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Dirac-exact relativistic methods:
the normalized elimination of the
small component method†

Dieter Cremer,∗ Wenli Zou and Michael Filatov

Dirac-exact relativistic methods, i.e., 2- or 1-component methods which exactly
reproduce the one-electron energies of the original 4-component Dirac method,
have established a standard for reliable relativistic quantum chemical calculations
targeting medium- and large-sized molecules. Their development was initiated and
facilitated in the late 1990s by Dyall’s development of the normalized elimination
of the small component (NESC). Dyall’s work has fostered the conversion of NESC
and related (later developed) methods into routinely used, multipurpose Dirac-
exact methods by which energies, first-order, and second-order properties can be
calculated at computational costs, which are only slightly higher than those of
nonrelativistic methods. This review summarizes the development of a generally
applicable 1-component NESC algorithm leading to the calculation of reliable
energies, geometries, electron density distributions, electric moments, electric field
gradients, hyperfine structure constants, contact densities and Mössbauer isomer
shifts, nuclear quadrupole coupling constants, vibrational frequencies, infrared
intensities, and static electric dipole polarizabilities. In addition, the derivation
and computational possibilities of 2-component NESC methods are discussed and
their use for the calculation of spin-orbit coupling (SOC) effects in connection with
spin-orbit splittings and SOC-corrected energies are demonstrated. The impact
of scalar relativistic and spin-orbit effects on molecular properties is presented.
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IMPORTANCE OF RELATIVISTIC
EFFECTS IN CHEMISTRY

The identification and understanding of relativistic
effects is essential for an expert analysis of the

chemistry of heavy and superheavy elements.1–15 For
a long time, relativistic effects were not considered to
be important for chemistry because chemical processes
and chemical properties are largely determined by
the valence electrons of an atom. This belief was
based on a misleading interpretation of the so-called
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mass-velocity effect originally discovered by Einstein16

when developing the theory of special relativity:

me = m0√
1 − (v/c)2

= m0√
1 − β2

(1)

According to the mass-velocity effect, the mass of
an electron at rest, m0, increases with its velocity v
to the effective mass me (c = 137.035 999 074(44)
atomic units: speed of light17) and this will lead to a
decrease of the Bohr radius rB of an electron because
the latter is proportional to 1/me.18 The shortening
of the Bohr radius of an electron orbit leads to an
increase of nucleus–electron attraction and relates in
the quantum mechanical description to a contraction
of the 1s-orbital.

Using the virial theorem E = − T (the total
energy of an atom or molecule is equal to the negative
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of its kinetic energy), the ground state energy of
a hydrogen-like ion with atomic number Z can be
expressed according to

− 1
2

Z2 = −1
2

v2 (2)

where atomic units are used. Hence, v2 = Z2 follows
and by this the ratio β = v/c = Z/c can be predicted to
adopt significant values only for the 1s-electrons of
heavy atoms (large Z). Following this argument, the
general expectation was that only for the 1s electrons
of atoms with Z ≥ 80 does the mass-velocity become
important, and therefore relativity is a physics rather
than a chemistry problem.

However, this interpretation of the mass-velocity
effect overlooked the fact that the higher s-orbital
states including the valence s-orbital also show strong
relativistic effects according to the exact solution of the
Dirac equation. Often this is explained in a rather sim-
plified way that the s-orbitals with principal quantum
number n > 1 have to be orthogonal to the contracted
1s-orbital, which leads to a propagation of the
orbital contraction into the valence shell and by this
becomes chemically relevant. The contracted orbitals
adopt lower energies compared to the nonrelativistic
situation and this has far-reaching consequences for
the chemistry of the corresponding atom.

Besides the contraction of the s-orbitals, there is
also a (smaller) contraction of the p-orbitals because
their relativistic counterparts have a finite amplitude
at the position of the nuclei. Specifically, this is
true for the p1/2 spinor (for the counterpart of the
nonrelativistic or scalar relativistic spin-orbital, see
below) that experiences comparable relativistic effects
as the s1/2 spinor, at least for H-like systems. The
contraction of the s- and p-orbitals leads to a second,
generally observed, relativistic effect: the nuclei are
more shielded by the s- and p-electron density so
that the electron–nucleus attraction of the d- and f-
electrons is reduced; their energies are increased; their
orbitals expanded; and the d- and f-densities become
more diffuse than in the nonrelativistic case.

The relativistic changes in the orbital energies
are reflected by the electron configurations of the
transition metal atoms. For example, molybdenum
prefers a [Kr] 4d55s1 electron configuration, whereas
tungsten a [Xe] 5d46s2 configuration, thus reflecting
the lowering of the energy of the 6s orbital and the
increase of the 5d-orbital energy due to relativity.
Similar changes are found for the pairs Nb–Ta,
Ru–Os, Rh–Ir, and Pd–Pt, for which the element with
the higher atomic number and the stronger relativistic
effects has a higher s-orbital occupation in its ground
state.19,20

The mass-velocity effect leads to a bond
shortening, for which it seems logical to relate
this effect to the relativistic orbital contraction.
Extended relativistic studies, however, have clarified
that these are independent phenomena because the
bond contraction is due to a kinetic energy decrease
in the bonding region as a result of the relativistic
effects.21–23

The contraction of s- or p-orbitals and the
expansion of d- or f-orbitals are the result of scalar
relativistic effects. A third, nonscalar relativistic effect
is spin-orbit coupling (SOC), i.e., electrons with
the angular momentum quantum number l > 0 (p,
d, f, . . . ) are described by spinors that are eigen-
functions of ĵ2 and jz where ĵ, defined by the
relationships j = l + s and ĵ2 = l̂2 + ŝ2 + 2l· s, is the
total angular momentum operator (̂l and l: orbital
angular momentum operator and corresponding
vector; ŝ and s: spin angular momentum operator
and corresponding vector). Hence, the total angular
momentum quantum number of a spinor is j = l ± 1/2
thus leading to the well-known splitting of s, p, d,
. . . levels into s1/2, p1/2, p3/2, d3/2, d5/2, . . . levels.
The splitting caused by SOC increases with the atomic
number and adopts values as large as 1 eV, for example
in the energy difference E(2P3/2) − E(2P1/2) of Tl (for
a discussion of SOC, see Refs 10 and 24).

Scalar relativistic and SOC effects influence
literally all physical and chemical properties of
relativistic elements (i.e., elements from the fifth
period on in the periodic table) and molecules
containing these atoms. For example, relativistic
effects influence the value of ionization potentials
and electron affinities. Excitation spectra of molecules
with heavier atoms are characteristically changed. The
yellow color of gold is directly related to a relativistic
decrease of the 5d − 6s orbital energy gap.25 The
relativistic effects on the optical properties of gold
were recently reconsidered and quantified.26,27 The
relativistic bond contraction leads to a change in bond
strength where bond shortening is often accompanied
by a weakening of the bond.28,29 This in turn causes
changes in molecular stability and reactivity. Hence,
all aspects of the chemical behavior of molecules
containing relativistic atoms are changed due to scalar
and/or SOC relativistic effects.

Relativistic effects are especially strong for
gold (Au-maximum of relativity in period 6) and
the neighboring elements platinum and mercury.
In period 7, the maximum of relativistic effects is
shifted to eka-mercury (copernicium, Z = 112). This
becomes obvious when calculating the relativistic
contraction of the 6s and 7s shell for periods 6 and
7.30,31
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In this connection it is interesting that also the
liquid state of elemental mercury is directly influenced
by relativistic effects. The 6s − 6p gap is increased
by the mass-velocity effect thus effectively reducing
the p-orbital (spinor) participation in bonding as well
as the strength of the van der Waals interactions
between Hg atoms. The latter effect is the cause for
the liquid state of Hg. The peculiar properties of Hg,
which are different from those of Zn and Cd, are
convincing manifestations of relativity. Recently, a
detailed discussion of this topic was given by Calvo
et al.32

There are other relativistic effects such as the
Lamb shift in the spectrum of the H atom,33 which
can no longer be explained using the theory of
special relativity as it presents an interaction of
the H electron with the vacuum. Instead, the Lamb
shift requires a theoretical description employing the
theory of quantum electrodynamics (QED) developed
by Schwinger et al.. QED provides the theoretical
basis for special relativity and thereby the description
of relativistic effects in chemistry.34 However, QED
effects (Lamb shift, vacuum polarization, etc.) are very
small (1% of the Dirac description of the relativistic
effects for the ns binding energies of ns1 atomic states
with Z > 41) and therefore they are of little interest in
chemistry.35,36

SHORT HISTORICAL OVERVIEW
OF RELATIVISTIC METHODS

From the 1970s on, an increasing number of quantum
chemical investigations pointed out the importance of
relativity for heavy-atom chemistry. In this connection
the pioneering work of Desclaux (Grenoble), Grant
(Cambridge), and Pyykkö (Helsinki) has to be
mentioned. The work of these theoreticians and that
of many others, which followed in the last 40 years,
is summarized in textbooks, review articles, and
the references cited therein.1–15 In this time span,
relativistic quantum chemical methods were developed
which made a reliable calculation of relativistic effects
for atoms and molecules possible. A way of describing
these developments is by referring to the relativistic
Hamiltonian (i.e., the energy operator) used by
quantum chemists.

The Dirac (D) Hamiltonian37,38 includes
Einstein’s mass velocity effect in its Lorentz
invariant and quantized form and the corresponding
eigenvalue equation for an H-like ion leads to
eigenfunctions in the form of 4-component vectors,
which are called bi-spinors, that is functions
comprising two spinors (2-component vectors) with
the latter being the relativistic counterparts of the

nonrelativistic spin orbitals. The Dirac-Coulomb
(DC) Hamiltonian contains a fully relativistic one-
electron part as given by the D-Hamiltonian combined
with the nonrelativistic Coulomb potential, 1/r12,
in the two-electron part,39,40 thus neglecting some
subtle relativistic corrections to the electron–electron
interaction.1

The relativistic correction of the two-electron
part of the Hamiltonian was first derived by
Breit using perturbational procedures.41 It contains,
besides the nonrelativistic Coulomb term, two rel-
ativistic corrections where the former represents a
current–current interaction and the latter represents a
gage term originating from choosing a specific gage
(Coulomb gage) for electron–electron interactions.1

Although the Coulomb-Breit electron–electron inter-
action is not fully Lorentz invariant (correct to
the order of O(c− 2)), it represents a sufficiently
accurate approximation to the interaction between
electrons moving with relatively low velocities. The
Dirac–Coulomb–Breit (DCB) Hamiltonian requires
however a large load of additional calculations
for the determination of the two-electron part.
The DCB-Hamiltonian written in the presence of
an external field includes as relativistic corrections
orbit–orbit, spin-other orbit, dipole spin–spin, contact
spin–spin, and the two electron Darwin interaction,
of which especially the latter term may become
important. In general, one can say that the two-
electron relativistic corrections are rather small (with
the exclusion of superheavy elements) and therefore
chemically relevant results can be obtained with the
DC-Hamiltonian.

Dirac-Coulomb Hartree-Fock, or Dirac-
Hartree-Fock (DHF) for brevity, calculations of large
molecules become expensive because they require a
4-component description of the wave function (split
up into a large and a small component each with α-
and β-spin part) and lead to positive eigenvalues for
electrons and negative ones (shifted by the amount
− 2mc2) for positrons (see Figure 1). The coupling
between the positive and negative eigenstates leads
to the small component and therefore is a direct
reflection of the positronic eigenstates. The large
component converges for c → ∞ to the nonrelativistic
electronic wave function. The terms, small and large
component, result from the fact that the amplitudes
of the former are much smaller than those of the
latter, as seen by

�S ≈ Z
2mc

�L (3)

In the case of one-electron atoms, the hydrogen wave
function, �L ≈ exp(−Zr) can be used. One of the
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FIGURE 1 | Schematic illustration of positive and negative
eigenvalues obtained by DHF calculations. Besides the discrete
electronic energy levels for bound states, there is a negative (positronic)
and positive (electronic) continuum at −mc2 and +mc2, respectively
(left side). To simplify a comparison with nonrelativistic calculations, the
rest mass of the electron is subtracted in the D-Hamiltonian, which
corresponds to a shift by mc2 so that the discrete electron energies
become negative (right side).

effects of the small component is that the relativistic
spinors differ significantly from the nonrelativistic
spin-orbitals as they do not have nodal surfaces.

Since the DHF equations are solved for both
the electronic and the positronic eigenstates, the
energy of the former no longer corresponds to a
global minimum. Numerical problems in the form
of variational or inverse variational collapse may
occur. The D-Hamiltonian37,38 is not bounded from
below, and therefore a variational procedure of a 4-
component wave function can lead to a variational
collapse, i.e., E → −∞. In atomic calculations at
the single-configuration DHF level using numerical
methods for the radial functions,2,30 no particular
problems arise. The boundary conditions at the origin
and at infinity keep the solutions electron-like. As
soon as electron correlation is introduced, e.g., by
employing a multiconfigurational DHF approach,
projection operators onto the electronic states have
to be used to avoid dissolution into the negative
energy-continuum. At the DHF level, provided that
the prerequisites of the kinetic balance are fulfilled, a
boundary can be established via the nonrelativistic
energy and the first-order relativistic perturbation
correction to the energy evaluated with the large-
component wave function.1 This implies the use of
a kinetically balanced basis set42,43 where the small-
component basis functions must be chosen according
to the requirement (4)

χS
μ =

(
σ · p

)
2mc

χL
μ (4)

Here, σ collects the Pauli matrices and p is the linear
momentum vector. The kinetic balance condition (4)
guarantees that the kinetic energy is properly described
in the nonrelativistic limit.42,43 The momentum
operator p on the right side of Eq. (4) implies that
the small component basis set must contain functions
which are derivatives of the large-component basis
functions. Basis sets which do not fulfill the kinetic
balance condition can lead in a variational DHF
calculation to energies below the boundary condition
and thereby to a variational collapse.

Another problem of the DHF method is that
with the use of finite basis sets, positronic eigenvalues
significantly above the limit − 2mc2 can be obtained,
thus causing an inverse variational collapse and an
unreliable total energy.44,45 Contrary to variational
collapse, which has to do with the kinetic balance
problem, inverse variational collapse results from the
finite precision of computer algorithms in the case of
basis functions that are very steep in the vicinity of a
nucleus. This problem can be solved by increasing the
precision of computer algorithms.44 Apart from these
problems, it is typical of relativistic descriptions that
they require more often (than nonrelativistic ones) a
multireference treatment, which is a result of SOC
included into the DC-Hamiltonian.

Hence, solving the DHF equations (or similarly
the Dirac-Kohn-Sham equations of relativistic density
functional theory (DFT)) leads to a number of
computational problems, which are enhanced by the
need for complex computer algebra caused by the spin
terms in the D-Hamiltonian. Apart from this, a post-
DHF treatment for electron correlation may suffer
from the Brown-Ravenhall disease,46 which originates
from the fact that for any perturbational solution
one must include the negative energy eigenstates.
Hence, all two-electron states with one electron at
E1 < − 2mc2 and the other having a positive energy E2
are degenerate (because of the large gap of 2mc2) thus
causing a breakdown of perturbation theory. Sucher47

has described this problem as continuum dissolution
because in the two-electron system a transition
becomes possible which ejects one electron into
the positive continuum. The continuum dissolution
applies to both the DC and the DCB Hamiltonian.

When solving chemical problems, only the
positive (electronic) eigenstates and the positive
continuum of the DC-Hamiltonian are of relevance,
and therefore modern relativistic quantum chemistry
is based on no-pair Hamiltonians, i.e., a relativistic
description that excludes electron–positron pair-
creations that become possible when the negative
eigenstates are included.1 This is in line with
the necessity of simplifying the Dirac 4-component
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calculations so that larger molecules can be
investigated. Already early attempts focused on
eliminating the small component �S, caused by the
positronic states, from the wave function. This can be
done in an exact way for a free electron utilizing
the Foldy-Wouthuysen transformation, which is
based on a series of unitary transformations
of the D-Hamiltonian.48 For bound electrons in
atoms or molecules, however, the Foldy-Wouthuysen
transformation can only be approximated or replaced
by other techniques. In the 1980s and 1990s,
perturbation theory was preferentially employed to
obtain quasi-relativistic approximations with two- or
just one-component wave functions, where the latter
corresponded to a spin-free description.1

The basic idea of the quasi-relativistic methods
is to approximate the Foldy-Wouthuysen transforma-
tion by expanding it in powers of V (nucleus–electron
attraction potential) or in powers of

ε

2mc2 − V
(5)

where ε is the energy of the one-particle Dirac
equation. The former approach was pursued by
Douglas and Kroll in 197449 and, later in the
1980s and 1990s, extended by Hess so that low
orders n of the so-called Douglas-Kroll-Hess (DKH)
method could be developed.50–53 As in the case
of the Foldy-Wouthuysen transformation, the DKH
transformation cannot be given in closed form and
accordingly requires a number of transformations
U0, U1, · · · thus leading to a decoupling of the
electronic from the positronic states and with each
transformation to increasing accuracy. When however
higher orders of the DKH method54,55 are worked
out, it becomes obvious that the DKHn theory
(DKH of order n) suffers from slow convergence and
mathematical complexity.

These convergence problems are not experienced
when using a perturbation expansion in terms
of expression (5), which is the basis of the so-
called Regular Approximation (RA) to the relativistic
Hamiltonian and which provides rapid convergence
to the Dirac one-electron energy.56 However, the
RA suffers from technical problems due to the
fact that the potential energy V appears in the
denominator of (5). Originally, the methods based
on the RA were formulated by Baerends and co-
workers57–59 on numeric quadratures in connection
with density functional theory (DFT) in the form
of the zero-order regular approximation (ZORA)
and the first-order regular approximation (FORA)
method. An improvement of ZORA was obtained
by developing an approach for which the relativistic

normalization of the wave function is carried out
at infinite order and which therefore was dubbed
(rather misleading) IORA (Infinite Order Regular
Approximation).60 Hence, ZORA and IORA are
based on the same Hamiltonian but use different
wave function metrics. Originally, ZORA and IORA
suffered from three serious shortcomings: (1) The
relativistic one-electron integrals of ZORA (IORA)
could only be obtained using numeric quadratures,
which hampered an extension of these methods
beyond the DFT realm; (2) ZORA (IORA) results
suffered from an electrostatic gage-dependence, i.e.,
they depended on where the zero of the potential is
chosen; and (3) it was not clear how in a simple and
economical way the RA methods could be improved
so that a Dirac-exact relativistic result would become
available.

Some of the shortcomings of ZORA and
IORA were overcome by Filatov and Cremer, who
developed matrix representations of the ZORA and
IORA Hamiltonians,61–64 derived their relationship
to an exact quasi-relativistic Hamiltonian,65 and
solved the gage-dependence problem of ZORA and
IORA.66 Although only low orders of the RA were
implemented, the development of the latter had an
important impact on the derivation of a Dirac-
exact relativistic method applicable to large molecules
containing relativistic atoms.65,67 Other approximate
quasi-relativistic methods were developed, which are
described in the relevant literature.1–3,9,10,12–14

DIRAC-EXACT RELATIVISTIC
METHODS

By definition a Dirac-exact relativistic method is a
quasi-relativistic 2- or 1-component method which
exactly reproduces the one-electron energies of the
original 4-component Dirac method,37,38 where the
starting wave function can be of the HF or KS
type. In the following, we will speak of Dirac-
exact methods without emphasizing always their
quasi-relativistic nature. It is desirable to develop a
Dirac-exact relativistic method in such a way that
it can be smoothly integrated in the toolbox of
nonrelativistic theory. This concerns the use of (1)
correlation methods for determining dynamic and
nondynamic electron correlation; (2) methods and
techniques of calculating response properties; and (3)
methods to describe excited states.

As pointed out in the previous section, one of the
major objectives pursued during the last 15 years in
relativistic quantum chemistry was the derivation of
Dirac-exact relativistic methods which do not require
the solution of Dirac’s 4-component equation.37,38
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This objective was first achieved by Dyall,68 who
developed the NESC method as the first Dirac-
exact 2-component relativistic approach. With NESC,
Dyall accomplished two objectives. First, he projected
the exact relativistic one-electron D-Hamiltonian37

onto the positive-energy (electronic) states to get a
Dirac-exact 2-component representation. Second, he
separated the spin part of the D-Hamiltonian to obtain
a 1-component, spin-free representation.

NESC requires just one transformation matrix
U to eliminate the small component and accordingly
only one Fock matrix F, which however was originally
calculated in an iterative manner where for each
iteration step a new relativistic metric S̃ had to be
determined (because of its dependence on U, see
below). In his 1997 publication, Dyall calculated
only the one-electron Ne9 + ion, however, the
corresponding results revealed already the advantages
of the NESC method compared to perturbative
approaches such as DKHn or ZORA (IORA).68

Dyall based his development on two-important
innovations: (1) He introduced a matrix representa-
tion of the Dirac equation. This was a novel approach
because most previous development work had focused
on an operator presentation of the effects of relativity.
By switching to a matrix presentation, he implicitly
introduced a description of the relativistic problem by
a finite basis set with all the problems accompany-
ing such a step (basis set truncation error, singularity
problem at the point-nucleus, etc.). However, writ-
ing the Dirac equation in matrix form proved to be
essential for an elimination of the small component.
(2) He rewrote the Dirac equation and obtained what
is known today as the modified Dirac equation.1,68

Steps (1) and (2) were important for deriving the
NESC equations.

Dyall’s work triggered in the following years a
number of developments, which led to a number of
Dirac-exact relativistic methods that could routinely
be applied for the relativistic quantum chemical
description of large molecules and their properties:

• In the years 1999–2002, Dyall simplified the
solution of the NESC equations by fixing the
ratio of the large to the small component
(and thereby matrix U) in atomic calculations,
thus yielding approximate NESC energies but
effectively reducing the calculational load of the
NESC description for molecules.69,70

• From 2002 on, Wolf et al. mastered the
problems of high-order DKHn calculations by
developing an infinite order DKHn theory,
which reproduced exact 4-component Dirac
energies.71–75 The infinite order theory offered in

this regard an important improvement of DKH
and represented a Dirac-exact method.

• In the years 2005–2007, Kutzelnigg and Liu
classified quasi-relativistic methods as being
operator-based or matrix-based and pointed
out in this connection that the latter lead in
a much easier way to Dirac-exact relativistic
descriptions.45,76,77 These authors established
the basic requirements for exact 2-component
relativistic methods, for which the term X2C
was coined.78

• In the same time period, the Infinite-Order
Two-Component (IOTC) method, which was
originally developed by Barysz et al.79 using
operator algebra and which had already been
extensively used,80–83 was converted into matrix
algebra by Iliaš and co-workers.84 Iliaš and
Saue85 and Barysz et al.86 demonstrated that
IOTC also provides Dirac-exact energies.

• In 2006, Filatov87 emphasized that Dyall’s 2-
component NESC method68 fulfills the criteria
of an exact X2C method and therefore its
practical realization, accomplished in the year
2007 by introducing a new iterative algorithm for
solving the NESC equations,88 was considered
as making X2C calculations generally available.
Kutzelnigg and Liu89 identified NESC also as
an X2C method, but criticized the unnormalized
version of NESC (UESC), which had also been
discussed in Dyall’s original NESC paper.68 This
was relevant in connection with ZORA, which
can be considered as an UESC-ZORA method,
whereas IORA corresponds to a NESC-ZORA
method as had been pointed out by Filatov and
Cremer.67

• In 2011, the computational difficulties still
accompanying the solution of the NESC
equations were finally solved by Zou, Filatov and
Cremer (ZFC),44 which made obsolete the atom-
centered approximation to NESC developed by
Dyall and Enevoldsen,69 the iterative approach
by Filatov and Dyall,88 and the early low-
order NESC approximations of Filatov and
Cremer.90,91 Part of the success of ZFC44 was
based on the use of IORA as a convenient
starting point for an iterative solution of the
NESC equations.67

• In the following years, ZFC converted NESC to
a generally applicable method44 that can be used
for the routine calculation of first-order response
properties (molecular geometries,92–94 electric
dipole moment,95 electric field gradients,96

hyperfine structure constants,97 contact densities
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and Mössbauer shifts,98 etc.) and second-order
response properties (vibrational frequencies,95,99

electric polarizabilities,95 infrared intensities,95

etc.)

• Parallel and independently, Gauss and Cheng
developed methods to calculate molecular
geometries, vibrational frequencies, and mag-
netic properties at the level of Dirac-exact
methods.100–102

• In 2013, Filatov, Zou, and Cremer (FZC)
extended the spin-free 1-component NESC
method to a 2-component method to calculate
SOC effects.103

In the following, we will focus on the description
of these last steps and in this way present an
updated account on the applicability of Dirac-exact
methods such as NESC. In this connection, we will
consider first the spin-free approach, which includes
only scalar relativistic effects and in a later section
also the 2-component NESC method. In view of the
accomplishments of Dyall in connection with Dirac-
exact relativistic methods, we stick to the acronym
NESC rather than using the acronym X2C (for an
exact 2-component method), which is preferred by
some authors, however, sometimes indiscriminately
for 1- and 2-component methods.

THE NESC EIGENVALUE PROBLEM
AND ITS SOLUTION

Dyall’s derivation of a spin-free NESC equation68

is based on the no-pair approximation (which
guarantees that negative eigenstates do not intrude the
space of the positive eigenstates1,3) and the definition
of a pseudo-large component of the wave function, �L,
for the purpose of eliminating the small component:

2mc�S = (
σ · p

)
�L (6)

Equation 6 is not unique, but has the advantage
of making the relativistic metric S̃ spin-free.1 This
simplifies the partitioning of the D-Hamiltonian
into spin-free and a spin-dependent part (the latter
describing the SOC effects), which was first discussed
by Kutzelnigg104 and later by Dyall.105

The modified Dirac equation in matrix notation
takes the form(

V T
T W − T

) (
Ap A
Bp B

)
=

(
S 0
0

(
2mc2

)−1 T

) (
Ap A
Bp B

) (
Ep 0
0 E

)
(7)

Here, matrices A and B collect the eigenvectors
of the large and pseudo-large component (with
subscript p: positronic; without: electronic). They are
related via the matrix U according to Eq. (8.68)

B = UA (8)

In Eq. (7), Ep and E denote the positronic (negative)
and electronic (positive) eigenvalues, respectively.
Matrices T, V, and S correspond to the nonrelativistic
kinetic energy, potential energy (nucleus–electron
attraction), and overlap matrix, respectively. W
is the negative definite matrix of the operator
(1/4m2c2)σ · pV(r)σ · p, which simplifies in the scalar
relativistic approximation to (1/4m2c2)∇V(r) · ∇ and
which can be easily derived from the derivatives of the
potential energy integrals.

The elimination of the small component via the
pseudo-large component is the key for deriving the
NESC equation, which can be written in the simple
form68

L̃A = S̃Aε (9)

Here, L̃ is the matrix of the NESC Hamiltonian, ε

is the diagonal matrix of the NESC eigenvalues, A
has been defined in connection with Eq. (7), and the
relativistic metric S̃ is given by

S̃ = S + 1
2mc2 U†TU (10)

The eigenvectors of the large component are
normalized on the relativistic metric according to

A†̃SA = I (11)

The NESC Hamiltonian matrix is given by

L̃ = TU + U†T − U† (T − W) U + V (12)

which shows that both L̃ and S̃ depend on matrix U,
i.e., the matrix of the small component elimination
operator. The calculation of U is the key problem of
solving the NESC equation. Work by Dyall,68 Filatov
and Cremer,67 Filatov and Dyall,88 and ZFC44 has
stepwise improved the solution of this problem where
in all cases the IORA solution60,67 is taken as the
starting point for the calculation of U.

L̃IORAAIORA = S̃IORAAIORAεIORA (13)

Here, the matrix of the IORA Hamiltonian L̃IORA

and the IORA metric S̃IORA are obtained with
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the help of Eq. (14,67)

UIORA = (T − W)
−1 T (14)

and by inserting UIORA into the IORA-equivalent of
Eqs (12) and (10). Because W is a negative definite
matrix (see above), Eq. (14) does not diverge. It has
been shown by ZFC that matrix U can be expressed
via UIORA as44

U = UIORA
[
I − 1

2mc2 US−1 (TU + V)

]
(15)

This is the key equation for determining U by either a
one-step or an iterative method.

Solution of the NESC Equation Via
the Riccati Equation: The One-Step Method
The one-step method was first suggested by Dyall68

and later used by other authors.45,81,85 The method is
based on the fact that Eq. (15) can be rewritten in the
form

U
(

1
2mc2 S−1T

)
U +

(
UIORA

)−1
U

+ U
(

1
2mc2 S−1V

)
− I = 0 (16)

which corresponds to a nonsymmetric algebraic
Riccati equation:106

UαU + βU + Uγ + δ = 0 (17)

where α, β, γ , and δ are known matrices. Using
standard procedures, the unknown matrix U can
be determined.106 This implies the transformation
of the M-dimensional quadratic equation into the
2 M-dimensional matrices of the Dirac equation (7).
Solving Eq. (7) by diagonalization provides all needed
eigenvalues and eigenvectors. Then, the matrix U is
directly determined with the help of Eq. (8). Once U
is known, the NESC matrices S̃ and L̃ can be obtained
from Eqs. (10) and (12).

Iterative Solution of the NESC Equation:
The TU Algorithm
Since the calculation of matrix L̃ depends on U
and that of U on L̃, an iterative determination of
the former becomes obvious. Starting from Eq. (15),
ZFC44 expanded L̃ in terms of Z = TU thus yielding

L̃ = Z + Z† − Z†
(
T−1 − T−1WT−1

)
Z + V (18)

Z = S̃S−1L̃ − V (19)

S̃ = S + 1
2mc2 Z†T−1Z, (20)

By applying a fixed-point iteration with a damping
parameter α according to44

Z(n) = f
(
Z(n−1)

)
− α

(
f
(
Z(n−1)

)
− Z(n−1)

)
(21)

first the product TU and then, with the help of the
known matrix T, U was determined. Convergence
was monitored by comparing the absolute differences
in the diagonal elements of the NESC Hamiltonian
matrix (18) from successive iterations.

Comparison of the one-step and iterative method
revealed that the former is of advantage in energy
calculations with less than 1000 basis functions,
whereas the latter reduces computational costs for
large basis set calculations, geometry optimizations,
and reaction path calculations.44

Renormalization of the Wave Function: The
Picture-Change
The NESC equation provides the Dirac-exact solution
of the one-electron problem. In the context of the DC-
Hamiltonian for many-electron systems, the NESC
one-electron Hamiltonian can be combined with
the nonrelativistic two-electron part, which leads
to the so-called one-electron approximation.70,107

This implies, however, that the one-electron NESC
Hamiltonian is renormalized on the nonrelativistic
metric with the help of a renormalization matrix
G:70,107

H1−e = G†L̃G (22)

Equation (22) guarantees that H1 − e (set up in the
relativistic picture) can be applied in connection with
the HF or KS equations (defined in a nonrelativistic
picture). This picture-change caused by switching
from the relativistic Dirac–Pauli representation to
the nonrelativistic Newton–Wigner representation is
correctly handled by a renormalization matrix G
derived by Liu and Peng,78

G = S−1/2
(
S1/2̃S−1S1/2

)1/2
S1/2 (23)

Picture change effects may not be large for relative
energies (dominated by the properties of the
valence electrons), but become large when properties
depending on a close distance from the nucleus have
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to be determined. The total electronic energy at the
HF level is given by Eq. (24),

E = tr [PH1−e] + 1
2

tr [P (J − K)] (24)

where J and K are the Coulomb and the exchange
parts of the Fock matrix and P is the density
matrix calculated as P = CnC† with C collecting the
eigenvectors of the Fock matrix and n being the
diagonal matrix of the orbital occupation numbers.

First-Diagonalize-Then-Contract Strategy
When using a basis with a sufficiently large number
of primitive Gaussian functions Mp, the exact
solutions of the Dirac equation for one electron can
be reproduced with sufficient accuracy.44,68,107 For
many-electron systems, use of a large number of
primitive basis functions leads to an M4

p increase
in the number of two-electron integrals and high
computational cost. Cost reduction is achieved in
these cases by using contracted basis sets (Mc basis
functions with Mc < < Mp). For the purpose of
solving this dichotomy, the following procedure was
used by ZFC:44 The NESC one-electron equations
were solved in the basis set of Mp primitive
basis functions and the renormalized one-electron
Hamiltonian (22) was converted to a contracted
basis set with Mc functions. This First-Diagonalize-
then-Contract strategy has some advantages:44 (1)
The completeness requirement is better fulfilled; (2)
Computational costs are not significantly increased
to those of a nonrelativistic HF or KS calculation;
(3) variational collapse that can emerge when using
strongly contracted basis functions108 no longer
occurs; and (4) inverse variational collapse problems,
which may occur when using uncontracted basis sets
with very steep basis functions, can easily be handled
by using a finite nucleus model.

The Finite Nucleus Model
In the case of a nonrelativistic treatment, the
orbitals have a cusp at the position of a point
charge nucleus, which for a relativistic treatment
converts into a singularity. The latter is difficult
to describe with a basis set comprising Gaussian-
type functions. By introducing a nuclear model
with a finite size of the nucleus, the singularity is
removed, thus leading to a better description of
the region close to the nucleus. Although the finite
size nucleus has a charge distribution closer to a
Fermi-Dirac distribution (a liquid drop with a diffuse
surface),109 one assumes, because of practical reasons,

a spherically symmetric charge distribution, which
can be represented by a Gaussian-type function110,111

according to

ρA (r) = ZA

(
1

πζ 2

)3/2

e−r2/ζ2
(25)

Using the function of Eq. (25), the electron-nuclear
interaction potential v(r − RK) (RK: position vector of
nucleus K) is given by Eq. (26)

v (r − RK) = − 1
|r − RK|erf

( |r − RK|
ζK

)
(26)

where erf is the error function and ζK is introduced as
a parameter, which can be derived from the measured
root mean square (rms) charge radius

〈
R2

K

〉1/2
of

nucleus K using Eq. (27):

ζK =
√

2
3

〈
R2

K

〉1/2
(27)

The Coulomb potential of a point-charge model of
the nucleus used in nonrelativistic quantum chemistry
is recovered by setting ζK = 0. New molecular
integrals of the type 〈χμ|v(r − RK)|χν〉 have to
be calculated, which however does not pose any
problem.44

Of course, the assumption of a Gaussian charge
distribution and the determination of the exponent of
the corresponding Gaussian function via the measured
root-mean square radius of the nucleus110,111 can
only be considered as an approximation since the
exact charge distribution in the nucleus is not known.
For example, the Zemach radius of a nucleus,112

i.e., the magnetic nuclear radius, is more appropriate
when calculating magnetic properties. In any case,
use of a finite nuclear model leads to relatively
large changes in the total energy, whereas properties
depending preferentially on the valence electrons
(e.g., bond lengths, vibrational frequencies) do not
change significantly.92,99

Comparison of NESC Energies
with 4-Component Dirac Results
In Table 1, NESC Hartree-Fock (HF) energies of
hydrogen-like ions with atomic numbers Z = 20, 40,
. . . , 120 are compared with those of 4-component
DHF and quasi-relativistic calculations.44 NESC
reproduces the 4-component DHF atomic energies in
all cases, which confirms that NESC is a Dirac-exact
relativistic method.

Perturbational approaches such as DKHn or
RA-based methods, which do not provide an upper
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TABLE 1 Ground State Energies (in Hartree) of Hydrogen-Like Ions Calculated with Different 4-Component (4c) and 1-Component Relativistic
Methods

Method Z = 20 40 60 80 100 120

Point charge nuclear model with 50 s-functions1

4c-DHF(UKB) −201.076522 −817.807491 −1895.68234 −3532.19213 −5939.19514 −9710.71531

NESC −201.076522 −817.807491 −1895.68234 −3532.19213 −5939.19514 −9710.71531

Approximate methods

ZORA67 −202.158829 −836.011368 −1996.45087 −3898.86916 −7054.8079 −13096.9617

IORA67 −201.082194 −818.171957 −1899.90000 −3536.90102 −6042.5850 −10089.4142

NESC-SORA67 −201.076522 −817.807633 −1895.68972 −3532.31224 −5940.2749 −9718.0099

DKH274 −201.072540 −817.615780 −1893.89769 −3523.32490 −5906.1919 −9594.1000

DKH374 −201.076662 −817.820117 −1895.84407 −3533.11958 −5942.3695 −9712.9340

DKH1474 −201.076523 −817.807497 −1895.68235 −3532.19184 −5939.1821 −9710.2510

Finite nuclear model with 50 s-functions2

4c-DHF(UKB) −201.076001 −817.788172 −1895.45071 −3530.19419 −5922.78995 −9545.87512

NESC −201.076001 −817.788172 −1895.45071 −3530.19419 −5922.78995 −9545.87512

1UKB: unrestricted kinetic balance. See Ref 44.
2Ref 44. Mass number of isotope was taken from Ref 111. For Z = 120, mass number = 2.556 × Z = 306.72.

bound to the correct DHF energy, approach the exact
results in an oscillatory manner, overestimating or
underestimating exact atomic energies. This is also
reflected by the data in Table 1. For Z ≤ 60, DKHn
atomic energies with n = 14 are close to the exact
values, whereas for Z > 60, one has to apply DKHn
with n > 20 to obtain accurate values. Infinite order
DKH theory correctly reproduces DHF (and NESC)
energies. However, it becomes also obvious that
convergence of the DKHn energies to the correct
result is rather slow.44

Methods based on the RA converge much faster,
but largely overshoot exact results at the ZORA and
IORA levels of theory. The development of a matrix
formulation for the methods based on the RA by
Filatov and Cremer made it possible to consider
second- and third-order IORA methods65 and to
connect the RA directly to NESC, for example, via the
NESC-SORA (second-order regular approximation)
method. NESC-SORA provides exact results for small
Z, whereas for larger Z its energies again overshoot
exact DHF energies.

As mentioned before, the relativistic calculations
benefit from a finite nucleus model rather than a
0-radius (point charge) model.1,44,111 For example,
the singularity of the Dirac equation at the position
of the nucleus caused by the point charge model is
avoided. The increase in energy as described by the
4-component DHF method is correctly reproduced
by the NESC method (Table 1).

FIRST-ORDER RESPONSE PROPERTIES

The usefulness of a new quantum chemical method is
measured by its accuracy and general applicability.
General applicability implies the possibility of
routinely calculating molecular properties such
as geometries, vibrational frequencies, electric or
magnetic quantities, excitation energies, etc. A large
number of molecular properties needed by chemists
to analyze and characterize structure, stability, and
reactivity of a chemical compound are response
properties, which can be effectively calculated with the
help of analytical energy derivatives.113 Accordingly,
the usefulness of a quantum mechanical method
increases substantially when its applicability range
is extended by the introduction of analytical energy
derivatives.

Derivation of the NESC Gradient
The first derivative of the total energy,
Eq. (24), with respect to a parameter λ,
which can correspond to a nuclear coordi-
nate or a component of the electric field
or another external perurbation, is given by
Eq. (28)114

∂E
∂λ

= tr
[
�

∂S
∂λ

]
+ tr

[
P

∂H1−e

∂λ

]
+ 1

2
tr

[
P

∂ ′

∂λ
(J − K)

]
(28)
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Here, matrix � is defined by � = − CεnC†, and the
prime at ∂

′
/∂λ implies that only the two-electron

integrals rather than the density matrix need to be
differentiated. The first and the last term on the
right hand side (r.h.s.) are calculated utilizing the
nonrelativistic methodology. Only the second term
has to be determined in a NESC gradient calculation.
This was first done by ZFC92 and somewhat later by
Cheng and Gauss.100

The second term in Eq. (28) has the form92

tr
[
P

∂H1−e

∂λ

]
= tr

[̃
P

∂L̃
∂λ

]
+ tr

[
D

∂G†

∂λ

]
+ tr

[
D† ∂G

∂λ

]
(29)

where the new matrices P̃ = GPG† and D = L̃GP
are introduced. Hence, the derivative of the NESC
Hamiltonian matrix L̃ and the renormalization
matrix G are required for calculating the NESC
energy gradient. For the first term in Eq. (29), one
obtains:

tr

[
P̃

∂L̃
∂λ

]
= tr

[(
UP̃ + P̃U† − UP̃U†

) ∂T
∂λ

]

+ tr
[(

UP̃U†
) ∂W

∂λ

]
+ tr

[̃
P

∂V
∂λ

]
+ tr

[(
PL

)† ∂U†

∂λ
+ PL ∂U

∂λ

]
(30)

where PL = P̃
[
T − U† (T − W)

]
. The calculation of

the first three terms on the r.h.s. of Eq. (30)
is straightforward because the one-electron integral
derivatives are directly available from nonrelativistic
quantum chemical methods. The major difficulty
results from term four, which contains the derivatives
∂U/∂λ. The U derivatives also appear in ∂G/∂λ because
G depends on S̃ and S̃ on U (see Eqs 23 and
10).

By collecting all contributions ∂U/∂λ from L̃ and
G, one obtains a relatively simple equation:92

tr
(

PL ∂U
∂λ

+
(
PL

)† ∂U†

∂λ

)
+ tr

(
PG ∂U†

∂λ
U+PGU† ∂U

∂λ

)
= tr

(
P0

∂U
∂λ

+ P†
0
∂U†

∂λ

)
(31)

where matrices PG and PL have been defined in the
original literature.92 By writing Eq. (15) in the form

U = UIORA − 1
2mc2 UIORAUS−1 (TU + V) (32)

the partial derivative of U with regard to λ is obtained
as

∂U
∂λ

= ∂UIORA

∂λ

(
UIORA

)−1
U − 1

2mc2 UIORA

×
[
∂U
∂λ

S−1 (TU + V) + U
∂S−1

∂λ
(TU + V)

+US−1
(

∂T
∂λ

U + T
∂U
∂λ

+ ∂V
∂λ

)]
(33)

This equation can be brought in the form of the
Sylvester equation.92,99

Solution of the Gradient Problem Via
the Sylvester Equation: The One-Step
Method
The Sylvester equation has the form99

AX + XB = C (34)

If matrix X contains the derivatives ∂U/∂λ, then99

A = I − T−1W + 1
2mc2 US−1T (35)

B = 1
2mc2 S−1 (TU + V) (36)

C = −T−1 ∂T
∂λ

T−1WU + T−1 ∂W
∂λ

U

+ 1
2mc2 US−1

[
∂S
∂λ

S−1 (TU + V) − ∂T
∂λ

U − ∂V
∂λ

]
(37)

Depending on what response properties are required,
the Sylvester equation can be solved in a one-step
procedure or by an iterative procedure according to

Xn+1 = A−1C − A−1XnB (38)

The latter is the method of choice, e.g., for geom-
etry optimizations. However, for higher accuracy,
especially in the case of very steep basis functions
(exponents |ζ | > 1012) and a point-nucleus model the
eigenvalue decomposition method is preferable, which
is more costly, but numerically more stable. The latter
method has been used by several authors63,101,115 and
was also applied by ZFC.99

For high accuracy calculations which are
required, e.g., when determining contact densities
(see below), a more efficient method is based on
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response theory. For this purpose, ZFC rewrote the
Dirac equation in the following form:99

D̃	 = S̃	ε (39)

with

D̃ =
(

V T
T W − T

)
(40)

S̃ =
(

S 0
0

(
2mc2

)−1 T

)
(41)

	 =
(

Ap A
Bp B

)
(42)

ε =
(

Ep 0
0 E

)
(43)

Differentiation with respect to λ leads to

D̃	λ + D̃λ	 = S̃	λε + S̃λ	ε + S̃	ελ (44)

which can be simplified by multiplication with �†

from the left and using the normalization condition
	†S̃	 = I to obtain

	†D̃	λ + 	†D̃λ	 = 	†S̃	λε + 	†S̃λ	ε + ελ. (45)

Introducing the matrix Oλ that describes the first-
order orbital response with respect to perturbation
λ

	λ = 	Oλ, (46)

and performing some mathematical rearrangements,
one obtains99

Oλε − εOλ + ελ = 	†D̃λ	 − 	†S̃λ	ε (47)

from which the matrix elements of Oλ can be derived.
ZFC showed that the response of the large and small
components of the electronic states causes a mixing
with the positronic states according to

Aλ = ApOλ
2 + AOλ

4 = ApOλ
pe + AeOλ

ee (48)

Bλ = BpOλ
2 + BOλ

4 = BpOλ
pe + BeOλ

ee (49)

where the subscripts e (electronic) and p (positronic)
have been used to simplify the identification of mixed
positronic–electronic contributions. By differentiation

of Be = UAe, one obtains

∂U
∂λ

=
(
BpOλ

pe − UApOλ
pe

)
A†

e S̃ (50)

which can be directly calculated. Cheng and Gauss101

neglected the contributions of the positronic wave
function and kept only the last part of Eqs. (48)
and (49). ZFC correctly included the positronic
contributions and derived the full equation of the
matrix Uλ.99

Another important improvement of the calcula-
tion of the NESC gradient according to the procedure
given by ZFC92,99 resulted from the fact that these
authors formulated the NESC first derivatives exclu-
sively via traces of matrix products, in which the
matrices of integral derivatives are contracted with
precomputed square matrices. This saves time and
disc space, as one does not need to recalculate the
molecular integral derivatives or store them on disk.
In particular, all terms of the first derivative of G
and U were expressed in the form of traces of matrix
products, which is more efficient compared to a term-
by-term calculation and a final contraction of these
terms with the respective integral derivatives.

NESC Calculations of Atomic Forces:
Molecular Geometries
ZFC92 used the analytical NESC energy gradient
to determine molecular geometries. These authors
found that only in the case of bond lengths between
relativistic atoms an accurate account of the gradient
of matrix U based on response theory is required,
whereas in other cases an approximate calculation
of ∂U/∂λ is sufficient.44 These authors calculated
NESC/CCSD geometries for Hg-containing molecules
and NESC/CCSD(T) bond dissociation energies (BDE)
at NESC/CCSD geometries.

NESC/CCSD geometries were found to be
reasonably close to experimental geometries (see HgCl
and HgBr in Table 2). However, a final judgment on
the accuracy of the NESC calculations could not be
made because the influence of SOC on the bond
length was not considered in their work.44 Compared
to other calculated values, NESC HgX bond lengths
turned out to be closer to the experimental ones
with deviations being smaller than 0.1 Å.44 The
agreement between NESC/CCSD(T) and experimental
bond dissociation enthalpies (BDH) D0 for mercury
halides was excellent in view of a mean deviation of
just 0.3 kcal mol−1.92

A number of studies have been published since
then, which confirm the reliability of NESC geometries
either in connection with DFT or coupled cluster
theory.93–99
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TABLE 2 NESC/CCSD Geometries and NESC/CCSD(T) Bond Dissociation Energies De (Enthalpies D0) of Mercury Molecules1

Molecule Symmetry State Method Geometry Parameters De (D0) Reference

HgF C∞v
2�+ NESC/CCSD(T)//NESC/CCSD 2.024 33.0 (32.3) 92

Expt. 32.9 116

HgCl C∞v
2�+ NESC/CCSD(T)//NESC/CCSD 2.402 23.8 (23.4) 92

SOC/ECP/CCSD(T) 2.354 22.9 117

Expt. 2.395, 2.42 23.4, 24.6 118–120

HgBr C∞v
2�+ NESC/CCSD(T)//NESC/CCSD 2.546 20.0 (17.5) 92

SOC/ECP/CCSD(T) 2.498 16.3 117

Expt. 2.62 17.2, 18.4 121–123

HgI C∞v
2�+ NESC/CCSD(T)//NESC/CCSD 2.709 12.9 (7.6) 92

SOC/ECP/CCSD(T) 2.708 8.6 117

Expt. 2.81 7.8, 8.1, 8.9 119, 120, 124

HgCN C∞v
2�+ NESC/CCSD(T)//NESC/CCSD Hg–C: 2.118, C–N: 1.161 36.1 92

IORA/QCISD Hg–C: 2.114, C–N: 1.179 28, 125

HgNC C∞v
2�+ NESC/CCSD(T)//NESC/CCSD Hg–N: 2.077, N–C: 1.176 22.4 92

HgCH3 C3v
2A 1 NESC/CCSD(T)//NESC/CCSD Hg–C: 2.344, H–C: 1.084 3.2 92

Hg–C–H: 104.3

1From Ref 92. NESC/CCSD(T)//NESC/CCSD denotes NESC/CCSD(T) energies calculated at NESC/CCSD geometries. For HgX (X = F, Cl, Br, I), BDE values
De include SOC corrections and are corrected by ZPE (zero-point energies) to yield D0 values. In the calculations of HgCH3, HgOCH3, and HgCF3, the
fourteen 4f-electrons of Hg were frozen. D values in kcal mol−1, bond lengths in Å, and angles in deg.

NESC Description of Molecular Density
Distributions and Dipole Moments
The total electron density distribution ρ(r) at a point
rP is the result of the response of a molecule to a
perturbation λ that corresponds to the one-electron
operator δ̂ (rP − r), i.e., the Dirac delta operator. By
using the Hellmann-Feynman theorem,126,127 one gets

dE (λ)

dλ

∣∣∣∣
λ=0

= 〈
� |̂δ (rP − r) |�〉 = ρ (rP) (51)

When ρ(r) is expanded in terms of basis functions, Eq.
(51) describes the response density:

ρ (rP) =
∑
μν

P̃μνχμ (rP) χν (rP) (52)

Using the definition of the NESC gradient, the NESC
response density matrix is given by P̃ = GPG† (see Eq.
29). Hence, the NESC electron density distribution
can be written in terms of a renormalized matrix P̃
depending on P = CnC† where C is the matrix of
the NESC orbital coefficients in the spin-free (scalar
relativistic) 1-component representation. Once P̃ is
determined, the NESC electron density distribution
can be calculated according to Eq. (52).

The difference density distribution

�ρ (r)NESC = ρ (r)NESC − ρ (r)non-relat (53)

reveals how scalar relativistic effects lead to a change
in the electron density distribution. For example, in
Figure 2 the NESC difference density distribution
of the molecule HAt is shown. Around the astatine
atom a somewhat distorted pattern of spherical
shells with density increase (red contour lines) and
density depletion (blue lines) is recognizable. The
shell structure is a result of the s,p-orbital contraction
and d,f-orbital expansion, which propagates from the
innermost core to the valence shell and which leads to
a charge transfer from H to At. Because of the scalar
relativistic effects the electronegativity of At increases.

The NESC density matrix has to be available
when calculating NESC-based first-order response
properties such as the molecular dipole moment
or other electric multipole moments. In a static
homogeneous electric field F , the potential V’(r)
adopts the form

V
′
(r) = V (r) + F · r (54)

and the total molecular energy can be expressed in the
form of a Taylor expansion according to

E (F ) = E (0) + ∂E (F )

∂F
|F =0·F

+ 1
2

F · ∂2E (F )

∂F ∂F
|F =0·F + · · · (55)
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FIGURE 2 | Contourline diagram of the NESC difference density
distribution of the HAt molecule. Solid red (dashed blue) contour lines
indicate an increase (decrease) of the density because of scalar
relativistic effects. The difference density adopts a shell structure at the
At atom, which is caused by sp contraction. The outer red sphere
corresponds to the 6s6p shell and and the most inner red sphere to the
overlapping 3s3p and 2s2p shells. The 1 s region cannot be seen
because it is just 0.1 Å outside the At nucleus. NESC/PBE0 calculations.

The first-order term of the expansion gives the electric
dipole moment

μ = −∂E (F )

∂F
|F =0 (56)

where the scalar dipole moment is defined as the norm
of the dipole moment vector μ = ||μ||.

Hence, the derivative of the electronic energy
(24) has to be taken with regard to the components
F α(α = x, y, z) of the electric field. The only
nonrelativistic contributions arise from V; however,
for NESC contributions from W, G, and U (since G
depends on U, and U depends on V and W) also result.
For component μα of the dipole moment one obtains:

μα = −tr
[
P

∂H1−e

∂Fα

]
= −tr

[
P

∂

∂Fα

(
G†L̃ G

)]

= −tr

[
P̃

∂L̃
∂Fα

]
+ tr

[
D

∂G†

∂Fα

+ D† ∂G
∂Fα

]
(57)

ZFC95 analyzed the individual terms of Eq. (57) and
showed that, by eliminating small terms, it can be
simplified to

μα = −tr

[
P̃

∂L̃
∂Fα

]
= −tr

[
P̃

∂V
∂Fα

]
(58)

TABLE 3 NESC/CCSD(T) and NESC/PBE0 Dipole Moments of
Diatomic Molecules in Their Ground State Compared with Other
Theoretical Values.95

Molecule State Method Re (Å) μ (Debye)

AuF 1�+ NESC/CCSD(T) 1 4.32

RECP/CCSD(T)/CBS128 1 4.37

Expt.129,130 1.918 4.13

AuCl 1�+ NESC/CCSD(T) 1 3.81

RECP/CCSD(T)/CBS128 1 3.90

Expt.131 2.199

AuBr 1�+ NESC/CCSD(T) 1 3.50

RECP/CCSD(T)/CBS128 1 3.48

Expt.131 2.318

AuI 1�+ NESC/CCSD(T) 1 3.16

RECP/CCSD(T)/CBS128 1 2.94

Expt.131 2.506

AuH 1�+ NESC/PBE0 1.530 1.47

RECP/MP2132 1.51 1.03

Expt.116 1.524

HgH 2�+ NESC/PBE0 1.747 0.37

Expt. 133,134 1.741 0.47

HgF 2�+ NESC/PBE0 2.039 3.69

HgCl 2�+ NESC/PBE0 2.403 3.84

Expt.118 2.395

1Calculated at the experimental bond length. The NESC/CCSD(T) bond
lengths for AuX are: 1.922 (X = F); 2.219 (Cl); 2.333 (Br); 2.482 Å (I).

Equation (58) reveals that the NESC dipole
moment can reliably be calculated by combining
the nonrelativistic formula with the NESC density
matrix P̃.

In Table 3, NESC bond lengths and NESC
dipole moments of some diatomic Au- and Hg-
containing molecules are listed together with the
available experimental values. For the gold halides,
NESC/CCSD(T) dipole moments (calculated at
CCSD(T) and experimental bond lengths) are close to
RECP/ CCSD(T)/CBS values,128 which were obtained
at the CCSD(T) level using experimental bond
lengths, numerical derivatives, relativistic effective
core potentials (RECPs), and aug-cc-pVnZ (n = 4,5)
basis sets to extrapolate to the complete basis set
(CBS) limit. NESC/CCSD(T) reproduces the results
of the latter calculations within 0.1–0.2 Debye while
requiring less than 10% of the computer time needed
for the RECP/CCSD(T)/CBS calculations. For a larger
set of calculated dipole moments, ZFC95 found
that NESC predicts the experimental values with an
accuracy of 0.2 Debye or better.
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NESC Hyperfine Structure Constants
Atoms and molecules possessing unpaired electrons,
i.e., radicals, are recognized by the hyperfine structure
(HFS) of their electron spin resonance (ESR) and
optical spectra.135,136 The hyperfine structure of
the spectra arises from the interaction between the
unpaired electrons and the magnetic field generated
by the magnetic moments of the nuclei with nonzero
spin. A nonuniform magnetic field characterized by
the magnetic induction B(r) and its associated vector
potential A (r) according to B (r) = ∇ × A (r) result
from the magnetic nuclei in the molecule. The vector
potential is given by

A (r) = 1
c2

∑
K

μK × (r − RK)

|r − RK|3 (59)

where μK is the magnetic moment of the nucleus K at
position RK.

For radicals, the magnitude of the HFS constants
AK obtained from the ESR spectra is related to the spin
density distribution and therefore characteristic of the
electronic structure of a radical.135,136 These HFS
constants can be quantum mechanically determined
via the hyperfine tensor AK, which is given by the
derivative of the total energy with respect to the
nuclear magnetic moment μK. Two contributions
result, which are determined by the so-called Fermi-
contact operator and the spin-dipole operator:(

ĥFC
K (r)

)
α

= 4π

3c2 δ (r − RK) σ̂α (60)

(
ĥSD

K (r)
)

α

= 1
2c2

(
3

(σ̂ · (r − RK)) (r − RK)α

|r − RK|5 − σ̂α

|r − RK|3
)
(61)

where α again denotes the Cartesian components of
a vector. As a result of the molecular motion in the
gas phase and in solution, the anisotropic spin-dipole
contribution averages to zero so that the isotropic HFS
constants Aiso

K are determined by the Fermi-contact
contributions associated with operators (60).

For organic molecules, the measurement of HFS
constants is routine whereas it is still a challenge for
radicals containing relativistic atoms. In the latter case,
the quantum chemical calculation of HFS constants is
an important option provided three prerequisites are
fulfilled: (1) The wave function used must satisfy the
Hellmann-Feynman theorem;126,127 (2) Correlation
corrected ab initio methods or at least well-tuned
XC-functionals of DFT methods are required to get

reliable values; and (3) relativity has to be taken into
account.

Filatov and Cremer125 demonstrated that useful
HFS constants could be obtained with an open-shell
IORA formalism (for related relativistic investigations,
see also the work of the Baerends group or Malkin’s
work137,138). In extension of their work, FZC97

derived an approach for calculating HFS constants
with the Dirac-exact NESC method starting either
from an unrestricted HF or unrestricted KS wave func-
tion. They obtained for Aiso

K the following equation:

Aiso
K = −gegKμBμK 〈Sz〉−1

×
∑
σ

tr
(

P̃σ
THFC

K,z + 3
4

P̃σ
W

(
WT−1HFC

K,z +HFC
K,zT

−1W
))

= −gegKμBμK 〈Sz〉−1

× tr
(

P̃s
THFC

K,z + 3
4

P̃s
W

(
WT−1HFC

K,z + HFC
K,zT

−1W
))

(62)

In Eq. (62), HFC
K,α is the matrix of the operator (60).

The constants ge, gK, μB, and μK are the electron and
nuclear g-factors as well as the Bohr and nuclear
magnetons, respectively. The quantity 〈Sz〉 is the
expectation value of the z-component of the electron
spin. Matrices P̃σ

T and P̃σ
W are similarly defined as in

the closed shell case44 only that they refer in the open-
shell calculation to a specific spin σ . The matrices P̃s

T
and P̃s

W are calculated by substituting the spin-density
matrix Ps = Pα − Pβ in the respective expressions.97

The calculated relativistic corrections of the
mercury HFS values can be as large as 15,000 MHz
(HgF97) or, as in the case of the mercury cation, more
than 30,000 MHz (13,734 MHz at UHF compared
with 43,400 MHz obtained with NESC/UHF97).
Equally important is the inclusion of correlation
effects, which is reflected by the NESC/QCISD and
NESC/CCSD values given in Table 4.97 At this
level of theory, Aiso

Hg values are in good agreement
with experiment. With the exception of HgH and
HgF molecules, the deviation of the calculated HFS
constants from the corresponding experimental
value is within a few percent. Inclusion of electron
correlation leads to a contraction of the atomic inner
shell electron spin-density toward the nucleus, thus
increasing the HFS constant.125 For HgF, this increase
is counterbalanced by the increasing bond polarity,
which withdraws spin-density from the 6 s-orbital
of Hg, thus reducing the value of the HFS constant.
A delicate balance between these effects can only
be achieved by using correlated methods including
connected 3-electron correlation effects.
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TABLE 4 Isotropic Hyperfine Structure Constants Aiso
Hg (in MHz) of

the Mercury Atom in Hg-Containing Molecules Calculated at the
NESC/CCSD and NESC/QCISD Levels of Theory Compared with the
Corresponding Experimental Values97

Molecule Exp. NESC/QCISD NESC/CCSD

HgH 68591;71982 7446 7463

HgF 22,1633 20,929 20,558

HgCN 15,9604 15,948 16,135

HgCH3 49215 5299 5428

HgCH2CH3 3504 3623

HgAg 27236 2967 2962

1Ref 139; measurement in Ne matrix.
2Ref 139; Ar matrix.
3Ref 140; Ar matrix.
4Ref 141; Ar matrix.
5Ref 142; Ne matrix.
6Ref 143.

Problematic in this connection is that measured
values are often obtained for molecules embedded
in inert gas matrices (see Table 4). As was pointed
out by Filatov and Cremer,125 the effect of the inert
gas matrix can change the HFS constant as much
as 6–10%. Reliable NESC constants obtained with
highly correlated methods and large basis sets could
make it possible to determine these matrix effects.

NESC Electric Field Gradients
An electric field gradient (EFG) at an atomic nucleus
exists only if the charges surrounding the nucleus
in question (i.e., the electron density distribution
and the other nuclei in a molecule) generate an
inhomogeneous electric field, which via its electric
field gradient provides a sensitive measure of the
local electronic structure.144 The EFG can be accessed
via the nuclear quadrupole interaction that can be
measured by various experimental techniques includ-
ing Mössbauer spectroscopy,145 nuclear quadrupole
resonance spectroscopy,146,147 or perturbed angular
correlations (PAC) of γ -ray spectroscopy.148 The
interpretation of the experimental spectroscopic data
often requires high-level theoretical calculations to
reveal the relationship between electronic structure
and measured nuclear quadrupole interactions.149 In
this connection, the same requirements apply as those
mentioned in connection with the analysis of the
HFS constants. For example, Pernpointner et al.150

demonstrated the importance of including relativistic
and electron correlation effects in the quantum
chemical calculations when computing reliable EFG
values for heavy atoms. This was confirmed by
Arcisauskaite et al.151 in high-level 4-component
calculations on a series of mercury compounds.

The interaction of the nuclear quadrupole
moment (NQM) Qαβ with the EFG Vαβ at the site
of the nucleus is described by Eq. (63),144,152

Ĥint =
∑
α,β

QαβVαβ (63)

where the summation is carried out with respect to
the Cartesian components α, β. The NQM tensor
components are given by:

Qαβ = eQ
2I (2I − 1)

(
1
2

(̂
Iα̂Iβ + Îβ̂Iα

)
− 1

3
δαβI (I + 1)

)
(64)

where I and Îα are the nuclear spin and the nuclear
spin operator, respectively, and e is the elementary
charge. For nuclei with I = 1/2, all components Qαβ

of the NQM tensor vanish.
For a given nucleus, the EFG operator is

defined as a second derivative of the electron–nucleus
attraction operator V̂ with regard to the Cartesian
coordinates,

V̂αβ =
(

∂

∂xα

∂

∂xβ

− 1
3

δαβ∇2
)

V̂ (65)

which describes the interactions of the nucleus in
question with electrons and other nuclei in the
molecule. It is convenient to define the principal
axis system (by diagonalization of the Vαβ tensor),
in which the axes a, b, and c are labeled in
a way that the diagonal components Vaa, Vbb,
and Vcc satisfy the relation |Vaa| ≤ |Vbb| ≤ |Vcc|.
Then, the EFG tensor can be characterized by the
principal value Vcc and the asymmetry parameter η =
(Vaa − Vbb) /Vcc. In practice, the nuclear quadrupole
coupling constant (NQCC) νQ

144,146,153 is used to
interpret nuclear quadrupole resonance (NQR) and
Mössbauer spectra:145,147

νQ = eQ 〈Vcc〉
h

(66)

Here, 〈Vcc〉 is the expectation value of the component
Vcc in the ground state of the molecule.

The elements of the EFG tensor can be directly
calculated as response properties. This is based on the
fact that for any method satisfying the Hellmann-
Feynman theorem,126,127 the expectation value of
an operator perturbing the Hamiltonian can be
determined by differentiating the total energy of the
perturbed system with respect to the perturbation
parameter(s). In case of the NESC EFG at the
position of nucleus K, one obtains the perturbed
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TABLE 5 Electric Field Gradients Vcc (in Atomic Units) Calculated
for Hydrogen Halides HX (X = F, Cl, Br, I, At) Using the NESC/HF and
NESC/MP2 Method with a Finite Size Nucleus Model1

Molecule 4c-DC-HF2 NESC/HF NESC/MP2

HF 2.809754 2.809268 2.554123

HCl 3.591314 3.590261 3.402235

HBr 7.540289 7.536556 7.254653

HI 11.623332 11.620941 11.047529

HAt 25.979844 26.506524 26.273005

1From Ref 96.
24-component Dirac–Coulomb Hartree–Fock calculations taken from Ref
154.

energy by adding the nuclear quadrupole interaction
operator (63) to the potential energy operator of
the NESC Hamiltonian and then differentiating the
resulting total energy ENESC

(
QK

αβ

)
with respect to the

components of NQM QK
αβ :

〈
VK

αβ

〉
=

∂ENESC
(
QK

αβ

)
∂QK

αβ

|QK
αβ→0

+
∑
L�=K

ZL
3Xα,KLXβ,KL − δαβR2

KL

R5
KL

(67)

where the second term on the r.h.s. represents the
nuclear–nuclear part of the EFG and Xα,KL are the
Cartesian components of the internuclear distance
vector RKL = RK − RL. According to FZC,96 the first
term on the r.h.s. of Eq. (67) is given by

∂ENESC
(
Qαβ

)
∂QK

αβ

= tr
[
P̃ + P0V + (P0V)†

] ∂V
∂QK

αβ

+ tr
[
UP̃U† + P0W + (P0W)†

] ∂W
∂QK

αβ

(68)

where matrices P̃, P0V , and P0W are obtained from
the usual molecular density matrix as described
in Refs 92 and 97. Since no approximations are
made in Eq. (68) the exact EFG is obtained.96

The derivatives in Eq. (68) are formulated entirely
in terms of traces of matrix products and the
practical application of these formulae requires only
a fraction of the time needed, e.g., for a single HF
iteration.

FZC96 investigated a series of molecules and
found that with correlation corrected methods
such as NESC/MP2 (second-order Moller-Plesset
perturbation) accurate EFG values were obtained (see
Table 5).

NESC Quadrupole Coupling Constants
and the Nuclear Volume
A nonspherical distribution of the nuclear charge
leads to an NQM Q.144 Although the NQM plays
an important role in nuclear physics and molecular
spectroscopy, its direct experimental measurement is
difficult and, currently, the most reliable way of its
determination is based on measurement of an NQCC
νQ in connection with accurately calculated EFGs Vcc

(compare with Eq. 66):

Q = νQ
h
e

1
< Vcc >

(69)

where in the case of diatomic molecules < Vcc >=
< Vzz > with z corresponding to the molecular axis.
The NQM and NQCC of two isotopes of the
same element with atomic number Z can differ. The
molecular NQCC includes a number of contributions
which were analyzed in detail by Pyykkö.155 Thus it
was predicted that, in molecules with closed electronic
shells, the variation of the nuclear volume in isotopes
I1 and I2 of a given element Z should lead to the
emergence of a quadrupole anomaly I1�I2

Z , which, by
analogy with the hyperfine anomaly, can be defined
according to Eq. (70).

νQ (I1)

νQ (I2)
= QI1

QI2

(
1 +I1 �I2

Z

)
(70)

FZC156 investigated the quadrupole anomaly by
expanding the EFG of linear molecules at the position
of an isotopic nucleus I1 in terms of the rms nuclear
charge radius < RK > = a:

νQ (I1)

νQ (I2)
= QI1

QI2

Vzz (a2) + (∂Vzz/∂a)|a=a2 (a1 − a2) + . . .

Vzz (a2)

= QI1

QI2

(
1 + 1

Vzz

∂Vzz

∂a

∣∣∣∣
a=a2

�a12 + O
(
�a2

12

))
(71)

In Eq. (71), the rms nuclear charge radius is given
by a and the expansion is truncated at first order
in a in view of its small variation between different
isotopes. Thus, one can evaluate the magnitude of
the quadrupole anomaly I1�I2

Z as the second term of
the expansion given in parentheses in Eq. (71). By
defining a relative quadrupole anomaly I1δI2

Z as the
difference between the I1�I2

Z values of two different
molecules, M1 and M2, they obtained an expression
that depended only on the EFG principal component
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in the z-direction and its derivative with respect to
a:156

I1δI2
Z =I1 �I2

Z |M1 −I1 �I2
Z |M2

= QI2

QI1

(
νQ (I1)

νQ (I2)

∣∣∣∣
M1

− νQ (I1)

νQ (I2)

∣∣∣∣
M2

)

≈
((

1
Vzz

∂Vzz

∂a

∣∣∣∣
a=a2

)
M1

−
(

1
Vzz

∂Vzz

∂a

∣∣∣∣
a=a2

)
M2

)
�a12 (72)

where �a12 is the variation of the rms nuclear charge
radius between the isotopes I1 and I2 of element Z.

The NESC/CCSD values of FZC for the
relative quadrupole anomaly 195δ197

Au for pairs of gold
molecules reached values large enough to be reflected
by the measured by NQCC values. Thus, the NQCC
ratio νQ

(
195
79 Au

)
/νQ

(
197
79 Au

)
for AuCl referenced to

other gold molecules gave the largest magnitude of
the quadrupole anomaly, far above the precision of
microwave spectroscopy, and by this provided a way
of measuring changes in the nuclear volume for a
variation from 195

79 Au to 197
79 Au (a = 5.43439 fm111).

NESC Contact Densities and Mössbauer
Shifts
The Mössbauer effect involves the recoil-free emission
and absorption of γ -radiation by atomic nuclei
which are embedded in a solid environment.157 The
frequency of the resonant γ -radiation depends on
the electronic environment of the resonating nucleus
which is reflected by a frequency shift. To compensate
for the corresponding frequency shift, the Doppler
effect is used, which implies that the source of the γ -
radiation is accelerated through a range of velocities
until the resulting small energy shift reestablishes
the resonance condition for the absorbing nucleus.
The isomer shift δ is a measure for the electronic
environment of the absorbing nucleus.158,159 It can be
expressed as

δ = α
(
ρ(a) − ρ(s)) (73)

where δ (in mm s−1) is given by the electron contact
densities ρ at the position of the absorbing (a)
and source (s) nucleus (in bohr− 3) and α is a
calibration constant depending on details of the
nuclear γ -transition. Typically, α is determined by
a linear regression analysis of the quantum chemically
calculated contact densities against the experimental
values of the isomer shifts.145,160 Mössbauer isomer

shifts have been measured for samples containing iron
(57Fe), tin (119Sn), zinc (67Zn), gold (197Au), mercury
(199Hg and 201Hg), and many rare earth elements
(e.g., 151Eu).145,160–163

Upon absorbing the γ -radiation, the a-nucleus
undergoes a γ -transition, which leads to a change
of the radius R of the a-nucleus and, by this, to a
change in the electron–nucleus attraction potential,
which depends on Ra. Filatov164 suggested the use of
linear response theory to calculate the isomer shift δ

(and ρ) as the electronic energy derivative with respect
to the nuclear charge radius Ra of the a-nucleus:

δ = c
Eγ

(
∂Ea (R)

∂R

∣∣∣∣
R=Ra

− ∂Es (R)

∂R

∣∣∣∣
R=Ra

)
�Ra (74)

where Ea and Es denote the electronic energy of the
absorbing and source systems, respectively.

A fully analytic approach for obtaining effective
contact densities ρ within the linear response
formalism based on NESC was presented by FZC.98

Assuming a nuclear charge distribution according to
Eq. (25), the nuclear attraction potential adopts the
form given in Eq. (26), where the exponent ζ is related
to the nuclear charge radius Ra of the a-nucleus by Eq.
(27). Utilizing these equations, the effective contact
density is obtained as160,164

ρa = 1
2π

1
Zaζ

∂E (ζ )

∂ζ

∣∣∣∣
ζ=ζ0

(75)

in which ζ 0 is the value of the parameter obtained
from the experimentally measured rms charge radius
of the resonating nucleus a. The effective contact
density can be directly compared to the NESC
density calculated as the expectation value of the
density operator and used in connection with Eq.
(73).98,160,164

FZC98 calculated the derivatives of molecular
integrals with respect to the nuclear charge radius
or with respect to the parameter ζ of the Gaussian
charge distribution given in Eq. (25), used the NESC
response formalism for first-order properties, and
obtained the effective contact density ρa at a specific
nucleus a. These authors investigated the contact
densities (in e bohr− 3) of mercury as a free atom or
bonded in a molecule, where in the latter case contact
density differences ρHg − ρmol were determined (see
Table 6).98 Trends in the calculated contact density
differences were reasonably reproduced already at the
NESC/HF and NESC/MP2 levels of theory, although
NESC/CCSD densities were the most reliable values.98

The values of the contact density difference are
large when the electronic environment strongly differs
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TABLE 6 Effective Contact Densities (e bohr−3) of the Hg Atom
Obtained at the NESC Level of Theory

Atom/Molecule NESC/HF NESC/MP2 NESC/CCSD

Hg 2,104,944.971 2,105,047.821 2,105,035.382

Hg+ 112.876 127.943 121.136

Hg2 + 278.394 305.695 293.217

HgF 98.086 81.294 76.872

HgF2 121.352 108.368 104.387

HgF4 96.586 109.453 96.264

HgCl2 108.118 94.572 91.592

Hg(CH3)2 49.001 43.610 42.184

Hg (H2O)2+
6 240.820 245.550 237.066

The absolute contact density is given for Hg(1S0), whereas contact density
difference values ρHg − ρmol are listed for ions and molecules.97

from that of the free Hg atom. The differences stretch
from about 40 e bohr−3 in dimethyl mercury to 293
e bohr−3 in the mercury dication. With increasing
electronegativity of the Hg-substituents, the difference
contact density increases to 104 e bohr−3, which
confirms that the isomer shifts δ of Mössbauer
spectroscopy reliably describe the environment of the
Hg nucleus.98

SECOND-ORDER RESPONSE
PROPERTIES

The analytical calculation of the energy Hessian
with respect to external perturbations such as
the displacement of the nuclear coordinates, the
components of the electric field, or other quantities, is
a prerequisite for obtaining second-order response
properties of a molecule (vibrational frequencies,
electric polarizabilities, infrared intensities, etc.). It
is also one of the criteria when assessing the general
applicability of a new quantum chemical method.113

The eigenvalues of the Hessian matrix of second
derivatives of the molecular energy with respect
to the nuclear coordinates are used to characterize
the nature of a stationary point obtained on the
potential energy surface (PES) via optimization of the
molecular energy, so that one can distinguish between
minima, first-order and higher-order saddlepoints of
the PES. Furthermore, they determine the curvature
of a PES at a stationary point and by this the
vibrational force constants of a molecule, which, by
solving the basic equation of vibrational spectroscopy,
lead to the molecular vibrational frequencies in
their harmonic approximation.165 These in turn are
needed to calculate zero-point energies and vibrational

contributions to the enthalpy and entropy at a given
temperature.

The quantum chemical calculation of second-
order response properties with nonrelativistic methods
is a widely used standard procedure.113 However,
there is less computational data available for
molecules containing relativistic atoms because in
this case reliable methods have to be applied,
which include both correlation and relativistic
corrections.1,13,14 The complexity of the full 4-
component relativistic formalism restricts the reliable
calculation of molecular properties to atoms and small
molecules.166–169 This makes the use of Dirac-exact
methods such as NESC particularly attractive.

In the following, we will present the basic theory
of calculating second-order response properties,
which requires a derivation of the analytical second
derivatives of the electronic energy with respect to a
parameter λ. With the help of the analytical energy
gradient of Eq. (28), the analytical second derivatives
of E can be calculated according to

∂2E
∂μ∂λ

= tr
[
�

∂2S
∂μ∂λ

]
+ tr

[
P

∂2H1−e

∂μ∂λ

]

+ 1
2

tr

[
P

∂2′

∂μ∂λ
(J − K)

]
+ tr

[
∂�

∂μ

∂S
∂λ

]

+ tr
[

∂P
∂μ

∂H1−e

∂λ

]
+ 1

2
tr

[
∂P
∂μ

∂
′

∂λ
(J − K)

]
(76)

There are six contributions of which two (terms 1
and 3) can be directly determined utilizing standard
nonrelativistic methods.113 Contributions 4, 5, and
6 require either ∂P/∂μ or ∂W/∂μ and can be
calculated with the help of the coupled perturbed
equations113,170 using the gradient ∂H1 − e/∂μ. The
solution of the NESC coupled perturbed equations
was published by ZFC.99 Hence, the major problem
is the derivation of the second derivatives of the one-
electron part given by contribution 2. This in turn
leads to second derivatives of the NESC Hamiltonian
matrix L̃ and the renormalization matrix G, which
can be simplified by deleting those terms that are
of the order O(c− 4). The important terms of the
second and the fifth contribution of Eq. (76) are
given by

tr
[

∂P
∂μ

∂H1−e

∂λ

]
+ tr

[
P

∂2H1−e

∂μ∂λ

]
= tr

[(
UP̃ + P̃U† − UP̃U†

) ∂2T
∂μ∂λ

]

454 © 2014 John Wiley & Sons, Ltd. Volume 4, September/October 2014



WIREs Computational Molecular Science Dirac-exact relativistic methods

+ tr
[(

UP̃U†
) ∂2W

∂μ∂λ

]
+ tr

[
P̃

∂2V
∂μ∂λ

]

+ tr

[
∂P
∂μ

(
∂G†

∂λ
L̃G + G†L̃

∂G
∂λ

+ G† ∂L̃
∂λ

G

)]

+ tr
[(

D
∂2G†

∂μ∂λ
+ D† ∂2G

∂μ∂λ

)]

+ tr

(
P

[(
∂G†

∂μ

∂L̃
∂λ

+ ∂G†

∂λ

∂L̃
∂μ

)
G

+G†

(
∂L̃
∂λ

∂G
∂μ

+ ∂L̃
∂μ

∂G
∂λ

)])
(77)

In Eq. (77), the major contributions result from the
first four terms on the r.h.s. Whenever highly accurate
values of the Hessian matrix are not needed (for
example, for the calculation of vibrational frequencies
needed for thermochemical corrections), terms 5
and 6 can be neglected and term 4 approximated,
thus significantly saving computer time and core
memory.99 As in the case of the analytical NESC
gradient, an accurate calculation of the second
derivatives of the one-electron part involves the
accurate calculation of the second derivatives of U and
G, where in the former case the application of response
theory and the consideration of the positronic states
of the D-Hamiltonian is mandatory as was discussed
by ZFC.99

NESC Infrared Spectra: Vibrational
Frequencies and Infrared Intensities
Using the formalism described above, NESC vibra-
tional frequencies can be calculated in combination
with any electron correlated nonrelativistic method
for which second derivatives are available. This is
the case for most methods.113 Although the calcula-
tion of vibrational frequencies is important for the
characterization of stationary points on the PES or
the conversion of energies into enthalpies and free
energies (see above), an obvious challenge of quan-
tum chemistry is the prediction of infrared spectra
in connection with the identification and structural
description of unknown compounds containing rela-
tivistic atoms. For this purpose, one has to be able
to calculate infrared intensities. Calculated infrared
intensities are nowadays often the only source for
reliable values of this property because absolute
(rather than relative) infrared intensities are difficult
to measure.171 Therefore, absolute infrared inten-
sities are only known for some small molecules

in the gas phase, whereas most measured intensi-
ties are given relative to the most intensive infrared
band.171

The infrared intensity � is a response property,
which can be calculated if the analytical derivatives
of the energy with regard to nuclear coordinates
and the components of the electric field F α are
available. Alternatively, one can express it in the form
of derivatives of the components of the molecular
dipole moment with respect to the normal coordinates
according to Eq. (78):171

�i =
(
8π3NAg/3hc

) ∣∣∣∣ ∂μ

∂Qi

∣∣∣∣2 (78)

Constant NA is the Avogadro number, h the Planck
constant, and Qi a normal coordinate of degeneracy g.
Usually, the dipole moment derivatives are calculated
for Cartesian coordinates α, which leads to Eq. (79).
There, the intensity of mode i is given as

�i = δ
†
i δi = l†i

(

†


)
li (79)

δi = 
 li (80)

where atomic units are used and � denotes the
rectangular dipole moment derivative matrix of
dimension 3 × 3N given in Cartesian coordinates.
The mass-weighted vibrational normal mode vectors
li are determined when solving the vibrational secular
equation in Cartesian coordinates.165

The NESC infrared intensity is obtained by
calculating the derivative of Eq. (57), i.e., the NESC
dipole moment, with respect to an atomic coordinate
Xn:95

�α ,n = tr

[
P̃

∂2L̃
∂Xn∂Fα

]
+ tr

[
∂P

∂Xn

(
G† ∂L̃

∂Fα

G

)]

= tr
[
P̃

∂2V
∂Xn∂Fα

]
+ tr

[
∂P

∂Xn

(
G† ∂V

∂Fα

G
)]

(81)

where again first and second derivatives of matrices
U and G are neglected because they make negligible
contributions to the infrared intensity.95

ZFC95,99calculated a number of infrared spectra
using NESC/PBE0. In Table 7, geometries, vibrational
frequencies, and infrared intensities are compared
with experimental results, some of which were
obtained in the solid state as indicated. The
calculated vibrational frequencies are in reasonable
agreement with the available experimental data
considering the harmonic approximation and the fact
that NESC/PBE0 gives the calculated bond lengths

Volume 4, September/October 2014 © 2014 John Wiley & Sons, Ltd. 455



Advanced Review wires.wiley.com/wcms

TABLE 7 Comparison of NESC/PBE0 Geometries (Distances in Å), Harmonic Vibrational Frequencies (cm− 1), and Infrared Intensities (km mol−1)
with the Corresponding Experimental Values Measured in the Gas or the Solid Phase1

Molecule (Sym.) Method Geometry Frequency (Infrared Intensity, Mode Symmetry)

AuH (C∞v ) NESC/PBE0 Au–H: 1.530 2283.7 (14.7; σ+)

Expt.116 Au–H: 1.524 2305.0 (σ+)

AuH−
2 (D∞h ) NESC/PBE0 Au–H: 1.652 773.8 (115.7; πu), 1685.2 (1035.8; σ+

u ), 1994.9 (0; σ+
g )

Expt.172 1636.0 (σ+
u )

AuH−
4 (D4h ) NESC/PBE0 Au–H: 1.631 776.4 (0; b2g), 793.9 (66.6; eu), 828.7 (42.3; a2u), 843.1 (0; b2u)

1780.6 (2318.0; eu), 2113.7 (0; b1g), 2118.1 (0; a1g)

Expt.172 1676.4 (eu)

AuF (C∞v ) NESC/PBE0 Au–F: 1.923 556.7 (52.3; σ+)

Expt.129 Au–F: 1.918 563.7 (σ+)

AuF−
2 (D∞h ) NESC/PBE0 Au–F: 1.963 184.4 (25.0; πu), 516.3 (0; σ+

g ), 548.1 (182.7; σ+
u )

AuF−
4 (D4h ) NESC/PBE0 Au–F: 1.916 184.0 (0; b2u), 217.7 (0; b2g), 233.1 (25.8; a2u), 253.8 (8.7; eu)

572.0 (0; b1g), 597.1 (0; a1g), 613.4 (383.9; eu)

Expt.(solid)173 230 (b2g), 561 (b1g), 588 (a1g)

ThO (C∞v ) NESC/PBE0 Th–O: 1.826 926.1 (245.7; σ+)

Expt.174 Th–O: 1.840 895.8 (σ+)

Th2O2 (D2h ) NESC/PBE0 Th–O: 2.089 155.7 (4.8; b3u), 192.7 (0; ag), 373.1 (0; b3g), 527.2 (35.2; b2u),

O–Th–O: 74.4 623.8 (297.9; b1u), 633.9 (0; ag)

Expt.175 619.7 (b1u)

UF6 (Oh) NESC/PBE0 U–F: 1.994 139.1 (0; t2u), 184.0 (51.7; t1u), 199.3 (0; t2g), 539.1 (0; eg)

629.4 (810.3; t1u), 681.4 (0; a1g)

Expt.176,177 U–F: 1.996 142 (t2u), 186.2 (∼38; t1u), 202 (t2g), 532.5 (eg), 624 (750; t1u)

667.1 (a1g)

OsO4 (Td ) NESC/PBE0 Os–O: 1.686 352.6 (22.4; t2), 356.5 (0; e), 1031.9 (465.8; t2), 1063.9 (0; a1)

Expt.178,179 Os–O: 1.711 322.7 (t2), 333.1 (e), 960.1 (t2), 965.2 (a1)
265HsO4 (Td ) NESC/PBE0 Hs–O: 1.757 316.1 (32.9; t2), 335.2 (0; e), 1010.4 (463.2; t2), 1056.2 (0; a1)

1For details, see Ref 95, 99.

somewhat too long. In general, stretching frequencies
are somewhat too large (due to the harmonic
approximation), whereas bending frequencies are
somewhat too small (due to the somewhat too long
bond lengths).

In the case of UF6, experimental absolute
intensities are available.177 The t1u-symmetrical
vibrational modes at 184 (exp.: 186) and 629 (exp.:
624) cm− 1 with intensities of 52 (exp.: 38) and
810 (exp.: 750) km mol−1 are in good agreement
with the experimental values (see Table 7). ZFC95

showed that according to their calculated infrared
intensities the polarity of an AuX (X = Br, Cl, F) bond
strongly influences the intensity of the AuX stretching
vibration. The calculated NESC/PBE0 values of the
intensity increased from 5.1 to 12.9 to 52.3 km mol−1

in this series. For the corresponding series of anions
XAuX−, there is an increase from 35 to 70 to
183 km mol−1 (σ+

u -stretching mode) and from 6 to

17 to 25 km mol−1 (πu-bending mode). Apart from
the fact that infrared intensities are essential for
identifying unknown compounds via their infrared
spectra, they are also useful for deriving effective
atomic charges.180

NESC Static Electric Dipole Polarizabilities
Another second-order response property important
for the elucidation of the electronic structure of
atoms and molecules is the static electric dipole
polarizability, henceforth called polarizability for
brevity. When a molecule is exposed to an external
electric field, the electric dipole moment reflects the
separation of positive and negative charge in the
molecule, whereas the polarizability measures the
deformation of the electron density distribution of
an atom or molecule.181 Knowledge of atomic and
molecular polarizabilities is important in many areas

456 © 2014 John Wiley & Sons, Ltd. Volume 4, September/October 2014



WIREs Computational Molecular Science Dirac-exact relativistic methods

of chemistry ranging from electronic and vibrational
spectroscopy to molecular modeling, drug design, and
nanotechnology. Especially for molecules containing
relativistic atoms, measured values of polarizabilities
are sparse, and therefore their reliable prediction with
the help of relativistic quantum chemical methods is
desirable.

The second-order term in the Taylor expansion
given in Eq. (54) defines the polarizability tensor:

α = − ∂2E (F )

∂F ∂F

∣∣∣∣
F =0

(82)

Rather than using the tensor α, one normally prefers
to work with the scalar isotropic polarizability, which
is given by the average of the trace of the polarizability
tensor181

α = 1
3

(
αxx + αyy + αzz

)
(83)

and which is invariant with respect to coordinate
transformations.

ZFC95 derived the formulas for the NESC
polarizability, which takes a relative simple form after
deleting small contributions involving the derivatives
of W, U, and G;

ααβ = −tr

[
P̃

∂2L̃
∂Fα∂Fβ

]
− tr

[
∂P
∂Fα

(
G† ∂L̃

∂Fβ

G

)]

= −tr
[
P̃

∂2V
∂Fα∂Fβ

]
− tr

[
∂P
∂Fα

(
G† ∂V

∂Fβ

G
)]

(84)

Since V is a linear function of the external electric field
(see Eq. 54), the second derivative of V in the first
term on the r.h.s vanishes, and Eq. (84) simplifies to
Eq. (85)

ααβ = −tr
[

∂P
∂Fα

(
G† ∂V

∂Fβ

G
)]

(85)

Hence, the scalar relativistic formula for the polar-
izability differs from the nonrelativistic calculation
only by the fact that the derivative ∂V/∂F β has to be
renormalized by matrix G. The derivative of P has to
be calculated via a coupled-perturbed approach.99

In view of the fact that scalar relativistic effects
lead to a contraction of the s- and p-orbitals and to an
expansion of the d- and f-orbitals and that the latter
effect is normally weaker than the former, one can in
general expect a decrease of the electric polarizability
as long as atoms are considered. However, in
molecules, the interplay between relativistic and

electron correlation effects necessitates the use of
accurate theoretical methods for explaining trends in
a series of related molecules.182 ZFC95 investigated
the change in the isotropic polarizability α for
Au- and Hg-containing molecules as well as a
number of other molecules by using the NESC
formalism. Some of their results are summarized in
Table 8.95

The relativistic corrections for the isotropic
polarizabilities are between −0.2 and −2.0 Å3, and the
largest effect is found for HgH (α: 5.83–7.86 = −2.03
Å3, see Table 8). These trends can be related to the
contraction of the 6 s-orbital of Hg, which dominates
scalar relativistic effects of mercury compounds. An
exception is found for HgF2 where the 6 s-orbital
contraction is balanced by the electron-withdrawing
ability of two electronegative F atoms so that the
relativistic and nonrelativistic isotropic polarizabilities
(4.13 and 4.06 Å3, Table 8) become comparable.
Apart from this, the isotropic polarizability follows
some general trends: (1) the α values are larger
for anions than for neutral molecules or cations;
(2) they are larger for radicals than for closed shell
systems (see, e.g., HgH and HgH2: 5.46 vs 5.01 Å3,
Table 8); (3) they increase with increasing atomic
volume, i.e., with each additional electronic shell; and
(4) molecules with more electropositive atoms possess
larger α values than those with more electronegative
atoms.

ZFC95 compared the isotropic polarizability
of osmium tetroxide, OsO4, and hassium tetroxide,
HsO4, obtained at the NESC level with experimental
or previously published values. They found that the
NESC/MP2 value of the isotropic polarizability (8.23
Å3) is in close agreement with the experimental
value of 8.17 Å3. NESC/MP2 also predicted that the
isotropic polarizability of HsO4 is somewhat larger
(8.30 Å3, Table 8) than that of OsO4 in agreement
with the expectation that with increasing number of
electrons and a more electropositive central atom the
polarizability increases.

The NESC/PBE0 results for α of the group 8
tetroxides are more than 1 unit too small (OsO4: 6.89
Å3). In general, NESC/MP2 polarizabilities are more
reliable than the NESC/PBE0 results for α, which
means that DFT can only be used for considering
general trends. NESC polarizabilities were found to
help correct flawed experimental data.95 For example,
the measured isotropic polarizability of UF6 was
measured to be 12.5 Å3,184 which is far too large
in view of a NESC/MP2 value of 8.03 Å3 (Table 8).
The value of α(HgCl2) was given in the literature184

as 11.6 Å3, whereas the calculated NESC/MP2 value
is 8.60 Å3.95
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TABLE 8 Polarizabilities (in Å3) at Optimized Geometries as Obtained with NESC/MP2, NESC/PBE0, or Nonrelativistic (NR) Calculations

Molecule Method αxx αyy αzz α

AuH NESC/MP2 5.05 5.05 6.01 5.37

AuH−
2 NESC/MP2 7.01 7.01 9.34 7.79

AuH−
4 NESC/MP2 9.85 9.85 6.38 8.69

AuF NESC/MP2 4.12 4.12 4.91 4.38

AuF−
2 NESC/MP2 5.34 5.34 6.30 5.66

AuF−
4 NESC/MP2 7.52 7.52 4.34 6.46

UF6 NESC/MP2 8.03 8.03 8.03 8.03

OsO4 NESC/MP2 8.23 8.23 8.23 8.23 (8.17)183

HsO4 NESC/MP2 8.30 8.30 8.30 8.30

HgH NESC/PBE0 5.05 5.05 7.38 5.83

NESC/MP2 4.56 4.56 7.27 5.46

NR/PBE0 7.50 7.50 8.57 7.86

HgH2 NESC/PBE0 4.31 4.31 6.77 5.13

NESC/MP2 4.19 4.19 6.66 5.01

NR/PBE0 5.23 5.23 7.29 5.91

HgH4 NESC/PBE0 7.58 7.58 4.32 6.49

NESC/MP2 7.55 7.55 4.28 6.46

NR/PBE0 9.05 9.05 4.95 7.68

HgF NESC/PBE0 4.37 4.37 6.53 5.09

NESC/MP2 3.87 3.87 6.85 4.86

NR/PBE0 6.35 6.35 6.65 6.45

HgF2 NESC/PBE0 3.31 3.31 5.75 4.13

NESC/MP2 3.33 3.33 5.89 4.18

NR/PBE0 3.30 3.30 5.57 4.06

HgF4 NESC/PBE0 7.35 7.35 3.39 6.03

NESC/MP2 8.23 8.23 3.44 6.64

NR/PBE0 8.92 8.92 3.38 7.08

Experimental values are given in parentheses for comparison.95

NESC AS A TWO-COMPONENT
METHOD: SPIN-ORBIT COUPLING

The SOC effect causes a splitting of the orbital
energy levels (especially the p-levels of heavy atoms)
according to the jj-coupling scheme.1,12–14,24,185–187

This affects the strength of the chemical bond in
molecules with heavy atoms, reaction and activation
energies,94 ionization potentials and electron affinities,
and many other spectroscopic properties. In addition,
SOC can lead to dynamic phenomena such as
spin symmetry-forbidden transitions in molecular
spectra or intersystem crossings between molecular
states with different multiplicity. The calculation
of SOC with NESC requires a 2-component
formulation (2cNESC) as it was originally developed
by Dyall.1,68

FZC103 developed a 2-component NESC method
closely following Dyall’s work.68 This required the
inclusion of the SOC operator, which is split into
a one- and a two-electron part. For heavy elements,
SOC is dominated by the one-electron term. The two-
electron spin-orbit (SO) contributions often reduce the
former term by about 5% for elements with a filled
5d shell and by about 10% in the case of elements
with a filled 6d shell,103 which is an indication of their
overall screening effect. These contributions are not
negligible, however, in most cases they are parallel to
the one-electron SO terms.188

In view of the much smaller two-electron
contributions and the significantly larger costs to
calculate them,189 FZC103 estimated the magnitude
of the two-electron part from the magnitude of the
one-electron SO part, where the latter was accurately
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determined. They employed the screened-nuclear-
spin-orbit (SNSO) approach of Boettger,190 which
was originally formulated within the DKH quasi-
relativistic approximation49–51 and which had been
used by several other authors.191–193

In the modified Dirac equation1,68 given in
Eq. (7), the matrix W = (σ · p)V(r)(σ · p)/4m2c2 can
be split into a spin-free (sf) and spin-dependent part
according to Eq. (86):

W = Wsf + iσ · WSO (86)

The separation is achieved by the use of the Dirac
identity (σ · A)(σ · B) = A · B + iσ · (A × B) and the sf
and the SO parts of the W matrix are defined in
Eq. (8).

Wsf
μν = −

〈
μ

∣∣∣∣ 1
4m2c2 ∇· V (r) ∇

∣∣∣∣ ν〉
(87a)

WSO
μν = −

〈
μ

∣∣∣∣ 1
4m2c2 ∇ ×V (r) ∇

∣∣∣∣ ν〉
(87b)

In these equations, a spinor basis set χ is used which
comprises basis functions for both α and β spin. As
pointed out above, the sf-NESC formalism is obtained
by neglecting the SO part of the W matrix.1,44 The
inclusion of the spin-dependent part of W needed for
SOC is still practical for large molecules as long as only
the one-electron potential (i.e., the electron-nuclear
attraction potential) has to be determined.44

By calculating just the one-electron part in
Eq. (87b), SO splittings in many-electron systems
are seriously overestimated. Including however the
SNSO approximation,14,190 the SOC terms of the
one-electron NESC Hamiltonian are effectively scaled
down so that reasonable SO splittings are obtained.103

This is accomplished with the help of basis-function-
dependent scaling factors, which simulate the effect of
the missing two-electron SO terms:(

HNESC
1e,SNSO

)
μν

=
(
HNESC

1e,SO

)
μν

−
√

Q
(
lμ

)
Zμ

(
HNESC

1e,SO

)
μν

√
Q

(
lν

)
Zν

(88)

In Eq. (88), Zμ is the charge of the nucleus at
which the spinor basis function μ is centered and
Q

(
lμ

)
is a screening factor that depends on the

orbital angular momentum of the function μ; in
particular, Q(l) = 0, 2, 10, 28, · · · for l = 0, 1, 2, 3, · · ·.
By further improving the SNSO approach (called
modified SMSO or mSNSO), FZC103 obtained for

atoms with 1 ≤ Z ≤ 120 and l ≤ 6 (i.e., i-type basis
functions) an agreement of the calculated SO splittings
within 0.02 hartree (spinors with j ≥ 7/2) compared
to 4-component DHF results. These authors used
the 2-component NESC(SNSO) or NESC(mSNSO)
approach in connection with the general HF (GHF)
or general Kohn-Sham (GKS) formalism for obtaining
the total energy and spinor energies of many-electron
systems.194–196

The performance of NESC(SNSO) is illustrated
in Figure 3 for spinor energy splittings of Z = 120
(Ubn: unbinilium) by plotting their deviation (in
percentage) from exact splittings obtained with the
4-component DHF method.

The one-electron SO contributions (given in red)
exaggerate calculated np-splittings on the average
by 2%, nd-splittings by 10%, and nf-splittings by
33% with the deviations becoming somewhat larger
with increasing principal quantum number n. This
exaggeration is largely corrected by the screened
nucleus two-electron contributions so that final 2-
component NESC(SNSO) values differ by just 2%
from the Dirac values. After the mSNSO correction,
the deviations are 1% for np-splittings and only
increase to 3% for the nf-splittings.103

This observation was confirmed when calculat-
ing the SO splitting of spinor energies in molecules.103

In Table 9, calculated SO splittings in cm− 1 are given
for hydrogen halides HX (valence-shell npπ splittings)
with X = F, Cl, Br, I, At, Uus (ununseptium, Z = 117)
and mercury(II) halides HgX2 (mercury 5dπ and 5dδ

splittings) with X = F, Cl, Br, I. For HX molecules,
the splittings range from 380 to 23,955 cm− 1, with
the NESC values always being somewhat larger (up
to 60 cm− 1) indicating that they slightly exaggerate
the splittings because of the approximate two-electron
contributions to SOC. However, the deviations when
given in percentage are similar to those found for
atoms. In the case of HgX2 molecules, the overall
magnitude and the relative precision of the calculated
SO splittings were of the same order of magnitude as
for the bare Hg atom. FZC observed that with the
2-component NESC(mSNSO)/GHF approach reliable
SO splittings and SOC corrections of relative energies
can be calculated.103

CONCLUSIONS

The last two decades have seen a rapid development
of relativistic 1-component and 2-component methods
derived from the exact 4-component Dirac formalism.
This was triggered by Dyall’s 1997 article68 on the
NESC method and his development of programmable
NESC equations. Although it needed more than
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FIGURE 3 | Deviations (in percentage) of the 2-component (2c) NESC/SOC/GHF and NESC/SOC(SNSO)/GHF spinor energy splittings from exact
4-component DHF splittings given in the case Z = 120.

TABLE 9 SO Splittings (in cm− 1) of the Valence npπ Orbitals of HX
and the 5dπ ,δ Orbitals of HgX2 as Given by 4-Component Dirac/HF and
2-Component NESC(mSNSO)/GHF Calculations, Both Obtained with a
Finite Nucleus Model.103

Dirac NESC(mSNSO)

Molecule Splitting1 4-Component 2-Component

HF 2pπ3/2 - 2pπ1/2 381 371(−2.6)

HCl 3pπ3/2 - 3pπ1/2 758 762(0.5)

HBr 4pπ3/2 - 4pπ1/2 2994 3025(1.0)

HI 5pπ3/2 - 5pπ1/2 5942 5979(0.6)

HAt 6pπ3/2 - 6pπ1/2 15513 15538(0.2)

HUus 7pπ3/2 - 7pπ1/2 23955 23978(0.1)

HgF2 5dπ3/2 - 5dπ1/2 5362 5357(−0.5)

5dδ5/2 - 5dδ3/2 18769 19076(1.6)

HgCl2 5dπ3/2 - 5dπ1/2 16266 16579(1.9)

5dδ5/2 - 5dδ3/2 17613 17955(1.9)

HgBr2 5dπ3/2 - 5dπ1/2 16095 16415(2.0)

5dδ5/2 - 5dδ3/2 17446 17794(2.0)

HgI2 5dπ3/2 - 5dπ1/2 15196 15506(2.0)

5dδ5/2 - 5dδ3/2 17286 17637(2.0)

1Different ω-spinors with the same symmetry are differentiated by labeling
them according to the dominant spin-free orbital. For Uus (Z = 117), a mass
number of 2.556Z was used. Relative deviations (in %) from the 4-component
Dirac/HF values are given in parentheses.

10 years to solve the NESC equations exactly with
an algorithm that could also be applied to large
molecules with thousands of basis functions,44 Dyall’s
work represented directly or indirectly an instigator
of work by Kutzelnigg and Liu,45,76,77 Saue,85 Reiher,

Wolf, and Hess,71–74 Barysz and Kedziera,83,86 and
many others. This was reflected by the development
of the infinite-order DKH, the IOTC, or the X2C
methods. Furthermore, Dyall’s work was essential for
a paradigm shift from an operator-driven to a matrix-
driven development of relativistic quantum chemical
methods.

Today the NESC method can be routinely
applied in its spin-free, 1-component form to
determine first-order response properties such as
geometries, electron density distributions, electric
moments, electric field gradients, hyperfine structure
constants, contact densities and Mössbauer isomer
shifts or nuclear quadrupole coupling constants, etc.
Also, there is the possibility of determining in a
standard manner second-order response properties
such as vibrational frequencies and vibrational force
constants in the harmonic approximation, static
electric dipole polarizabilities, infrared intensities,
magnetic shieldings, etc. Clearly, the repertoire of
molecular properties which can be calculated with the
NESC method will be successively extended in the
near future, hopefully including properties such as
anharmonic corrections to the vibrational frequencies
or the indirect spin–spin coupling constants of nuclear
magnetic resonance spectroscopy.

The usefulness and general applicability of 2-
component NESC methods is also steadily growing.
The calculation of SOC effects with the GHF method
is surprisingly successful, although setbacks in the
form of symmetry-breaking or variational problems
will probably emerge. In this connection, one will
need also more experience with both the GHF and
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GKS method. The inclusion of analytical derivatives
will be the next step in this development to routinely
calculate SOC-corrected geometries and other first-
order response properties.

NESC is built on the DC-Hamiltonian. Its
extension to the DCB-Hamiltonian will be a challenge
and necessity for molecules containing transactinides.
Much work has been carried out in this connection,
however easy applicable methods, which can be used
for large basis set calculations and in connection
with correlation corrected nonrelativistic methods,
are not available. For highly accurate calculations,
QED effects have to be considered. However,
these challenges are outside the realm of chemistry

where it is sufficient to achieve chemical accuracy
(±1 kcal mol−1) rather than a spectroscopic accuracy
of a few cm− 1.

In view of the challenges posted by the chemistry
of heavy and superheavy elements, we foresee also for
this decade an active and rapid development of new
relativistic methods, for which Dirac-exact methods
will provide a solid fundament. Apart from this,
NESC will be the basis for numerous investigations on
molecules and chemical reactions involving relativistic
atoms, which will be facilitated once the computer
programs based on NESC will become generally
available.
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31. Pyykkö P, Desclaux JP. Relativity and the periodic
system of elements. Acc Chem Res 1979, 12:276.

32. Calvo F, Pahl E, Wormit M, Schwerdtfeger P. Evidence
for low-temperature melting of mercury owing to
relativity. Angew Chem Int Ed Engl 2013, 52:
7583.

33. Lamb WE, Retherford RC. Fine structure of the
hydrogen atom by a microwave method. Phys Rev
1947, 72:241.

34. Feynman R. QED: The Strange Theory of Light
and Matter. Princeton, NJ: Princeton University Press;
1985.
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193. van Wüllen C, Michauk C. Accurate and effi-
cient treatment of two-electron contributions in
quasirelativistic high-order Douglas-Kroll density-
functional calculations. J Chem Phys 2005, 123:
204113.

194. Seeger R, Pople JA. Self-consistent molecular orbital
methods. XVIII. Constraints and stability in Hartree-
Fock theory. J Chem Phys 1977, 66:–3045.

195. Hammes-Schiffer S, Andersen HC. The advantages of
the general Hartree-Fock method for future computer
simulation of materials. J Chem Phys 1993, 99:1901.

196. Jimez-Hoyos CA, Henderson TM, Scuseria GE.
Generalized Hartree-Fock description of molecular
dissociation. J Chem Theory Comput 2011, 7:
2667.

Volume 4, September/October 2014 © 2014 John Wiley & Sons, Ltd. 467


