πg,3/2
*	
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Atomization energies 
•  Atomic asymptotes are lowered by SO-coupling	

•  First order perturbation theory	


Nonrelativistic 

px	
 py	
 pz	


Relativistic 

p1/2	
 p3/2	
 p3/2	


Nonrelativistic

Relativistic

SO-splitting 
2P 

2P3/2 



Relativistic effect on atomization energies (kcal/mol) 

Relativistic effect on atomization energies is well-
reproduced by correcting only the asymptote 
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Bond weakening due to admixture of the antibonding sigma  
orbital. This is also due to spin-orbit coupling. 
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Relativistic effect on equilibrium distances (Å) 

Important and slightly method dependent for 6p elements 
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Atomization energies 
•  Example: Hydrogen halides	

•  SO-coupling is mostly quenched in the molecule	

•  First order perturbation theory	

•  Strong sigma-pi mixing in ultra-relativistic H117	


σ	


σ*	


π	


σ1/2	


σ1/2
*	


π1/2	


Relativistic Nonrelativistic 

π3/2	




Atomization Energies 
aug-pVTZ
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SO-coupling : a good estimate for atomization energies 
can be obtained by correcting only the asymptote 

Vibrational Frequencies 
aug-pVTZ
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Bond weakening due to loss of sigma-character in 
bonding orbital. HAt requires inclusion of scalar and 
SO-effects in the calculation of the frequency. 



Bond Lengths 
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Competition between scalar and spin-orbit effects 
Total effect is small (< 0.01 Å) and can be neglected 
for most practical cases. 


