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1. INTRODUCTION 

From the perspective of a chemist all sort of matter is essentially composed by a few types 
of elementary particles that can be combined in different ways. These particles do not follow 
the laws of classic mechanics but behave according to the laws of quantum mechanics. They 
present certain features, such as symmetry laws and exchange phenomena, without 
correspondence in a Newtonian world, which have to be taken into account theoretically. 
Constitution of matter is, therefore, a quantum-chemical problem involving many particles. 

Knowledge on ab initio grounds of the true solutions for the full non-relativistic time- 
independent Schr6dinger equation of molecules, within the Born-Oppenheimer 
approximation, has been considered as one of the Grand Challenge problems in science since 
the birth of quantum mechanics at the beginning of the twentieth century. The term "ab initio" 

is Latin and the English meaning is "from the start", that is, from the first principles, implying 
that no parametrization at all is employed. Unfortunately, the Schr6dinger equation for a 
molecule, except for small systems, cannot be exactly solved at present and we are forced to 
look for appropriate algorithms to obtain approximate solutions. Within the framework of a 
particular technique (variation principle, perturbation theory, or other schemes), the procedure 
can be still performed at the ab initio level. With the need of methodological development, 
the discipline of Quantum Chemistry emerged and, in order to perform the applications of 
interest, a large number of approximate quantum-chemical methods is currently available. 
The main ideas for many of those methods come from the earliest methodological attempts 
but significant new algorithms have been developed and implemented into efficient software 
in the last decade. 

Chemists have been some of the most active and innovative participants in the rapid 
expansion of computational science. Computational chemistry can be regarded as the 
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application of chemical, mathematical, and computing skills to the solmions of chemical 
problems. Obtaining approximate solutions to the Schr6dinger equation is the basis for most 
of the computational chemistry performed today. The quantum-chemical applications 
performed serve many times as source of inspiration for new methodological developments. 
In what follows we shall consider reliable ab initio methods, those that offer reasonable 
answers for well-defined chemical problems. In practice, it is usually difficult to find a given 
method that can be applied to the successful calculation of many distinct chemical properties. 
Consequently, it is of major importance the selection of the proper method to be employed in 
the computation of a given molecular property. In the present chapter, we shall focus our 
attention mainly on the performance of ab initio methods for the description of spectroscopic 
molecular properties of compounds. The material presented is probably biased to our own 
work, but a fair coverage or other viewpoints can also be found. 

2. GENERAL OVERVIEW 

Most of the quantum-chemical methods developed up to date have been based on the 
concept of the one-electron wave function. The electronic states of a system with N electrons 
can be described by a double expansion. Molecular orbitals (MOs) are one-electron wave 
functions expressed as linear combinations of a known one-electron basis set {K} and the N- 
electron wave function is formulated in a many-electron basis set formed by determinants (or 
linear combination of them to form spin-adapted wave functions), built as normalized 
antisymmetric products of MOs. In principle, if the one-electron basis set {K} is complete, 
and a complete many-electron basis set can be generated by considering all possible 
occupations for the corresponding MOs, the true solution of the Schr6dinger equation can be 
achieved. Such a computation is not possible technically in most cases and in actual 
applications the one-electron basis set has somehow to be truncated. Nevertheless, when all 
the N-electron wave functions are taken into account, the calculation is named full 
configuration interaction (FCI) and the corresponding eigenvalues and eigenvectors 
computed are exact within the space spanned by the finite basis set. Despite the great 
advances in FCI technology in the last few years, the size of the eigenvalue problem becomes 
rapidly too large to be handled by modem computers. As a result, FCI solutions are only 
available for relatively small molecular systems. We have, unfortunately, to land in the field 

of truncations, in both the one- and many-electron basis sets. Truncations performed in the 
one-electron basis sets together with the limitations introduced in the many-electron basis 
sets, which are normally truncated at a given degree of excitation (considering up to singly, 
doubly, triply, ... excited determinants) are the most important source of inaccuracies in the 
quantum-chemical calculations. The type of truncations carried out in conjunction with the 
class of techniques employed (variation principle, perturbation theory, and others) 
characterizes most of the methods currently employed through the available commercial 

software. 

Since the ground state of a large number of molecules at the equilibrium geometry is well 

described qualitatively by a single electronic configuration, it is not surprising that great 
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efforts have been devoted in the development of treatments such as Moller-Plesset 
perturbation theory (MP2, MP3, MP4), singles and doubles configuration interaction (CISD), 
and related non-variational approaches like coupled-electron pair approximation (CEPA), as 
well as coupled-cluster (CC) methods, in which the starting point is the Hartree-Fock (HF) 
wave function [1-4]. In contrast, the situation is quite different for the description of 
electronically excited states, which normally have several configurations equally relevant. 
The same may occur in certain regions of the ground-state hypersurface, far away from the 
equilibrium structure, for instance, in a transition state (TS) or in the dissociation limit of a 
homolitic breaking process of a covalent bond. In order to gather satisfactory results, one has 
to supply a wave function bearing enough flexibility to treat the required number of 
configurations on an equal footing. The goal can be nicely accomplished by the 
multiconfigurational self-consistent field (MCSCF) approach. For just a single configuration, 
it is equivalent to the MO model most commonly used in quantum chemistry: the HF SCF 
procedure. The complete active space SCF (CASSCF) is a variant of the MCSCF method that 
has become particularly popular because of its technical and conceptual simplicity. In the 
CASSCF method the active electrons are distributed among the active orbitals in all possible 
ways consistent with a given spatial and spin symmetry of the electronic state. The number 
and nature of the active orbitals and electrons are decided by the user. Normally, it is a crucial 
step for the successful performance of the approach, which must be guided by a deep 
knowledge of the chemical process under consideration in order to offer the required 
flexibility. It is not a question of chemical intuition but of chemical knowledge. Nothing 
easier than getting meaningless CASSCF results if the active space is meaningless for a given 
application. It is worth mentioning at this point that the ultimate responsibility for the 
selection and use of a given method relies on the user. For this purpose, calibration 
calculations are often enlightening. At the CASSCF level one usually takes into account long- 
range effects related to the so-called non-dynamic (static) correlation effects, making it 
possible the proper treatment of several nearly degenerate configurations. The remaining 
electron correlation effects, associated with the instantaneous short-range electron-electron 
interaction, can be accomplished by using variational methods like muti-reference CI (MRCI) 
[5-9] or employing perturbation theory by means, for instance, of the CASPT2 method 
(complete active space perturbation theory to second order) [10-12] or other related 
multireference perturbation theory (MRPT) schemes [ 13, 14]. 

According to the number of configurations considered initially, the methods can be 
classified in the following two categories: 

Single-configuration methods. They are typically based in the HF reference, which 
determines the MOs. The electron correlation treatment is usually performed at the CI, 
CC or MP levels. The coupled-cluster methods with singly and doubly configurations 
including the effect of triple excitations by perturbation theory CCSD(T), as well as 
related approaches, may yield accurate results. In general, the applicability of the 
methods in this group is restricted to situations where a single reference wave function 
is adequate for the description of a chemical process. 
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Multiconfigurational methods. Part of the electronic correlation is already included in 
the reference wave function, normally by using a MCSCF wave function, which 
determines a set of MOs. The remaining electron correlation effects are accounted for 
by MRCI, MRCC or MRPT techniques. They have a more ample range of 
applicability (ground state, excited states, TS, ...). 

The accurate CASSCF/MRCI protocol is computationally demanding, and quite often is 
not tractable, because a satisfactory selection of the active space requires huge technical 
resources. On the other hand, since a decade ago the multiconfigurational second-order 
perturbation theory CASPT2 has shown to be an efficient alternative, yielding an 
advantageous rate between the quality and the computational cost for the description of 
excited states in systems of relatively large molecular size [15-18]. Apart from MRCI, 
CASPT2 and other different MRPT algorithms, a quick inspection of the recent literature on 
excited states reveals that the following methods are also used quite often: CI-singles (CIS) 
[19], Random-Phase Approximation (RPA) and related approaches [20], as well as coupled- 
cluster based methods, Symmetry-Adapted Cluster CI (SAC-CI) [21], Equation-of-Motion 
CC (EOM-CC) [22], and linear response CCn [23]. They shall be reviewed in Section 4 from 
a practical point of view, making special emphasis on the expected advantages, 
disadvantages, and applicability in the qualitative/quantitative understanding of the electronic 
states. In addition, the performance of the time-dependent density functional (TD-DFT) 
approach, which is becoming widely used for the treatment of excited states, shall also be 
discussed. Because of the primordial role that electronic correlation plays in the relative 
placement of electronic states, the essentials shall be considered separately in the next section. 

3. ELECTRON CORRELATION IN MOLECULES 

The extended treatment of electron correlation has traditionally been the bottleneck to 
achieve accurate results for excited states. Therefore, let us consider in this section the 
meaning of electron correlation in molecules from different perspectives. 

The major goal in quantum-chemical methodology for a molecular system formed by N 
electrons (i, j, ..) and M nuclei (A, B, ..) is finding reliable approximate solutions of the 
stationary electronic states as solutions of the Schr6dinger equation 

I~(I)-~cI) (1) 

where the electronic wave function �9 depends explicitly on the N electronic coordinates xa, 
xz, x3,...xN and parametrically on the nuclear coordinates, within the well-known Born- 
Oppenheimer approximation. The three spatial coordinates ri and the one spin coordinate coj 
are denoted collectively by xi. In atomic units (au), the electronic Hamiltonian operator is 

= - - -  V 2 - m Z A  

2 i= l  i= l  = i 

+ ~~ j~>~ (2) 
i= l  " " r u 
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The first term in Eq. (2) describes the kinetic energy of the electrons; the second term 

represents the Coulomb attraction between electrons and nuclei; the third term corresponds to 

the repulsion between electrons. The total energy for fixed nuclei includes the nuclear 
repulsion, a constant at a given geometry, 

~tot "-~-k- Z B (3) 
A=l B >A U AB 

and provides a potential for the nuclear motion. Eq. (1) constitutes the electronic problem, 
which has been during decades of major concern in methodological developments. 

The physics of electron correlation is hidden in the Hamiltonian itself. The Coulomb 
repulsion given by the term r -1 , the inverse distance between two electrons, increases ij 
enormously in the regions close to rij = 0, preventing that two electrons may occupy the same 
space. Therefore, the motion of any two electrons is not independent but it is correlated. The 
phenomenon is known as electron correlation. Moreover, the statement that two electrons are 
correlated is equivalent to express that the probability of finding two electrons at the same 
point in space is zero. The instantaneous position of electron i forms the centre of a region 
that electron j will avoid. For this reason, it is stated that each electron, as described by the 
exact wave function (I), is surrounded by a Coulomb hole. However, electron correlation is not 
taken into account properly by many approximate methods. The effect of neglecting electron 
correlation partly in approximate quantum-chemical approaches has great impact in the 
molecular spectroscopic properties of interest (computed transition energy, nature of the 
electronically excited states, related oscillator strengths, etc). 

The simplest wave function to describe a many-electron system is a Slater determinant 
built by orthogonal one-electron wave functions. Electrons are fermions and accordingly they 
have to be described by an antisymmetric wave function. For an N-electron system the Slater 
determinant has the form 

1 T=~;.v 
~1 (Xl) ~2(Xl) "'" ~M(Xl)J 

z~ (x~).. ~ (x~)..... ~ (x~)]. 

~I(XN) ~ 2 ( X N ) " ' "  ~N(XN)I 

(4) 

The constant  (N!) -1/2 is a normalization factor. The wave function for an electron that 

describes both the spatial distribution and its spin is called spin orbital, ;~i(xi). Since the 

Hamiltonian employed does not depend on the electronic spin (see Eq. (2)), each spin orbital 
can be expressed by multiplying the spatial orbital, ~j(ri), by the spin function, rl(c0i) 

~i(Xi) - -  vj(ri) rl(COi) (5) 
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A complete set for describing the spin of an electron consists of two orthogonal functions 
(z(coi) and 13(coi). Itaccounts for the fact that to completely describe an electron is necessary to 
specify its spin. Therefore, within the non-relativistic framework, inclusion of the electronic 
spin is phenomenological. To simplify the notation, a normalized Slater determinant is 
represented by only showing the diagonal elements of the determinant, including the 
normalization factor 

�9 . . .  (6) 

A single-determinant wave function has several interesting properties. Firstly, it is worth 
noting that spin orbitals must be linearly independent, otherwise the value of the determinant 
is zero. It is obvious that interchanging two rows of the Slater determinant, which is 
equivalent to interchanging the coordinates of two electrons, changes the sign of the 
determinant. The requirement of the antisymmetry principle is automatically fulfilled. Having 
two columns of the determinant identical, that is, two electrons occupying the same spin 
orbital, makes the determinant zero. Thus, no more than one electron can occupy a spin 
orbital (Pauli exclusion principle). When a linear transformation of the set {)~i} is carried out, 

N ' Z  7~i = 7~j Aji (7) 
J 

where Aji is an element of the matrix A of dimension NxN, with a value for its determinant, 
det(A), different from zero, then 

~P' = det(A) ~P (8) 

The wave functions ~P' and ~P differ just in a constant and, therefore, represent the same 
physical situation. Since the set of spin orbitals is linearly independent, we can always choose 
a transformation matrix A so that the resulting spin orbitals ;~i become orthonormal. 
Therefore, no restriction at all is imposed when we choose from the beginning an orthonormal 
set of spin orbitals. It just makes the computation of the Hamiltonian matrix elements 
involving Slater determinants easier. A Slater determinant is completely specified by the spin 
orbitals used to build it and any unitary transformation of them is equally valid. Two sets of 
spin orbitals related by a unitary transformation (A t = A-l), which keeps the orthonormality of 

the spin orbitals, yield the same Slater determinant (see Eq. (8)). Slater determinants formed 
from orthonormal spin orbitals are normalized and N-electron Slater determinants that have 
different spin orbitals are orthogonal. 

The Slater determinant fulfils the basic symmetry law derived from the identity principle, 
because it describes N electrons occupying N spin orbitals (;~1 ~2 ""ZN) without specifying 
which electron is in each orbital. From a physical viewpoint, the use of a Slater determinant 
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wave function to describe a many-electron system implies that we are immersed in a model of 
independent electrons, where the electrons are not correlated, and the Coulomb hole is 
discarded. Nevertheless, it can be easily demonstrated that in a Slater determinant the motion 
of two electrons with the same spin function is correlated, that is, the probability of finding 
two electrons with parallel spins at the same point in the space is zero, the so-called exchange 
correlation, which is incorporated by the antisymmetric condition of the wave function for 
fermions. The phenomenon is known as the Fermi hole. We are, therefore, facing a model of 
independent particles where the behavior of certain electrons is not fully independent, because 
the Fermi hole simulates somehow the Coulomb hole. Since the motion of electrons with 
different spin function remains uncorrelated (there is a finite probability of finding two 
electrons with opposite spins at the same point in space), a single determinant wave function 
is commonly referred as an uncorrelated wave function. 

The Hartree-Fock approximation usually constitutes the first step towards more accurate 
approximations and has played a crucial role in elucidating modem chemistry. Indeed, many 
of the quantum-chemical methods can be considered either as simplifications of the HF 
method or going beyond it. The HF method provides the mathematical tools to obtain the 
unknown spin orbitals to build the best Slater determinant by making use of the variation 
principle. Let us consider a single Slater determinant to describe the ground state of an N- 
electron system 

ki/0 --1~1~2 ""~a~b "''~N) (9) 

The variation principle states that the best wave function of this functional form (single 
determinant type) is the one giving the lowest energy 

where I2I is the electronic Hamiltonian. By minimizing E0 with respect to the choice of spin 
orbitals one can arrive to the Hartree-Fock conditions, which can be expressed in many 
different manners, and in particular the canonical expression takes the form 

?~a--~a~a a=  1...N (11) 

where f is an effective one-electron operator, called the Fock operator, which actually 
depends on its eigenfunctions. Thus, the HF equation (11) is not linear and must be solved 
iteratively through the SCF method. The Fock operator is the sum of a core-Hamiltonian 
operator and an effective one-electron potential operator. The former is the kinetic energy and 
potential energy for attraction to the nuclei and the latter is the average potential experienced 
by the electron described by the occupied spin orbital ~a due to the presence of the remaining 
N-1 electrons. The solution of the HF eigenvalue problem, Eq. (11), yields a set of 
orthonormal canonical spin orbitals {)~m} with orbital energies {em}. The N spin orbitals with 
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the lowest energies are called occupied orbitals and span the Fock space. The remaining MOs, 
the virtual orbitals, span the complementary Fock space. Any unitary transformation within 
the Fock subspace leaves the HF energy invariant, Eq. (10). Transformations among the 
virtual orbitals can also be performed as long as the subspace spanned by the virtual spin 
orbitals remains orthogonal to the Fock subspace. They are particularly useful to improve 
(localize) the virtual MOs prior a MRCI calculation, which makes the convergence of the CI 
expansion more efficient [24]. 

In practice, the HF equation is solved by introducing a finite basis set of spatial basis 
functions {q~l g = 1,2,...K} resulting in different matrix equations: Roothaan equations for 
closed-shell restricted determinants, Pople-Nesbet equations for unrestricted determinants, 
and Roothaan-Hartree-Fock equations for open-shell restricted determinants [1, 25-27]. 
Increasing the flexibility of the one-electron basis set {q~}, the HF energy E0 will 
progressively reach a limit, called the Hartree-Fock limit (the exact HF energy). This limit 
cannot be usually achieved and the computed HF energy with a finite basis set is somewhat 

above it. 

The correlation energy (Ecorr) is defined as the difference between the exact non-relativistic 
energy of the system (e0) and the HF energy E0 in the limit that the basis set approaches 

completeness 

Ecorr = ~;0 -- E0 (12) 

Since e0 is lower than E0, the correlation energy is negative. Because of the use of a complete 
basis set is prohibitive, or simply impossible, the exact electron correlation of a system cannot 
be computed, except for small systems. Definition of Ecorr corresponds then to the difference 
between the energy computed at a given level of the electron correlation treatment and the 
corresponding HF energy, both computed with the same, flexible enough, one-electron basis 

set {q~}. 

The HF wave function, as it is a Slater determinant, the best one indeed in the sense of the 

variation principle, enjoys the basic features discussed above for determinants. Therefore, the 
HF wave function is uncorrelated, which leads to certain limitations in actual applications. 

For instance, it is well lmown that the restricted HF method cannot describe the dissociation 
of molecules into open-shell fragments (e.g. H2 ~ 2H). Let us address this aspect with a 
model: the hydrogen molecule described in a minimal basis set, which also serves to 

introduce in a natural way more complicated functions including electron correlation. 

In a minimal basis model of the H2 molecule there are only two MOs, which are linear 
combinations of the two functions q)A and q)B placed on the nuclei HA and HB, respectively. 
The occupied molecular orbital, the bonding orbital of (~g symmetry, has the lowest energy, 
and the virtual orbital corresponds to the antibonding combination of ~u symmetry 
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Ill2 (i) - 1 ~  (q~A (i) -- q~ (i)) (•u) (13) 
~/2(1-- S) 

/1/1 (i)= 1 (q~A(i)_+_q)B(i)) - - % - -  (%)2 (14) 
x/2(1 + s) 

where s = < q~A[q)B > is the overlap between the basis functions. The case is simple enough 
that the solutions to Roothaan's equations are determined by symmetry arguments. The 
symmetry of the breaking process is maintained along the dissociation path and, therefore, the 
MOs have the same form independently of the interatomic distance R. Close to the 
equilibrium geometry, the ground-state wave function is 

W0 (1 Z;, R = Ropt) ]/1/, ~,) (15) 

which expanded in terms of the basis functions leads to 

W0 1 + 
( Zg, R -  aopt) - 2(1 + s) 

In Eq. (16), the first and second terms correspond to ionic configurations in the valence 
bond (VB) theory HA-HB + and HA + HB-, respectively, while the third and fourth terms 
represent covalent situations. The four terms share the same coefficient, therefore, their 
weight is the same at a given distance R. Consequently, as R--~oo, s-~0, and the dissociation 
limit obtained is 

1 
E0 = ($0(~0] I2I I ~~ ) -~-- 1 (4 E(H) + 2 E(H- ))= E(H) + ~ E(H- ) (17) 

The limit, rather than being twice the energy of the hydrogen atom in the same basis set 
(2E(H)), includes the spurious term E(H-)/2 reflecting the contribution of the ionic structures 
even at infinity. However, the incorrect behavior of the restricted HF theory at long 
interatomic distances for systems that dissociate into open-shell products does not detract 
from the validity of the approach around the equilibrium geometry, where the HF method has 
been shown to be remarkably successful for closed-shell ground-state systems. 

The ground state of the H2 system in the dissociation limit corresponds to two ground-state 
hydrogen atoms (2S) and the correct spin adapted wave function is 

% ( , 1 
(18) 
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that in terms ofMOs (Eqs. (13) and (14) with s = 0) can be rewritten as 

To (~ , 1 ~g g -- ~ "- ' ~  ( I/Jr/ill > - I/~I2~2 > ) (19) 

The previous expression suggests that in order to decrease the weight of ionic determinants 
in Eq. (16) at interatomic distances close to the equilibrium geometry, R=Ropt, one has to 
combine the determinants corresponding to the ground-state (og) 2 and doubly excited 
(0~i)2 configurations. The procedure is known as the configuration interaction (CI) method 

(20) 

being )~< 0 the variational parameter. As R--~oo, then K --~ -1, and the functions (20) and (19), 
except for a normalization factor, become equivalent. The method offers a proper treatment of 
the spatial correlation of the electrons, called left-right correlation, making it possible that the 
two electrons belong to different nuclei. In summary, in order to get a correct dissociation the 
doubly excited configuration involving the antibonding orbital has to be invoked because it 
has at infinity the same weight as the closed-shell ground-state configuration. 

Alternatively, one could think that the unrestricted HF (UHF) approximation might be a 
solution. It can be shown that the UHF energy goes to the correct limit but the total wave 
function does not. The UHF solution for the H2 molecule is not a pure singlet but it is 
contaminated by a triplet, which is required to make the UHF wave function a single 
determinant. At the dissociation limit the triplet contamination represents 50% of the wave 
function. Therefore, an unrestricted solution does not provide the best starting point neither 
for configuration interaction nor perturbation calculations. 

A similar reasoning employing CI wave functions can be also performed to analyze the 
two-electron correlation relative to the nuclear positions. These short-range correlation effects 
are typically called radial and angular correlation. They are related to the larger preference, in 
relation to the HF description, that two electrons actually have to be far apart of each other: 
close/far from the nucleus of an atom (radial) and in opposite ways in a given direction, 
up/down, in the space surrounding the nucleus (angular). It is worth noting, however, that 
approaches based on many-electron basis sets (determinants or Configuration State Functions, 
CSFs) built as products of one-electron wave functions (orbitals) cannot represent exactly the 
shape of the Coulomb hole, although it becomes reasonably described with large CI 
expansions. Unfortunately, as stated above, the convergence of the CI expansion is slow. The 
reader is referred to the interesting and recent contribution reported by Knowles, Schatz, and 

Werner for a more detailed discussion on the topic [ 14]. 

In molecular systems, electron correlation is usually computed in two steps. Firstly, non- 
dynamic electron correlation is accounted for by using a CASSCF wave function or a selected 
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number of configurations. In a second step, the remaining electron correlation effects 
(dynamic correlation) are estimated by considering the singly and doubly replacements from 
the MRCI or the CASSCF wave functions. The borderline between non-dynamic (static) and 
dynamic correlation is not clearly defined in most cases. Normally, correlation energy arising 
from long-range terms allowing the correct asymptotic behavior in a molecular dissociation is 
referred to as non-dynamic correlation. The remaining correlation energy dealing with short- 
range effects relevant in describing the Coulomb hole as accurate as possible is associated 
with dynamic correlation. Inclusion of both types of correlation is crucial in order to gather 

accurate results. For instance, a good (uncorrelated) HF SCF calculation tends to 
underestimated bond lengths with respect to a (reliable, gas phase) datum determined 
experimentally because in a HF wave function the ionic and covalent terms (in the VB sense) 
are equally weighted, making single covalent bonds too tightly bound. As can be easily 
deduced from Eq. (20), non-dynamic electron correlation decreases the effect of ionic forms 
in the CI wave function, leading to too long bond distances. A subsequent introduction of 
dynamic correlation recovers such an overestimation, leading the computed geometry to a 
closer agreement with the experimental datum. 

One of the most efficient manners of dealing with non-dynamic electron correlation is by 

using the CASSCF wave function comprising as active the valence MOs and valence 
electrons. For instance, it leads in a diatomic molecular system to the correct dissociation 
limit, that is, to the sum of the energies for the isolated atoms. This property is termed size- 
consistency, which requires that the energy of two non-interacting systems be the sum of the 
individual system energies. Many of the contributions of the valence CASSCF are not 
actually required to get the adequate dissociation limit. Shorter MCSCF wave functions 
would equally make it correctly, as the GVB-PP approach, which becomes equivalent to a 
selected pair-wise MCSCF wave function, but the valence CASSCF is still preferred because 
its implementations have technical advantages that, in general, make the computation easier. 
However, the idea that the valence CASSCF wave function is the most general way to obtain 
a proper treatment of non-dynamic electron correlation leads sometimes to surprises. For 
instance, the valence CASSCF yields for the water molecule to an asymmetric structure, with 
two non-equivalent O-H bonds. The right C2v structure can be recovered by enlarging the 
active space with an extra orbital which makes then the calculation balanced with respect to 
the treatment of both bonds (see discussion in Ref. [28]). Thus, the idea that the best choice of 
active orbitals corresponds to the valence MOs is not always supported, although the fact that 
valence electron correlation is linked to non-dynamic correlation effects holds true. 

In the computation of excited states for small-medium molecular systems, the valence 
excited states are usually interleaved among a number of Rydberg states. Therefore, the one- 

electron basis set has to be flexible enough to compute both valence and Rydberg states. 
Consequently, the active space has to include the necessary valence and Rydberg MOs. In 
those situations, the CASSCF wave function takes into account some dynamic and non- 

dynamic electron correlation. In summary, selection of the active space has to be performed in 

accordance with the application at hand. It is not a black-box procedure and might not be 
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straightforward, although is far from being impossible because there is a large body of 
information accumulated. As in any scientific research, one has to become familiar with the 
available literature on the issue prior the actual computation gets started. In this sense, the 
choice of the active space for CASSCF calculations is not an exception. The effort is 
rewarding because, when a proper CASSCF wave function is employed as reference function 
for a subsequent treatment of dynamic correlation (MRCI or MRPT), the results are accurate 
within 0.1-0.2 eV, which is an error bar sufficient for many spectroscopic applications. 
Otherwise, if higher accuracy were required the whole selection procedure for the proper 
methodology has to be redone. For instance, in the description of weak interacting systems 
like in the NO dimer, N202 [29], the Averaged Coupled-Pair Functional (ACPF) [30] method 
was preferred because it is strictly size-extensive, that means it has the correct scaling with 
the number of particles, whereas any other forms of truncated CIs, as well as the CASPT2 

method, are not [14, 16]. 

The natural orbitals (NOs) derived from a Restricted Active Space SCF (RASSCF) 

calculation, an extension of the CASSCF method [31], are a good choice for a single-root 
MRCI computation [32]. Natural orbitals are defined as density matrix eigenvectors. Since the 
trace of the density matrix is equal to the number of electrons, the associated eigenvalues are 
interpreted as the corresponding occupation numbers of the NO. It can be shown that for two- 
electron systems, a CI wave function written in terms of doubly excited determinants built 
from NOs offer the most compact one-electron basis set [1, 14]. Implicit to a variational 
calculation is the fact that the largest contributions come from pairs of electrons occupying 
the same region of physical space ( ~1, c~1 ; =1, rcl ; etc). One of the best manners of localizing a 
pair of MOs in a given spatial region is through a pair-wise MCSCF computation; the 
decrease of the energy associated with that pair of electrons to fulfill the variation principle is 
directly related to the increase of the corresponding exchange integral between the two MOs. 
As larger is the exchange integral involving a pair, more localized the two MOs would 
become. The main effect is carried out on the virtual MO of the pair, especially when 
canonical MOs are used as starting point. Virtual canonical MOs are computed in the mean 
field of N electrons, and therefore they become too diffuse. In contrast, the occupied 
canonical MOs are properly obtained in the mean field of the remaining N-1 electrons. In 
general, canonical MOs represent the most inefficient choice of one-electron basis set for the 
purpose of CI calculations. The convergence of the CI expansion is significantly improved 

with a set of localized MOs. Among many different choices of MOs available, the best 

corresponds to NOs derived from an MCSCF calculation [24]. The CASSCF/MRCI approach 
is capable of yielding accurate results on medium size molecules as shown in the eighties by 

many authors, in particular Bauschlicher and co-workers [33]. 

4. AB INITIO METHODS: ESSENTIALS FOR EXCITED STATES 

In order to write the present section, two criteria have been used. Firstly, the methods 
included respond to the fact they are frequently used for the study of excited states, as it can 
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be easily checked from a rapid search on papers published during the last few years. 

However, it does not mean that in the authors" opinion all of them are appropriate for the 

treatment of excited states. It just reflects in certain cases that, despite of their well-known 

limitations, they are commonly used nowadays. Secondly, in an attempt to keep this 
contribution as practical as possible for a researcher interested in using ab initio methods for 
computational chemistry, the methodological details are kept to the minimum. In order to get 
further insight into the methods, the reader is referred to the original papers or more advanced 
material. Advantages and disadvantages on the applicability of the corresponding approaches 
shall, however, be emphasized. According to the classification introduced in Section 2, under 
the headings single-configuration and multiconfigurational methods, as appropriate, the most 
popular approaches used today are next discussed. 

4.1. Single-configuration methods 
Within the molecular-orbital model, the simplest manner to describe the excited states of a 

molecule that one can think of is by one- (or two)-electron promotion(s) from the occupied to 
the virtual canonical MOs obtained from the SCF calculation at the equilibrium geometry of 
the corresponding ground state. Within this scheme, the energy difference of two orbital 
energies can be related to the vertical excitation energy absorbed by a molecular system. The 
smallest energy difference occurs between the lowest unoccupied molecular orbital (LUMO) 
and the highest occupied molecular orbital (HOMO). That the excited state described mainly 
by the HOMO~LUMO one-electron promotion does not always correspond to the lowest- 
energy transition is strongly supported by high-level ab initio results, as well as experimental 
evidence [15-18]. In summary, this simple approach usually yields predictions that might not 
be even correct qualitatively. Nevertheless, analysis of the leading configurations of a 
complicated multiconfigurational wave function on the basis of the corresponding NOs, 
which are topologically similar to the canonical MOs, is very helpful. In fact, this is the 
underlying meaning of an excited state labeled, for instance, as HOMO--~LUMO coming 
from an extended CASSCF computation. 

Giving a step forward, a vertical excitation energy can be estimated by two HF/UHF SCF 
calculations of the respective ground and excited states. As it occurs also in the computation 
of ionization potentials at the HF level, the accuracy of the result for the lowest excited state, 
independently of its multiplicity, strongly depends on the molecule under consideration. The 
source of the errors is related to the intrinsic limitations of the HF approach: lack of electron 
correlation and spin contamination for an unrestricted open-shell wave function. Because only 
exchange correlation is included, UHF triplet states are strongly favored with respect to open- 
shell singlet states, which leads to the wrong ground state for some biradicals [34]. All these 
approaches are sometimes known as the ASCF method [2, 35]. 

The next step in complexity leads to the widespread method called CIS (Configuration 
Interaction-Singles) [19]. The essence of the method is to consider that an excited state can be 
described by a singly excited determinant formed by replacing, with respect to the HF wave 
function, an occupied spin orbital with a virtual spin orbital. The drawbacks of such a 
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description may be partially compensated if a linear combination of all possible single excited 
determinants (q~i a) is used to build the excited state wave function as: 

M N 

I'}/CI S -- Z Z Ciakq)~ 
i a 

(21) 

where the coefficients Ciak are the components of the eigenvector for state k, M is the number 
of occupied orbitals (i) from which excitation is allowed, and N the number of virtual orbitals 
(a) into which excitation is considered. The singly excited states are orthogonal to the ground 
state because of the Brillouin theorem, but not necessarily to each other. The 
orthogonalization of the states is the essence of the CIS (CI-Singles) technique. The CI- 

singles procedure involves diagonalization of the CI matrix formed from the HF reference and 
all single excited configurations. The final outcome is a set of energy eigenvalues associated 
with eigenvectors in which the coefficients of the singly excited determinants, variationally 
obtained, characterize the state. The technique is size-consistent, allows spin flips in the 
excited electrons, and therefore to describe singlet and triplet wave functions, and also to 
obtain analytical gradients [ 19]. The description of the ground state in the CIS method is kept 
at the HF level. The CIS method clearly differs from a ground-state CI calculation in the 
sense that the former simply requires from the ground state the optimal HF MOs and the CI is 
performed to orthogonalize the singly excited states, while the latter includes CI excitations, 

higher than singles, to improve the description of the ground state itself. 

The main flaw of the CIS method is the lack of correlation energy. Further attempts to 
solve the problem by using double excitations [36] or perturbation theory [19] were not 
successful. Improved results have been obtained with semiempirical parametrizations of the 
CIS matrix elements, for instance using the INDO/S approach [2]. In general the CIS 
excitation energies are largely overestimated due to the absence of electron correlation 
energy. For instance, a calculation on the singlet excited states of benzene reported a mean 
absolute error of 0.7 eV, with deviations as large as 1.4 eV, although larger errors are 
common [37]. Despite the claims that the results are qualitatively useful because the states are 
correctly ordered [2], the facts speak to the contrary. There are more cases in the literature 
[38-40] of failures in the prediction of the CIS energy ordering that successes, simply because 
the differential correlation energy affects the excited states unevenly and because the intrinsic 
character of the states is multiconfigurational. The well-known 2lAg state of polyenes, one of 
the main protagonists of their photochemistry, is a good example. For trans-l,3-butadiene 
there is no CIS lAg ~7~* valence excited state below 9.0 eV [41], more than 3 eV higher than 
most of high-quality multiconfigurational methods [42, 43]. In a CASSCF description, the 
doubly excited configurations contribute by 42% to the state wave function. CIS, as most of 
the single-configuration methods, will have enormous problems to describe such states. In 
systems were purely doubly excited states exist at low energies [44], these methods cannot 
even represent such states. In summary, the CIS method is clearly unsafe and its use is 

discouraged because the obtained results are usually misleading [38-40]. 
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A large number of methods to compute excited states is included under the denomination 
of propagator approaches [20]. As such, the underlying technique, also called Green's 
function approach, equation-of-motion or linear response theory in its different formulations, 
can be applied to various types of methodologies whether single- or multiconfigurational 
configuration interaction, coupled-cluster, or density functional. The basis of the technique 
considers that once a molecule is subjected to a linear time-dependent electric field 
fluctuating with frequency 0), a second-order property as the frequency-dependent ground- 
state polarizability of the system is well approximated by 

K i >i 2 states /-I-/01r vii i 

~o~ -- Z 
i~0 0) - A E  i 

(22) 

where the denominator of the expression involves the frequency of the field and the excitation 
energies (AEi) characterizing the excited states (i), while the numerator of each term is the 
square of the transition dipole moment between the ground and the corresponding excited 
state [2, 20]. Using complex function analysis it is possible to obtain the poles of the 
expression, that is, the values for which the frequency corresponds to the excitation energies 
and the denominator goes to zero, while the residues provide the numerators, in this case the 
one-photon absorption matrix elements. Higher-order quadratic response theory determines 
third-order molecular properties, as the first hyperpolarizabilities, and from them two-photon 
absorption matrix elements [45]. The peculiarity of the propagator approaches is that the wave 
functions of the individual states are not necessarily computed to obtain excitation energies 
and transition probabilities, while its quality relies on the type of reference wave function. 

A hierarchy of approximate propagator methods can be defined as function of the selection 
of the order of the particle-hole replacement operators. The most popular among the 
polarization propagator methods is the Random-Phase Approximation (RPA) or Time- 
Dependent Hartree-Fock (TDHF) approach, where the used reference is the HF ground state 
and a single replacement operator is employed [20], and that is equivalent to the Coupled 
Hartree-Fock (CHF) approximation for time-independent perturbing fields [46]. Further 
developments of the method have included second-order perturbation (MP2) based 
approaches such as the Second-Order Polarization Propagator Approach (SOPPA) method, in 
which the so-called density-shift terms, particle-particle and hole-hole, are included [47, 48]. 
Many other variants have been developed, but our goal is not to perform a systematic review 
[20]. Just to mention the second- and third-order Algebraic-Diagrammatic Construction 
(ADC) approach, a Green's function one-electron propagator approach which has been 
applied in recent years to several problems [49]. Methods based on Green's function belong to 
the same hierarchy of approaches. They are typically expressed in the energy-dependent 
formalism, which can be transformed to the time-dependent propagator formalism by using a 
Fourier transform. One-particle many-body Green's functions methods are basically employed 
to compute ionization potentials (IPs) and electron affinities (EAs) [ 1 ]. 
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Usual errors of the RPA method fall into +1-2 eV in the excitation energies, while 
oscillator strengths may differ in one order of magnitude. It is also frequent to find singlet and 
triplet instabilities [47]. The effect of double excitations has been included by perturbation 
theory in order to slightly improve the excitation energies in the RPA(D) approach [50]. The 
SOPPA approach may improve the results within +0.6 eV. A similar behavior is displayed by 
the ADC(2) method, slightly improved in the third-order version [49]. In any case, all these 
methods do not include non-dynamic correlation effects and, because of their single- 
configuration character, are extremely deficient when computing multiconfigurational states. 
Moreover, they cannot treat double excited states or open-shell ground-state excited states 
[47]. As a general advice, the improved versions of the methods, SOPPA and ADC(3), can be 
used to obtain a good qualitative description of the spectrum, although they lack generality. 
Compared to other methods they have, supposedly, the desired black-box behavior, and with 
respect to the TD-DFT approaches, their failures are not erratic, but well justified. 
Multiconfigurational response methods have been developed in recent years proving to be 
accurate in the calculation of molecular properties, not so much on energies [51 ], because of 

the lack of dynamical correlation. 

The most recent family of methods for excited states based on a single reference that have 
known practical use, at least for small systems, are those based on the size-extensive coupled- 
cluster (CC) approach. CC methods for the ground state have become, in practice, the most 
accurate quantum-chemical approaches for many systems. Exceptions are however well 
recognized, which are related to low levels of excitations employed in situations where the 
single-configuration reference is clearly poor, for instance dissociating or quasi-degenerated 
situations or systems like ozone, C2, N2, the NO dimer and others [2, 35, 52-54]. The key 
point of single-configuration CC approaches for excited states is that they use a HF zeroth- 
order reference, which is in general rather poor to represent excited states, and, in order to 
recover a large amount of correlation, high orders in the excitation level have to be included 

[551. 

Three groups of methods have been most employed: the Symmetry-Adapted Cluster 
Configuration Interaction (SAC-CI) approach [21], the Equation-of-motion Coupled-Cluster 
(EOM-CC) method [22], and the hierarchy of linear response CCn approaches [23]. Although 
they have different formulations, their performance for the common truncated and non- 
approximated coupled-cluster models is similar. The SAC-CI method, which has been used to 
compute very large systems by approximate procedures [56], and has been also extended to 
open-shell references [57], is comparable to the EOM-CCSD approach, which includes up to 
double excited cluster operators [22]. In parallel to the usual CC equations, in EOM-CC 
theory, excited state wave functions are represented by a linear expansion in the space 

spanned by all states [22, 35]: 

g ~t 

(23) 
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where ~A and ~cc, refers to the CC excited and ground states, respectively, ~0 to the HF 
ground state, and T is the linear coupled-cluster excitation operator: 

-- To q- r l  q- T2 q- ~-'3 q- . . -  Z c ia[g (24) 
g 

where c~ denotes the cluster amplitudes and "~ the excitation operators including none, single, 
double, triple, and higher-order replacements. These methods use commutation relations to 
solve the Schr6dinger equation for the excited state, and may be regarded as a conventional 
CI theory in which the configuration expansions carry the information about the excitation 
structure while a similarity-transformed Hamiltonian carries information about electron 
correlation [35, 57]. EOM-CC methods in different versions have been also extended to deal 
with open-shell ground states and compute IPs and EAs [58]. 

The family of methods CCS, CC2, CCSD, CC3, and CCDST is based on response theory 
[59]. Poles and residues of the linear-response CC equations yield excitation energies and 
transition matrix elements. CCS, CCSD, and CCSDT give a complete coupled cluster 
treatment of single, single-double, and single-double-triple spaces, respectively, for excited 
states, but just in systems with closed-shell ground states. The CCS approach is equivalent to 
the single excited configuration interaction or Tamm-Dancoff approach [60]. The iterative 
hybrid CC2 and CC3 procedures introduce approximations of similar nature although 
differing in the level of excitation. In this way, in CC2 the doubles of the CCSD approach and 
in CC3 the triples of the CCSDT approach are approximated by using perturbation theory up 
to first- and second-order, respectively. In this way, for instance, the CC3 wavefuntion is 
obtained as [35]: 

(25) 

where ~0 refers to the HF reference, and the T operators include the single and double 
excitation cluster operators, while the effect of the triple excitations are introduced by the 0 
operators iteratively. CC3 include the single and double excitations at third order and the 
triple excitations at second order in the fluctuation potential, all of them one order higher than 
CCSD. This approximate way to include higher excitation levels allows less demanding 
computational procedures, scaling N 4-7 from CCS to CC3, respectively [23, 60]. 

In order to get accurate excitation energies and properties, the single-configuration 
coupled-cluster methods should include high excitation levels to compensate both the poor 
reference wave function and the multiconfigurational character of the excited states. In 
situations where the HF reference is good enough, CC-based methods are, up-to-date and in 
practice, the most accurate methods to compute excited states in small to medium size 
molecules with closed-shell ground states, but only for those states which are well described 
by singly excited configurations and in systems were the ground state has a clear single- 
configuration character. In those cases, and in order to get accuracy better than typical 
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propagator or TD-DFT methods, triple excitations have to be included in the cluster 
expansion. Approaches valid for practical cases are, in general, EOM-CCSD(T) and CC3, 
while those only including double excitations as SAC-CI, EOM-CCSD or CC2, can be 
considered of lower quality than, for instance, multireference perturbation methods such as 
CASPT2 or similar approaches [15-18, 52, 61-63]. The precision of the CC methods 
decreases in systems with open-shell ground states. Less accurate is the behavior of the 
methods when the character of the states is clearly multiconfigurational. For instance, the 
mentioned 2lAg state of polyenes, a multiconfigurational state with a large contribution of 
doubly excited configurations in the CASSCF description, is a good example. The CASPT2 
vertical result, 6.27 eV, can be considered here a good benchmark, because the CASPT2 
method has proved its accuracy on matching the experimental two-photon value for the 
analogous state in hexatriene [42]. EOM-CCSD, CCSD(T), and CCSD(T), the latter a non- 
iterative version for the inclusion of triple excitations, deviate 1.0, 0.7, and 0.5 eV from the 
CASPT2 value, respectively [62]. Other example shows up in the 11Elg state of ferrocene, 
with an error of 1.5 eV from experiment at the CC2 level [61]. More dramatic is the situation 

in other systems, in which the excited state is clearly multiconfigurational, where not even the 
inclusion of triple excitations can lead to accurate results. For instance, the EOM-CCSD 
description of the 2~A1 state of ozone leads to huge errors, 5-6 eV, that approximate inclusion 

of triple excitations cannot solve [54]. A similar situation occurs for some excited states of C2, 
showing deviations with respect to FCI of 2.05, 0.86, and 0.41 eV at the EOM-CCSD, CC3, 
and EOM-CCSDT levels [54], the second and third CC methods differing in the perturbative 
or variational procedure to include triple excitations. For the description of the states of the 
NO dimer, N202, EOM-CCSD fails on describing even the ground state, and EOM-CCSDT 
shows large inaccuracies to describe the excited states [53]. The inclusion of quadruple 
excitations, unpractical so far, would improve some of those results, but the only solution in 
prospect to beat in accuracy the lower level and less expensive multireference perturbation 
approaches such as CASPT2, is to use multireference coupled-cluster (MRCC) methods [64], 

in which the required excitation level will be certainly lower. 

Additionally to the calculation of energy eigenvalues, molecular properties for the 
different electronic states, and transition properties must be computed to define the 
spectroscopy of a molecular system. Properties such as the electric dipole moment, the 
frequency-dependent polarizability tensor, the nuclear magnetic shielding tensor, among 
others, are intrinsic properties of the system responsible of many spectroscopic and even 
structural phenomena whose calculation require also accurate ab initio approaches. If we 
focus on the molecular electromagnetic properties, they can be derived either as derivatives of 

the electronic energy or as derivatives of molecular electromagnetic moments and fields [65]. 
In non-variationally optimized wave functions, the Hellmann-Feynman theorem is not 

satisfied and the properties obtained as derivatives of the energy do not agree with the 
expectation values of the properties. This is the case, in general, of CC or MP approaches, 
which should be preferred in order to get results including most of correlation energy, 
although, in many cases, MCSCF properties can be considered reasonable [15-18]. 

Redefinitions of the expectation values in high-level methods have to be performed. Most ab 
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initio methods used to compute properties can be divided in three types: (1) those which 
evaluate properties by approximations to exact perturbation theory, such as the sum-over- 
states (SOS) procedures and the polarization propagator methods, RPA, SOPPA or MCRPA; 
(2) those which use perturbation theory with approximate wave functions, such as the 
Coupled Hartree-Fock (CHF) method or the response methods using different wave functions, 
in particular MCSCF or coupled-cluster, and (3) the derivative-based methods, where 
numerical or analytical evaluation of the derivatives of the electronic energy or properties in 
the presence of the perturbing field is performed, for instance, by finite field approaches. A 
comprehensive review can be found elsewhere [65]. Also, transition properties, such as 
transition multipole moments needed to obtain intensities, transition probabilities and 
radiative lifetimes and kinetic constants, have been computed at different levels, although the 
response approaches are becoming common to get accurate results. 

Finally, we shall comment and summarize advantages and disadvantages of the mentioned 
methods. Of course, it reflects our own opinion on the subject. Here we have not included all 
methods available or developed, just those more widely used. Nowadays (2004) single- 
configuration ab initio methods are useful to describe excitation energies, excited state 
properties, and transition probabilities, always subordinated to certain restrictions. CIS- 
derived methods cannot be recommended in practically any situation. A low-level general 
description of the excited states structure can be better obtained by means of carefully 
calibrated TD-DFT methods (the mixed and empirically corrected DFT/MRCI approach can 
be considered the best) [66], provided that the limitations of the DFT approaches and their 
low accuracy are well known. Regarding the propagator methods, they have, as the other 
methods of this section, the advantage of being (only partially) black-box approaches, and, 
therefore, they can be used also to get a qualitative picture of the spectrum, although neither 
all states nor all systems. Finally, coupled-cluster based approaches, assume that the effect of 
triple excitations are included, yield an accurate account of many states and systems, but not 
all of them. Regarding molecular and transition properties, the CC-based methods are surely 
the most accurate procedures available, provided that the approach is appropriate, although 
they are computationally more demanding and further improvements in their performance are 
necessary. In order to have an overall accurate description of all types of excited states, it is 
necessary to point out that, at present, the multireference perturbative methods, with CASPT2 
as the most widely used approach [15-18], represents the only generally applicable method 
for the calculation of excited states, in all type of molecular systems, closed- and open-shells, 
multiconfigurational and degenerated situations, dissociations, etc [35]. It can be expected 
that in the near future, the multiconfigurational coupled-cluster approaches reach the maturity 
to be of practical use in molecular systems of reasonable size, and then, higher accuracy will 
be available in all cases. The full development of the methods will require also the 
implementation of geometry optimizers, reaction paths algorithms, etc, and some years will 
pass until all the needed tools become available. Up-to-date, analytical gradients for excited 
states in single-configuration methods are available, at a high computational cost, at the SAC- 
CI [67], EOM-CCSD [68], and CC2 [69] levels. 
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4.2. Mul t i conf igurat iona l  m e t h o d s  
Let us considered the wave function of CI type 

Iw)-Zcmlm) (26) 
m 

expanded in a many-electron basis set of determinants. As in the H2 molecule, one can select 
a number of determinants to describe the correct dissociation limit. When the energy is 
minimized with respect to the coefficients of the expansion we are using the configuration 
interaction (CI) method. It should be kept in mind that actual calculations are performed using 
either spin-adapted CSFs or determinants. In case that the expansion contains more than one 
configuration, the process is denoted as multireference CI (MRCI). The wave function of Eq. 
(26) is a multireference function and, at least, the singly and doubly excited determinants 
generated from each reference determinant ]m) are taken into account. When the reference 
wave function consists of a single configuration, such as a closed-shell HF wave function, we 
are in the framework of single-reference CI wave functions, e.g., SDCI (singly and doubly 

excited CI). Including up to N-tuply excited determinants Eq. (26) would represent the full CI 
wave function. A comprehensive discussion on the distinct types of the MRCI method, 
including technical aspects on its efficient implementation, can be found elsewhere [14]. 

Coming back to Eq. (26), the MCSCF energy is obtained by minimizing (TII2IIT) to 
determine both the optimum CI expansion coefficients (as in the CI method) and the optimum 
form of the orbitals used to build ]m). The orbital optimization is similar to that carried out in 
the HF SCF method, therefore the approach is known as the multiconfigurational self- 
consistent field (MCSCF). The MCSCF energy is usually expressed within the second- 
quantization formalism [35, 46]. The electronic Hamiltonian given in Eq. (2), has the 
following expression (physicists' notation) [ 1 ] in second quantization 

.,. 1 
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^1 and fii are the creation and where the sums run over the set of spin orbitals, and a i 
annihilation operators, respectively. In the notation often referred to as the chemists' notation, 
the Hamiltonian is expressed has the form 

1 
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(28) 

Summing over the spin leads to 
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(29) 
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1 
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where the sums run over the molecular orbitals and the spin summed excitation operators, t~ij, 
defined as 

(y=(l, 

have also been introduced. In Eq. (30) the elements hij include the kinetic energy for 

electrons and nucleus-to-electron attraction; the two-electron integrals involving the 
molecular orbitals, in chemists' notation, are denoted by gijkl" 

Given the wave function (26) as linear combination of a finite set of determinants, the 
expectation value of the Hamitonian is 

, 1~~ m~n ~(ml~ E=<~II-2[~)-i~j hijECm<mlt~ijln}Cnmn +-2" gijkl C ij 

mn mn 
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being 

Uij n - ( m  It~ij In>, one-electron coupling coefficients. Their possible values are -1, 0, 1, 2 in a 
many-electron basis set of Slater determinants, 

Pi . . . .  1 (m Ifiijfik 1 __ ~jkfiil In) two-electron coupling coefficients, jkl 2 

m n  
U ij - Z C m U  ij c n ,  e l e m e n t  o f  t h e  f i r s t - o r d e r  r e d u c e d  density matrix, 

mn 

Pijkl -- Z C m Pijk~ Cn ,  element of the second-order reduced density matrix. 
mn 

The expression for the energy (32) gives the clue for derivation of optimization algorithms 
employed in the MCSCF methods. It worth noting that information about the MOs is entirely 
contained in the one- and two-electron integrals, whereas the CI coefficients are involved in 
the matrices D and P. Thus, the parameters to be varied are the CI coefficients and the MOs, 
which is made by considering their variations as rotations within an orthonormalized vector 
space. Since the exponential of an anti-Hermitian matrix is the most general expression of a 
unitary matrix, the rotations in the MCSCF optimization procedure are done by using that 
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type of matrices. There are several techniques to carry out such a process. MCSCF 
optimization methods can be classified as first-order and second-order methods, depending on 

the convergence type. A first-order treatment is only based in the computation of the energy 

and the first derivatives of the energy with respect to the variational parameters. The second- 
order MCSCF methods are based on an energy expansion up to second order and the second 
derivatives of the energy are also computed. They are characterized by a quadratic 

convergence in the final steps of the optimization procedure. The Newton-Raphson 
approximation up to second order, where the energy is expanded in a Taylor series as function 
of the variational parameters, is probably the most prominent algorithm. The new values for 
the parameters are obtained by solving a set of linear equations. The convergence process is 
rapid and efficient in the proximities of the final solution (quadratic convergence), although 

the trust region is usually small. It is the standard optimization method and most of the 
remaining approaches can be related to it either as modified or simplified algorithms. Details 
on the particular techniques can be found in the specialized literature [28, 35, 70]. 

From a practical point of view, the selection of a particular algorithm would depend on the 

necessities of the application at hand. An advantage of a second-order algorithm is that the 

stationary point is characterized, that is, the condition of minimum can be established. 
Comparatively, in a second-order method a full iteration is more time consuming as compared 
to simplified approaches, although the number of iterations required to converge are relatively 
smaller. One has to balance the advantages and disadvantages in the two type of approaches 
prior utilizing one of them in a particular study. Anyway, because of the computational 

resources available today, one can freely take the decision of enjoying the advantages of both. 
Independently of the chosen algorithm, it is highly recommended to supply the MCSCF 
optimization calculation with good starting orbitals, in accordance with the physics of the 
problem to elucidate. Otherwise, unwanted solutions might easily come out of the calculation, 

which are simply nonsense. 

We have assumed that the N-electron basis set is constituted by Slater determinants. 
Nevertheless, the Hamiltonian operator, as well as the orbital rotations, can be expressed as 
function of the orbital excitation operators, which commute with the spin operators. It is, 
therefore, possible to work entirely in a N-electron basis set formed by spin-adapted CSFs. 
There are many manners to build eigenvectors of the spin operators from Slater determinants. 
Among them the graphical unitary group approach (GUGA) has played an outstanding role. 
Indeed, the excitation operators fulfill the same commutation relationships as the generators 
of the unitary group of dimension n, and for that reason the l~j operators are often refen'ed as 

to generators. A CSFs basis set leads to shorter CI expansions that a basis set of Slater 
determinants, but the CI algorithms employing determinants are more efficient. The issue was 
in the past a subject of great debate. A certain consensus has been reached today, which is 

reflected in available software [71], making practical use of the advantages of both types of 

N-electron basis sets. 
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As stated above, the CASSCF method [72] is probably the MCSCF method more widely 
used at present. In the CASSCF method, the orbitals are classified in three categories, 
depending on the role they play in building the maw-electron wave function: inactive, active, 
and secondary orbitals. Inactive and active orbitals are occupied in the wave functions, 
whereas the remaining of the orbital space, given by the size of the one-electron basis set 

employed, is constituted by secondary orbitals, also called external or virtual. Inactive orbitals 
are doubly occupied in all the CASSCF configurations. The number of electrons occupying 
inactive orbitals is, therefore, twice the number of inactive orbitals. The rest of the electrons 
(called active electrons) occupy active orbitals. The CASSCF wave function is formed by a 
linear combination of all the possible configurations that can be built by distributing the active 

electrons among the active orbitals and are consistent with a given spatial and spin symmetry. 
That is, in the configuration space spanned by the active orbitals, the CASSCF function is 
complete (or full). Inactive orbitals are also optimized in the variational process but they are 
treated as in the restricted HF function. The CASSCF energy is invariant to rotations among 
the active orbitals. 

Several states that belong to a same symmetry are usually computed by means of a State- 
Average (SA) CASSCF calculation, where a functional of energy is defined as average of a 
number of states (I = 1, M) 

Eaverag e - 2 o ) i  E I (33) 
I 

being co, the factors of the relative weight for each state considered. From a SA-CASSCF 
calculation comes out a set of average orbitals and a number of orthogonal wave functions 
equal to the number of roots used in the average process. In this manner, it is sometimes 
possible to overcome the problem of "root flipping", the interchange of roots along the 
CASSCF optimization procedure. For a given spatial and spin symmetry, the treatment of 
excited states is preferably performed by using SA-CASSCF calculations. In principle, it is 
also possible to make a single CASSCF calculation for higher roots (I > 1), optimizing just 
one state. Nevertheless, experience shows that in most cases, it can only be achieved for I=2, 
the second root of a given irreducible representation. 

The active space provided by the user of a CASSCF software represents a key point to 
obtain accurate theoretical predictions, once that dynamic correlation has subsequently been 
taken into account, for instance at the CASPT2 level. The properties of a CASSCF wave 
function depend on the active space. Thus, a valence CASSCF is size-extensive and the 
corresponding CASPT2 results become also nearly size-extensive (formally the CASPT2 

method is not size-extensive). As in any quantum-chemical approach one has to make sure 

that the method has enough flexibility to describe the chemical process under consideration. 
The flexibility in a CASSCF wave function is determined by the active space. 
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The CASPT2 method can be seen as a conventional no~a-degenerate perturbation theory, 
that is, a single reference function is considered, with the particularity that such reference 
function (zeroth-order wave function) is a CASSCF wave function and uses internal 
contraction in its formulation. The solution to the equation 

I?t(2)q2(2)- E(2)W(,q,) (34) 

is expanded in power series of X: 

I?( ,~)  - i;-i ~ + , f f i '  ( 3 5 )  

LI-J(/~,) - LIJ (~ -]-/~LI-J (1) -4-/~2LI-J (2) -Jr- "-" (36) 

E(;L) - E (~ + 2E (~) + ,;L2E (2) + ..- (37) 

Correction of order k to the wave function, ktJ(k) , and to the energy, E (k) , are obtained by 
solving consecutively the corresponding perturbation equations, which have the following 
generic form 

k-1 
( r i o  __ E(O)) LtJ(k ) _ _ I2 It Li./(k-I ) jr_ Z E(k" )  qJ(j) ( k  ~ 0 )  ( 3 8 )  

j=0 

where the energy correction to order k, using intermediate normalization, is 

) (39) 

Therefore, we can write 

E ('~ - (qJ(~ ] I2I' I q ~(~ (40) 

E (2) - (W(~ I t2I' Iq j('~) (41) 

The first-order correction to the wave function is given by 

(42) 

with 15,(~ being the reduced resolvent 

~(o~- (1 _ i ,e(o~ )(,e(o~ i)(~o E(o~)-, (43) 
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The set of functions required to compute the first-order correction of the wave function, 
~p(1), is formed by those that interact with the zeroth-order wave function through the 
Hamiltonian in the perturbation theory of Rayleigh-Schr6dinger, and it is known as the first- 
order interacting space [73]. Taking into account the one and two particle nature of the 
Hamiltonian, the first-order interaction space, called hereafter VsD, comprises the functions 
generated by singly and doubly excited configurations from the zeroth-order wave function. 
In the CASPT2 formulation, the VsD space is divided in eight subsets, according to the nature 
of the excited configurations (see details in Ref. [10]). The corresponding functions are built 
by applying products of excitation operators, Epq Ers, to the zeroth-order wave function 
Io), Eq. (26), with the coefficients Cm kept as determined in the CASSCF wave function. It is 
the reason why the CASPT2 method is internally contracted. In non-contracted methods [13, 
14], the excitation operators act directly on the functions [m} of the linear combination 
described by Eq. (26). Both singly and doubly replacements from the CASSCF wave function 
are considered. The singly excited configurations can be explicitly seen as linear 
combinations of certain products of excitation operators. Internal contraction makes the 
perturbation series considerably shorter, without affecting significantly the quality of the 
results [10]. Nevertheless, although the dimension of the first-order interacting space is 
considerably smaller because of the internal contraction, the complexity to obtain the first- 
order wave function increases because the resulting functions belonging to VsD are not in 
general orthogonal and may also have linear dependencies. 

The first-order correction of the wave functions is expanded in the basis of the functions 
I J) belonging to the VsD space 

M 

~o) _ ~ C j I j) M > dim VSD (44) 
j=l 

The coefficients {Cj, j - 1, ..., M} are obtained from the system of linear equations 

M 

Z cj (ilI~ ~ - E(~ j ) : -(il~I'] o ) i :  1 .... M (45) 
j=l 

where E (~ -(olI2I~ is the zeroth-order wave function and must be solved iteratively. In 
standard CASPT2, the zeroth-order Hamiltonian is expressed in terms of a generalized Fock 
operator, which can be written as a sum of a diagonal, FD, and non-diagonal, ~'N, contributions 

FT - FD + FN (46) 

The operator is defined in such way that for a closed-shell HF reference wave function is 
equivalent to the Moller-Plesset Hamiltonian. For multiconfigurational single-reference 
perturbation theory, the choice of the zeroth-order Hamiltonian is not unique and it has been 
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the subject of active research and discussions yielding a number of different successful 
variants [ 16]. 

Eq. (45) can then be rewritten as 

M 

E Cj <i [FT --  E ( ~  > - -<i I2I' I o> i = 1, ...M (47) 
j=l 

In order to simplify the notation, the following matrices and vectors are introduced 

(~'x)~j -<i Fxlj) X = D, N (48) 

-<ilj> (49) 

where i, j - 1, ...M. The column vector C contains the coefficients Cj of the expansion. The 
difficulties in the resolution of Eq. (47) depend on the choice of the one-particle operator. In 
the simplest case, using FD, it leads to 

[F D -E(~ = -V  (51) 

and the second-order correction to the energy comes out as the product of ViC. In most cases 
M > dim VSD and the linear dependences have to be removed. It is done by diagonalizing the 
overlap matrix S and discarding the eigenvectors with eigenvalues equal (or close) to zero. 
The resulting vectors are then orthogonalized and a subsequent diagonalization of the Fock 
matrix written in the orthogonal basis takes place. The E (2) correction is easily evaluated as 
function of the transformed matrices. The process becomes much more elaborated when the 
full operator FT is used [10]. It is the recommended procedure. 

The normalized wave function corrected up to first order is given by 

> (52) 

with C 2 n t - C ~  - 1 The weight ofthe reference function(C2) can be used as a simple and rapid o " o 

criterion of quality for the perturbation treatment carried out. Ideally, in order to get a fast 
convergence in the perturbation series, the weight should be close to unity. Nevertheless, its 
value depends on the number of correlated electrons [28]. Thus, upon enlarging the molecular 
system the reference weight decreases. The electronic excited states considered should have a 
similar magnitude for the weight as compared to the ground state, employing the same active 
space. Sometimes intruder states appear in the second-order calculation, which are normally 
related to the occurrence of large coefficients in the first-order expansion, leading to a low 
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value for the reference weight. Analysis of the states with large coefficients (intruder sates) 
may give a hint about the type of reformulation in the perturbation partition necessary to 
overcome the problem. Thus, a new CASSCF calculation might be designed comprising in 
the active space the orbitals implied in the description of the previous intruder states. It is the 
proper action to be taken when intruder states are strongly interacting with the CASSCF 

reference wave function, with contribution to the second-order energy larger than 0.1 au, 
because it points out to obvious deficiencies in the choice of the active space. Intruder states 
are often present in the treatment of excited states of small organic compounds when the 
active space does not include the full rc valence system. Thus, the low weight for the zeroth- 
order wave function in such a case just tells us that the active space has to be enlarged in a 
way that previous intruder states would be treated variationally, that is, they should be moved 
to the CAS-CI space. It is also frequent to find calculations where the reference weight of the 
excited state is "somewhat low" compared to that of the ground state, but a particular state 
cannot be identified as intruder in the first-order wave function, which is instead characterized 
by a large number of low-energy minor contributions. It occurs often in the simultaneous 

computation of valence and Rydberg states, where the one-electron valence basis set has been 

augmented with Rydberg-type functions. We have to face then accidental near-degeneracy 
effects, implying weakly interacting intruder states, and the level-shift (LS) technique is 

especially useful in order to check the validity of the perturbation treatment performed. Many 
times one has to apply both strategies: enlargement of the active space to overcome the 
problem of severe intruder states, and, with the enlarged active space, the LS technique is 
applied in order to minimize the effect of weak interacting intruder states. 

The level-shift CASPT2 (LS-CASPT2) method removes efficiently weak intruder states by 
the addition of a shift parameter, e, to the zeroth-order Hamiltonian and a subsequent back 
correction of its effect to the second-order energy [16, 28, 74]. It can be shown that the 
corrected level-shift second-order energy, E (2) is equal to the standard CASPT2 energy, LS 

E (2), in first order of 

E(2) ~_(2)-~; ( 1 - 1 )  -E(2)Ls (53) 

where E (2) and ~ (weight of the CASSCF wave function) were obtained by using the shifted 
Hamiltonian. The relationship (53) might not be valid when intruder states appear in the first- 

order interacting space. It is highly recommended to make an analysis of the trends for the 
weights ~, total, and excitation energies upon varying the values of ~. For instance, results at 

= 0.0 (standard CASPT2), 0.1, 0.2, 0.3, 0.4 au are sufficient to establish the proper behavior 
of the LS-CASPT2 results. It is extremely dangerous to rely on just one result, because the 

appearance of an accidental near degeneracy might lead to large errors in the excitation 

energies. In order to demonstrate the proper performance of the LS-CASPT2 technique, 

calibration calculations of that type always have to be carried out. The best choice for ~ is the 

lowest possible value capable of removing intruder states. In the absence of intruder states the 
ELs (2) energy varies only slightly with respect to the value of ~. As can be seen, in this type of 
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approaches there is a large interaction researcher-software. The responsibility for the 
decisions taken along the computational process belongs, of course, to the user (researcher) of 
the tool (program). Other formulations of the multireference perturbation theory have been 
developed although they have not widespread use [75-80]. 

The multi-state CASPT2 (MS-CASPT2) [81, 82] procedure represents an extension of the 
CASPT2 method for the perturbation treatment of chemical situations that require two or 
more reference states. For instance, situations such as avoided crossings and near-degeneracy 
of valence and Rydberg states, which cannot be fully accounted for by just using a single- 
reference perturbation treatment. 

In the MS-CASPT2 method an effective Hamiltonian matrix is constructed where the 
diagonal elements correspond to the CASPT2 energies and the off-diagonal elements 
introduce the coupling up to second order in the dynamic correlation energy. Let us assume 
that we have performed two CASPT2 calculations for the corresponding reference wave 
functions O i (i=l, 2), obtained by using average CASSCF for those two roots and a set of 
average molecular orbitals is, therefore, available. In order to build the matrix representation 
of the Hamiltonian using as basis set the two normalized wave functions corrected up to first 
order, ~i = O i + ~PI 1~, the following matrices are defined: 

(54) 

((I) i I~I It/11) ) -- eij (56) 

that the two wave functions not o ho ona,, since (*,  and 
( IO,~Pj('~)-0, but (~p(l), [~P~ . j  ~j On the other hand, the CASSCF energy for state ith is 
represented by E~ and the elements ei~ are the CASPT2 correlation energies. For each state, 
the Hamiltonian can be expressed as the sum of a zeroth-order contribution and a Hamiltonian 
taking care of the remaining effects 

I2t - I2I ~ + I2Ii (57) 

Therefore, up to second order it holds true that 

(sg) 

o)) correspond to third order corrections and, consequently, they The elements /~} x) I2III~Pj 

are not considered. The matrix representation of the Hamiltonian is not symmetric H12 ~ H21. 
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Assuming that the off-diagonal terms are very similar, as it is implicit from Eq. (58), the 

matrix is made symmetric by using the average value 

1 
(*I" Inl / -- j ') kn~ 

The matrix element including zeroth-, first-, and second-order corrections takes the general 
form 

1 1 (o)+ (o) (60) I2Iij - ( ~ ,  lI2tl~,)-6~jE~ +-~(e~j +e,~)+-~(E i Ej )sij 

By solving the corresponding secular equation (H-ES)C=0, the eigenfunctions and 
eigenvalues can be obtained. They correspond to the MS-CASPT2 wave functions and 
energies, respectively. 

The MS-CASPT2 wave function can be finally written as 

�9 p -- Zc, li) + V~ ) (61) 
i 

where ]i) are the CASSCF reference functions and ~./~1)is the first-order wave function for 
state p. Accordingly, the function formed by a linear combination of the CAS states involved 
in the MS-CASPT2 calculation is the model state and can be considered as a new reference 
function for state p. This reference function is the so-called Perturbation Modified CAS 
(PMCAS) [82]. It is used for the computation of transition properties and expectation values 
at the MS-CASPT2 level. 

For the proper use of the MS-CASPT2 method, the condition (58) has to be fulfilled. In 
practice, it means that the asymmetric effective Hamiltonian matrix should have small and 
similar off-diagonal elements. Otherwise, the average process carried out, (H12 + H21)/2 , 
may lead to unphysical results, in both the MS-CASPT2 energies and eigenfunctions. The 
condition that H12 ~ H21 can be achieved by enlarging the active space, which implies a 
redefinition of the zeroth-order Hamiltonian. Large active spaces, beyond the main valence 
MOs, are used naturally in the simultaneous treatment of valence and Rydberg states, where 
the MS-CASPT2 approach has proved to be extremely useful. Especial caution has to be 
exercised, however, for the computation of a crossing point between two surfaces, as in the 
case of conical intersections (and avoided crossings), crucial in photochemistry. 

The states involved in a conical intersection have usually different nature. Quite often one 
state has covalent character, whereas the other is zwitterionic [83]. They are described by 
hole-hole and hole-pair VB structure, respectively. The effect of dynamic correlation is 
usually much more pronounced for zwitterionic than for covalent states. As a result, with 
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moderate (valence) active spaces, the off-diagonal elements become very different, because 
the covalent state is comparatively described more accurate than the zwitterionic state. Active 

spaces comprising MOs beyond the valence shell would be required to make H~2 ~ H21. In 
addition, the structure of the 2x2 effective Hamiltonian is 

He /Hi"2 H2HII / Px T2 

where E PT2- E 1 +ell and L, 2 F P T 2 -  E 2 + e22 are the CASPT2 energies of the two states and 
PT2 _ E, and A -  (H12 + H21 ) /2 .  If the states are degenerate at the CASPT2 level, E PT2- E 2 

the multi-state energies and wave functions are 

E+ = E + A (63) 

1 (W,+W2) (64) �9 + - - ~  _ 

As A = 0 the MS-CASPT2 and the CASPT2 solutions are equivalent, what is expected to 
occur at the conical intersection. Therefore, by providing enough flexibility to the active 

space, one has to make sure that the condition H12 ~ H21 is satisfied and A becomes small (<_ 
2 kcal/mol). As a conclusion, computation of surface crossings at the MS-CASPT2 level (so 
far numerically) is expected to require more extended active spaces than those done at the 
CASSCF level. What does it happen if A is larger than 2 kcal/mol? For systems of large 
molecular size one cannot be sure whether that result points out to the presence of an avoided 
crossing or it is just spurious because of the limited active space employed. As shall be 
illustrated in Section 6, dynamic correlation plays sometimes a crucial role in determining the 
nature of the lowest surface crossings. Nevertheless, except for small molecular systems, the 
MS-CASPT2 approach in its present formulation does not represent a practical solution for 
this purpose. Methodological efforts are certainly required to improve the present situation. In 
this respect, recent advances on analytic energy gradients for general MRPT methods seem 
very promising [84]. On the order hand, computation of conical intersections at the CASPT2 

level uses two non-orthogonal wave functions and how it might affect to the structure of the 
singular point so obtained is not yet known. Unfortunately, localization of conical 

intersections including dynamic correlation by using variational strategies, at the MRCI level 

for instance, is currently limited to small-size molecular systems [85-87]. 

5. EXCITED STATES AND SPECTROSCOPY 

5.1.  G e n e r a l  C o n s i d e r a t i o n s  

Quantum-chemical methods provide information for excited states directly applicable to 

explain and predict the spectroscopy of molecular systems. A balanced description of the 

different electronic states is required in order to obtain the basic data, that is, energy 
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differences and transition probabilities, in an accurate way. This goal is a much more difficult 
task for excited states as compared to the ground state. First, one has to deal with many 
classes of excited states, each one requiring different amounts of electronic correlation and 
flexible one-electron basis functions able to describe all effects simultaneously. Then, it is 
necessary to compute extremely complicated potential energy hypersurfaces where the 
number of minima, transition states, and surface crossings such conical intersections, is 
multiplied. Because of the inherent complexity of the problems, the methods and algorithms 
to compute excited states are not so efficient as for ground states or are still under 
development [2,4]. 

The selection of the proper one-electron basis set is the first decision a quantum-chemist 
has to take in order to plan a calculation, and will determine the accuracy of the obtained 

results. In general, excited state quantum-chemical calculations require the use of large, 
diffuse, and flexible basis sets, able to describe at the same level states of compact nature, 
such as valence, and diffuse, such as Rydberg or anionic states. Atomic Natural Orbital 
(ANO) basis sets supplemented with diffuse functions or augmented correlation-consistent 
basis sets (aug-cc-pVXZ, with X=D,T,Q,...), are the best general choice in order to get all 
type of excited states in the different regions of the spectrum [88]. Because of their balanced 
construction, ANO basis sets usually get better results with less number of functions than 
other sets. In a typical calculation in electronic spectroscopy for a medium-size molecule, an 
ANO contraction of the triple-zeta plus polarization type has been shown to give accurate and 

reliable results for valence states [15-17]. Specific diffuse functions with small Gaussian 
exponents, whether distributed on the atomic centers or centred in the molecule, are required 
to compute Rydberg and anionic excited states. Basis sets of the type 6-31G* are not as 
accurate but considerably cheaper. If used, they should be carefully calibrated for the studied 
problem. They may work in cases where the Rydberg states are not competitive with the 
valence states in the studied energy region. Normally, a full study including both valence and 
Rydberg states is required in order to validate the quality of the valence results employing 
smaller basis sets. It particularly holds true in molecular systems with a strong valence- 
Rydberg mixing [42, 89]. 

In order to properly compare to the recorded spectroscopic data [18], the excited states 
have to be computed at significant points in the potential energy hypersurface (PES), which 
should be previously located by using appropriate optimization algorithms. At the ground or 

excited state minima, vertical absorption (EVA) and emission (EVE) energy differences are 
obtained comparable, within the spirit of the Franck-Condon (FC) principle, to the absorption 

and emission band maxima, respectively. This is just a convenient approach. In order to 
identify on theoretical grounds the true maxima, a full determination of the vibrational profile 

of the electronic transition would have to be performed. The vertical transition is however a 
quite useful concept. The obtained vertical excitation energies and oscillator strengths, 
together with properties such as the charge distribution in the different states, multipole 

moments, etc, give an overall view of the structure of the excited states and electronic 

transitions, although further refinements are required to achieve higher accuracy. Typical 
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differences between vertical absorption and band maxima range 0.1-0.2 eV in systems where 
the excited state structure undergoes small changes as compared to that of the ground state 
[90]. 

Excited 

O 
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Fig. 1. Computed energy differences describing the molecular photophysics. 

In order to gain more spectroscopic insight it is necessary to compute adiabatic transitions, 
that is, energy differences between states at distinct regions of the PESs [18]. In particular, the 
energy difference between the excited and the ground state at their respective optimized 
equilibrium geometries can be related to the electronic band origin, both in absorption and 
emission. In the former case, it is the smallest possible energy difference allowed in 
absorption under the assumption that all excitations begin from the relaxed ground state. In 
emission it is related to the largest energy emitted from the relaxed excited state. As displayed 
in Fig. 1 such transition is preferably coined Te. In many cases determination of Te provides 
enough information to assign band origins. If more accurate results are needed, the Zero-point 
Vibrational Energy (ZVE) has to be included in both initial and final states to obtain the 
vibrational band origin To (also named 0-0 or 0~ transition), which is strictly comparable to 
the experimental datum (see Fig. 1). Usually, determination of the vibrational frequencies 
(too) at the state minima is performed within the harmonic approach to simplify the 
calculations [ 18]: 

1 
T O - r  e -+- z v g i j  - r  e -+- E i , v i b ( O )  - g j , v i b ( O )  -- Z e + ~ - Z ( D i , Q - - I ~ - ~ O ) j , Q  

Q Q 
(65) 

Locating singular points in the hypersurface is a difficult and time-consuming task. It is 
frequent that geometry optimizations, frequency or property determinations are performed at 
levels of theory lower than the energy calculations. In most cases it is a question of balance in 
the results, in particular when highly correlated methods are too expensive for the system 
under study and low-level approaches have to be employed. For instance, in molecules with 
double bonds, an enlargement of the bond length is observed when increasing the amount of 
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correlation energy included. In particular, it has been observed, even for ground states, that in 
regions with large ~ delocalization, the difference between methods such as MP2 and 
CASSCF is quite large (up to 0.03 A). The former, and the same holds true for DFT, usually 
overestimates rc conjugation [91 ]. In these cases, ~-CASSCF may be a preferable approach to 
get geometries close to the gas-phase results, because the effects of the n-correlation 
compensate the lack of c~-correlation. Even more dangerous can be to use crystallographic 
data. X-ray crystal determinations are known to underestimate double bond lengths (up to 
0.02 A) [92, 931. 

Apart from energy differences at specific geometries, spectroscopic determinations require 
the calculation of transition probabilities in order to get band intensities, emission lifetimes, 
and kinetic rate constants [94, 95]. Within the static picture and using Fermi's Golden rule, the 
calculation of transition multipole (dipole approach) moments, together with transition 
energies, leads to transition probabilities in the form of oscillator strengths: 

f : 2EvAM(Q0)2 (66) 
3 

where EVA is the vertical absorption energy and M(Q0) is the modulus of the transition dipole 
moment, computed as the transition dipole components (Mx, My, Mz) between the initial and 
the final state at the ground state equilibrium geometry. The oscillator strength can be directly 
related to the experimental observation, based on band shapes and half-widths. More precise 
determinations of band profiles require the calculation of vibronic transition moments and 
frequencies. From the calculation of transition dipole moments, radiative lifetimes can also be 
obtained, both in fluorescence and phosphorescence, for the electronic or vibrational states by 
using the Einstein coefficients (A21) and the Strickler-Berg relationships [95]: 

1 
A2~ = ~ =  2.142005.10~~ (67) 

"1~ rad 

where "l~ra d is the radiative lifetime measured in s (the other magnitudes in atomic units) and 
EvE is the emission maximum, which can be also replaced by To. In the case of 
phosphorescence, the spin-orbit coupling has to be considered to get M(Q0), which is 
considerably smaller. Vibronic contributions can be then crucial, in particular in 
phosphorescence. Intersystem crossing rates can be also obtained in a similar way. In systems 
including heavy atoms, the spin-orbit coupling can be large enough, the difference between 
fluorescence and phosphorescence vanishes, and emission is traditionally named 
luminescence [96]. 

5.2. On the Valence-Rydberg Mixing: Anti Conformer of n-Tetrasilane. 
According to the nature of the MOs involved in the description of an electronic state, two 

basic types of excited states can be found in actual calculations in neutral molecules: valence 
and Rydberg. The latter have large radial extension of atom-like character, covering the whole 
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molecule. In a good approximation, a Rydberg state can be described as the result of a one- 
electron promotion from an occupied orbital to an atom-like orbital of higher quantum 
number. Therefore, the electron in the Rydberg orbital "feels" the molecule like a cation 
acting as a point charge, and the presence of the state is justified by the electrostatic 
interaction between the electron and the cation. In a molecular system formed by atoms of the 
second period, with electrons of maximum principal quantum number n=2, the Rydberg 
orbitals begin with n=3, and the Rydberg states 3s, 3px, 3py, 3pz, 3dx2_y2, 3dz2, 3dxz, 3dyz, 3dxy, 
are usually found among the lowest Rydberg states, where the promoted electron comes from 
the HOMO. 

Valence and Rydberg states can be characterized by their spatial extent, measured through 
the expectation values <x2>, <y2>, and <z2>. Valence excited states are described mainly by 
valence MOs (bonding, lone pairs, and antibonding) and, therefore, they are more compact as 
compared to diffuse Rydberg states. Comparison of the relative values computed for the 
second Cartesian moment (<x2>, <y2>, <z2>) can be used as criterion to determine in a simple 

manner the nature of the excited state; results close to those of the ground state indicate the 
valence nature of the excited state under consideration. It can be also used to identify a 
particular type of Rydberg state according to its radial extension. Excited states of 
intermediate valence-Rydberg nature come out quite often from the computation. To elucidate 
whether those states actually correspond to spectroscopic states or are just an erroneous 
consequence of the truncated level of theory employed is not an obvious task and the actions 
to be taken depend on the particular case. Higher levels of theory are usually required to give 
a clue in the right direction. Experience shows, however, that valence-Rydberg mixing found 
in vertical transitions is in most cases spurious and it progressively vanishes upon the 
increasing level in the treatment of dynamic correlation [97, 98]. 

Well-known examples of a strong valence-Rydberg interaction at the CASSCF level are 
the excited states of ethene and butadiene [42, 82]. A similar situation was found in the anti 
conformer of n-tetrasilane (see Fig. 2), where the SA-CASSCF calculations lead to a strong 
mixing of the Rydberg and valence states [98]. The MS-CASPT2 method is able to rectify the 
problem yielding an effective separation of the computed states, which can be clearly 
identified as valence and Rydberg [82]. Tetrasilane can be regarded as the simplest 
oligosilane for which the contribution of the conformers, gauche and anti forms, on the 
electronic spectra can be analyzed, providing an step further to the understanding of silicon- 

containing compounds of great impact in modem technology [98, 99]. 

Table 1 compiles the results computed at the CASSCF, CASPT2, and MS-CASPT2 levels 
at the equilibrium geometry of the ground state using an ANO-type basis set with the 

contraction scheme Si[6s5p2d]/H[2slp], which was augmented with a l s lp ld  set of Rydberg 
functions placed in the centre of the system. The computations were carried out within the C2h 
symmetry constraints, with the silicon atoms placed in the xy plane and the y axis parallel to 
the terminal SiSi bonds. The active space comprises the c~ and cy* Si-Si bond orbitals, 



69 

extended for each irreducible representation to include Rydberg orbitals and ~*-symmetry 
Si-H antibonding orbitals, as appropriate [98]. 

Six valence states occur below the lowest Rydberg transition at the MS-CASPT2 level. Let 
us focus our attention on the singlet excited states of Bu symmetry. Transition to the lowest 
excited state (11Bu) at 6.33 eV, computed with the larger oscillator strength (around 1.12), can 
be clearly attributed to the low-energy experimental band with a maximum at 6.14 eV in the 
matrix spectrum [100]. The 1 ~Bu state in terms of the occupation numbers associated with 
natural orbitals obtained from the PMCAS wave function corresponds to the expected one- 
electron promotion HOMO--~LUMO of c~c~* character. On the other hand, transition to the 
21Bu(Vs) state at 6.96 eV has a smaller oscillator strength (0.15) and it probably contributes to 
the overall shape of the high-energy band with maximum at 6.89 eV observed in the matrix 
spectrum [99, 100]. The 31Bu and 41Bu states are 4p Rydberg states, placed at 7.46 and 7.87 
eV, respectively (MS-CASPT2 results). The CASSCF calculation was carried out as four-root 
average of the singlet states of Bu symmetry. From a comparison of the MS-CASPT2 to the 
CASSCF and CASPT2 results, one can easily conclude that the CASSCF procedure leads to a 
too pronounced valence-Rydberg mixing that a single-reference multiconfigurational 
perturbation theory such as CASPT2 cannot fully recover. As a consequence, the two Bu 
states of valence character are placed energetically too high at the CASPT2 level, whereas the 
two Rydberg states are stabilized too much. Accordingly, the CASPT2 oscillator strengths for 
the valence transitions are underestimated (because of the interference of the Rydberg states). 
The opposite is true for the Rydberg transitions, which are computed with larger oscillator 
strengths at the CASPT2 level, with respect to the MS-CASPT2 findings, because of the 
mixing with the valence excited states. A comparison between the CASSCF and MS-CASPT2 
results demonstrates that dynamic correlation effects contribute the most (more than 2 eV) to 
the excitation energy of the lowest valence excited state V~. This effect is typically found in 
zwitterionic states (i.e., described by hole-pair ionic VB structures) [83], which are 
particularly difficult to characterize theoretically. 

In order to get further insight into the valence-Rydberg mixing Table 2 lists the results 
obtained with the Si[6s5p2d]/H[2slp] ANO-type basis set valence basis set (omitting the 
Rydberg functions). The number of roots in the average CASSCF process was just the 
required to compute the valence excites states (2 for 1Bu symmetry, 3 for lAg symmetry 
including the ground state, and 1 for the remaining). As can be readily seen from Tables 1 and 
2, similar results for the valence excited states are obtained with both basis sets at the MS- 
CASPT2 level. Furthermore, when the valence basis set is employed, the CASPT2 and MS- 
CASPT2 results agree (cf Table 2). 
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Fig. 2. The ground-state structure of the anti conformer of n-tetrasilane. 

Table 1 

Excitation energies (AE) and oscillator strengths for anti n-tetrasilane employing the 

Si[6s5p2d]/H[2slp] + l s l p l d  (Rydberg functions) ANO-type basis set [98]. 

CASSCF CASPT2 MS-CASPT2 

State AE (eV) Osc. Str. AE (eV) Osc. Str. AE (eV) Osc. Str. 

11Bu(V1) 8.50 1.098 6.90 0.891 6.33 1.115 

2 lAg(V2) 6.94 forb. 7.12 forb. 6.55 forb. 

11Au(V3) 7.58 0.003 6.86 0.003 6.68 0.005 

3 lAg(V4) 6.46 forb. 6.76 forb. 6.87 forb. 

21Bu(Vs) 8.81 0.275 7.50 0.234 6.96 0.154 

11Bg(V6) 8.06 forb. 7.51 forb. 7.10 forb. 

41Ag(H--~4s) 7.10 forb. 7.33 forb. 7.40 forb. 

3 ~Bu(H-~4p) 7.76 0.051 7.09 0.046 7.46 0.006 

2 ~Au(H--~4p) 7.60 0.003 7.28 0.003 7.46 0.000 

51Ag(H--~3d) 7.29 forb. 7.87 forb. 7.86 forb. 

41Bu(H---~4p) 7.79 0.279 7.13 0.255 7.87 0.029 

21Bg(H---~3d) 7.78 forb. 7.74 forb. 7.93 forb. 

61Ag(H---~3d) 7.61 forb. 7.70 forb. 7.99 forb. 

31Bg(H---~3d) 7.84 forb. 7.84 forb. 8.10 forb. 

71Ag(H---~3d) 7.76 forb. 8.09 forb. 8.22 forb. 

Table 2. 

Excitation energies (AE) and oscillator strengths for anti n-tetrasilane employing the 

Si[6s5p2d]/H[2slp] ANO-type basis set [98]. 

CASSCF CASPT2 MS-CASPT2 

State AE (eV) Osc. Str. AE (eV) Osc. Str. AE (eV) Osc. Str. 

11Bu(V1 ) 7.98 1.542 6.40 1.237 6.36 1.175 

2lAg(V2) 7.15 forb. 6.69 forb. 6.68 forb. 

11Au(V3) 7.39 0.003 6.66 0.002 6.66 0.002 

3 lAg(V4) 7.39 forb. 6.96 forb. 6.96 forb. 

21Bu(V5 ) 7.84 0.121 6.88 0.107 6.92 0.165 

11Bg(V6) 7.82 forb. 7.12 forb. 7.12 forb. 
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However, by computing instead three roots of 1Bu symmetry with the valence basis set, the 

lowest excited state moves to higher energy destroying the nice agreement with the 
experimental datum and the assignment for the third root is really uncertain, somewhat 
between valence and Rydberg character. Here we have again an unbalanced situation of 
valence-Rydberg mixing! Despite the one-electron basis set does not have Rydberg functions, 
the computation tries to simulate the 31Bu(H--+4p) Rydberg state, as much as the diffuseness 
of the basis set allows. Thus, one can get good results of valence excited states using a 
valence basis set as long as only valence states are computed. In other words, the right 
number of roots for the average CASSCF step has to be considered, making sure that at the 
CASSCF level the valence states of a given symmetry are more stable than the Rydberg 
states. Unfortunately, that theoretical information comes out only from the full computation 
with the extended basis set. The conclusion is, therefore, that the number of valence excited 
states within an energy interval can only be determined from the complete consideration of 
both valence and Rydberg states, as it also occurs in organic compounds [15-18]. In order to 
achieve the goal, flexible enough basis sets have to be supplied, employing high-level 
methodology with inherent flexibility to overcome the possible erratic valence-Rydberg 
mixing. The MS-CASPT2 method in conjunction with ANO-type (valence and centred 
diffuse) basis set is certainly one of the low-cost possibilities. The reader can find additional 
discussions on the spectroscopic features of the system, as well as comparison to earlier CIS 
results, in the original publications [98, 99]. 

5.3. Computational Strategies. An Illustration: Cyclooctatetraene. 
The thermal and photochemical reactivity of cyclooctatetraene (COT) has been very well 

studied from both experimental and theoretical standpoints (for a recent contribution see Ref. 
[101]). The electronic spectra of COT have comparatively received less attention, so we 
decided about a couple years ago to go deeply into the subject. The electron energy-loss 
spectrum (EELS) [ 102] of cycloocta-l,3,5,7-tetraene, at 50 eV impact energy and a scattering 
angle of 10 ~ can be described as a broad band of low intensity over the region 4-4.8 eV with 
a maximum at 4.43 eV and an intense band peaking at 6.42 eV, which has a shoulder around 
6 eV. With these experimental conditions the observed features can be considered to be 
essentially singlet--~singlet transitions [ 102]. The study was mainly addressed for determining 
the nature of those observed bands. In principle, it was expected that they could be attributed 
to the electronic transitions calculated vertically. The research was subsequently extended by 
including the singlet~triplet spectrum (relevant for the understanding of COT as triplet 
quencher), lowest ionization potentials, and electron affinity of COT. They shall also be 
briefly considered in turn. In order to design the calculation one has to decide about the 
equilibrium geometry of the ground state, active space, and basis set. 

Previous work on the COT system clearly revealed that the ground state of neutral COT 
has four equivalent D:d local minima connected by two independent reaction paths: ring 
inversion (with a D4h transition state) and bond shifting (through a Dsh transition state) (see 
the 1996 landmark paper of Wenthold et al. [103]). Because of the tub-shaped structure 
belonging to the Ded symmetry (see Fig. 3), both through-bond (c~-rt interaction or 
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hyperconjugation) and through-space interactions have to be taken into account, which is a 
true challenge for any theoretical method [104]. On the other hand, it was also known at the 
time we started the project that the lowest triplet state has an octagonal structure, and that the 
ground state of COT radical anion is also planar belonging to the D4a symmetry. A consistent 
treatment for the ground-state geometry optimization of these systems (neutral, lowest triplet, 
and radical anion) was carried out at the CASSCF level employing the rc valence MOs (and 
the respective rt electrons) active (denoted hereafter as rc-CASSCF). 

As illustrated in many applications, analysis of the nature and spacing of the canonical 
MOs is usually helpful to rationalize the most important spectroscopic features obtained from 
more complex CASSCF wave functions. It also serves as a qualitative guide for predicting the 
type of valence excited states to be computed in order to choose an active space in accordance 
with the expectations. This is an important step because the active space has to be supplied by 
the user and has, therefore, to bear enough flexibility to describe all possible type of excited 
states. From the electronic structure shown schematically in Fig. 4, at least five candidates can 
be expected as low-lying singlet excited states: 

�9 The 1A2 state described mainly by the HOMO--~LUMO one-electron promotion. 

States of 1E symmetry involving the HOMO-->LUMO+I and HOMO-1--~LUMO 
singly excited configurations. Because of the similar orbital energy differences (12.4 
eV versus 12.5 eV), these nearly degenerate one-electron promotions can further 
interact leading to a plus and minus linear combinations in the actual CASSCF wave 
function. As a result of the interaction, the minus and plus state are pushed down and 
up, respectively. The vertical transition from the ground to the minus excited state can 
be predicted with low intensity because of the subtraction of the corresponding 
transition moments. On the other hand, transition involving the plus state should carry 
most of the intensity. (Notice, however, that intensities are not computed but oscillator 

strengths). 

The 1B1 state described primarily by the singly excited configuration from the deepest 

rt orbital, 4b2, to the LUMO (3a2). 

�9 The 1B2 state involving the highest occupied ~ orbital, 3bl, and the LUMO. 

Transitions from the ground to the 1A2 and 1B1 states are dipole forbidden in D2d 
symmetry, as it is the expected transition to the 1A1 state of doubly excited character. In 
addition, experience shows that in systems of a similar molecular size, Rydberg states 
converging on the lowest ionization potential are interleaved among the valence excited 
states. Therefore, the lowest 3s, 3p, and 3d members of the Rydberg series have also to be 
taken into account. The Rydberg states are described primordially by one-electron promotion 
from the HOMO (5al) to the 3s, 3p, 3d atomic-like MOs covering the whole molecule. The 
aim of the study is then clearly defined and it only remains to select the active spaces 
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accordingly. In this case, the process was somewhat laborious from a technical standpoint 
because the D2d symmetry is not implemented in the software employed (MOLCAS package) 
[71]. Therefore, actual calculations were performing in C2v symmetry. As usual, the n-valence 
active space was extended to include Rydberg orbitals of the different symmetries, as 

appropriate (see details in Ref. [105]). 

Fig. 3. The ground-state structure of cycloocta- 1,3,5,7-tetraene. 
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Fig. 4. Schematic electronic structure of cycloocta-1,3,5,7-tetraene including the highest five occupied 

and n-valence virutal canonical MOs, together with the orbital energies, computed with the ANO-type 
C[4s3p 1 d]/H[2s lp] basis set at the n-CASSCF equilibrium geometry. 
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The CASSCF and CASPT2 results for the vertical singlet--~singlet electronic transitions 
obtained with the ANO-type C[4s3pld]/H[2slp] + 2s2p2d (Rydberg functions) basis set are 
listed in Table 3. The MS-CASPT2 and CASPT2 findings lead essentially to the same picture 
of the electronic spectrum. For the sake of simplicity only CASPT2 results shall next be 
considered. The computed vertical excitation energy, 3.79 eV, is somewhat too low compared 
to the maximum observed by electron energy-loss spectroscopy, 4.43 eV. The previous ab 

initio MRCI results reported by Palmer [106] predicted the lowest-energy band to peak at 
4.37 eV. The source of the discrepancy between the MRCI results and the CASPT2 finding 
can be attributed to the limited basis set (split-valence quality) used for the MRCI 
calculations. Table 4 compiles the 7c-CASPT2 results computed for the lowest vertical 
transition l lA1--+llAz(5al--~3a2) upon improving the contraction scheme. Employing the 
ANO-type basis set with the contraction C[3s2p]/H[2s] the CASPT2 result, 4.45 eV, is 
consistent with the earlier MRCI result. Thus, the message is clear. For the lowest 
singlet--+singlet vertical transition of COT, the MRCI and CASPT2 results yield about 4.4 eV 
when a split-valence basis set is employed. The agreement with experiment is perfect. If we 
define a right theoretical result as it matches with the experimental datum, this is the typical 
"right answer" for the "wrong reason". Upon improving the quality of the contraction in the 
ANO-type basis set, which always has the same number of primitive functions, the nice 
agreement with the experimental datum is destroyed. Adding d polarization functions on the 
carbon atoms, the computed vertical transition drops to 3.92 eV (a similar result was obtained 
at the CASPT2 level with the 6-31G* basis set at a slightly different geometry) [101]. 
Inclusion of p polarization functions on the hydrogen atoms has a minor influence on the 
transition energy. A slight decrease of the excitation energy also occurs employing the 
C[4s3pld]/H[2slp] contraction. Adding 2s2p2d diffuse functions at the symmetry centre of 
the molecule, a further decrease takes place (0.11 eV with respect to the valence plus 
polarization basis set) and the excitation energy so computed, 3.79 eV, is similar with the 
result obtained with the largest valence basis set explored, 3.80 eV, which includes up tofand 
d functions on the carbon and hydrogen atoms, respectively. In this manner, the best 
theoretical estimation for the lowest vertical transition is computed to be within the energy 
range 3.80-4.00 eV, about half an eV below the peak observed experimentally. It seems to 
point out that the maximum of the low-intensity band does not correspond to the vertical 
excitation. Although the transition is dipole-forbidden, it is observed optically, probably 
through a vibronic coupling mechanism with a nearby dipole-allowed transition. If higher 
accuracy on theoretical grounds were required, vibronic resolution of the band would have to 
be performed. One of the main advantages of an ab initio approach relies on the fact that one 

is aware of the limitations introduced in the study knowing the direction to push further (if 
required) the methodology. It is a well-defined hierarchical framework. Pioneering INDO 
results [107] already predicted the 1 iA2(5al~3a2) state around 4 eV but the deviation with 
respect to the experimental datum was ascribed to the inherent limitations of the 
semiempirical methods. On the other hand, we were curious about the performance of the TD- 
DFT method with the B3LYP functional to describe the electronic spectrum of COT. 
Employing the same geometry and the ANO-type C[4s3pl d]/H[2slp] + 2s2p2d basis set, the 

lowest singlet excited state was found to be at 3.51 eV. Without the CASPT2 results at hand, 
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the large deviation with respect to experiment obtained by using semiempirical or TD-DFT 

methods could then be related to the poor performance of the methods. What are the open 

alternatives to solve that? Just one, to move to another parametrization and see it the result 

gets closer to the experimental datum. In summary, the predictive power is lost and we would 

have missed the main key point coming out from the ab initio research carried out at the 

CASSCF/CASPT2 level, namely the observed feature cannot be related to the vertical 

transition and most probably vibrational resolution of the band might be required to fully 

characterize it. 

Table 3 

Computed CASSCF and CASPT2 excitation energies (eV) and related oscillator 

strengths for the vertical singlet--~singlet electronic transitions of cycloocta-l,3,5,7- 

tetraene employing the ANO-type C[4s3p 1 d]/H[2s lp] + 2s2p2d (Rydberg functions) 

basis set [105]. 

State CASSCF CASPT2 Osc. Str. EELS data a 

11A2(5al--+3a2) 6.70 3.79 forbidden 4.43 

11E(rc~*) 7.88 5.56 0.0075 

21Al(5 al----~3s) 5.81 5.58 forbidden 

21E(5al--+3px,y) 6.69 5.93 0.0004 

31A1 (rift*) 6.84 6.14 forbidden 

11B2(3bl--~3a2) 10.09 6.14 0.011 

21B2(5 al--+ 3 Pz) 6.21 6.17 0.0532 6.02 

11Bl(4b2-~3a2) 8.02 6.36 forbidden 

31E(rtrt*) 10.28 6.40 1.1096 6.42 

5 al--~3 d 6.75-7.35 6.57-6.80 0.0014 

aObserved by electron energy-loss spectroscopy (EELS) [102]. 

Table 4 

Convergence pattern for the lowest vertical transition 

11A1---~ 1 ~A2(5al---~3a2) upon improving the contraction scheme. 

Basis set a rc-CASPT2 ( e V )  Previous (eV) 

C[3s2p]/H[2s] 4.45 

C[3 s2p 1 d]/H[2s] 3.92 

C[3 s2p 1 d]/H[2s 1 p] 3.92 

C[4s3pld]/H[2slp] 3.90 

C[4s3p 1 d]/H[2s lp] + 2s2p2d 3.79d 

C[ 5 s4p2d 1 f]/H[ 3 s2p 1 d] 3.80 

4.37 b 

4.00 c 

aPrimitive sets: C(14s9p4d3f)/H(8p4p3d) ANO-type basis set 

bMRCI result [ 106]. 

~ result taken from Ref. [101]. 

dFrom Table 3. 



76 

Coming back to Table 3, the following remarks are pertinent: 

The most intense feature is related to the 3~E(7~rc *) state, the plus state described 
above. It is placed at about 10 eV at the CASSCF level and the CASPT2 result, 6.40 
eV, is in agreement with experiment. The effect of dynamic correlation is crucial for 
the accurate location of the state. The 1 mE(rote*) state corresponds to the minus state 
and is close to the lowest Rydberg state. 

The 31Ai(rcrc *) state has a prominent weight (33.2%) of the doubly excited 
configuration (HOMO---~LUMO) 2 in the CASSCF wave function. The 31Al(rc~ *) and 
11Bz(cyg*) states are degenerate. The most plausible assignment responsible of the 
observed shoulder at 6.02 eV is the Rydberg transition to the 3p~ orbital, although the 
valence state c~* might also contribute to this feature in the gas phase. The primary 
Rydberg character for the shoulder recorded in the gas phase is supported by the fact 
that it is not observed in the absorption spectrum of COT in hexane. It is well 
recognized that Rydberg states are usually perturbed in condensed phases and they 
collapse in solution. Many different earlier assignments for the observed shoulder can 
be found in the literature [105]. However, the issue is now clarified theoretically and it 
would be highly desirable that the assignment could be confirmed unambiguously by 
experimental research. 

As we see both valence and Rydberg states coexist in the same energy region. It is more a 
rule than an exception for molecules of medium molecular size [ 15-18]. 

COT is employed for efficient laser operation of dye solutions because of the unique 
properties of its lowest triplet state. During the operation of laser dye solutions, the triplet 
excited levels of the dyes are populated along with the singlet states, which causes a 
detrimental effect in their operation. A fraction of the excited singlet state population 
responsible for the laser action becomes deactivated by the intersystem-crossing mechanism. 
These triplet dye molecules exhibit broad optical absorption triplet---~triplet spectra with 
relatively high intensities, with the consequent loss of laser efficiency. Hence, it is essential to 
use a suitable triplet scavenger, able to remove the triplet dye molecules, without interfering 
in the laser efficiency. The acceptor COT fulfils the requirement and it is widely used for this 
purpose. As can be seen from Fig. 5, where the main CASPT2 results for the S0-~T~ 
transition are depicted, the energy difference between the vertical and adiabatic excitation 
energies is large, about 2 eV. Simultaneous to the electronic excitation of COT, a progressive 

structural reorganization towards planarity takes place. Therefore, COT has a pronounced 
non-vertical behavior and covers a wide range of triplet donors, D*(T1). The origin of the 
S0~T1 transition, about 0.8 eV, can be considered as an estimate of the lower limit for the 
triplet energy of a donor that the acceptor COT could still react with [108]. On the other hand, 
the vertical phosphorescence is predicted in the infrared range. 



77 

vertical 

Tl 

2.82 eV 

So 

........ D*(T1) 
" >  . . . . .  emission adiabatic 

_TI 
~- 0.22 eV 

So J 
0.78 eV 

Fig. 5. The lowest singlet--+triplet electronic transition. CASPT2 results for the vertical absorption, 
vertical emission (phosphorescence), and adiabatic excitation energies for COT. The triplet energy of 
a donor D is also represented. 

Additional information about the lowest triplet state was obtained from the photoelectron 
(PE) spectrum of the radical anion, where photodetachment to two distinct electronic states of 
neutral COT was observed. Wenthold et al. [103] identified these electronic states as: 

The 11Alg (O4h) state at 1.1 eV, which corresponds to the transition state of COT ring 
inversion along the So hypersurface, and 

�9 The 13A2g (D8h) state; the lowest triplet state, at 1.62 eV. 

Employing the ground state structure optimized for the COT radical anion, the PE 
spectrum was computed. At the CASPT2 level, the ground state of the neutral system is found 
to be at 1.11 eV and the lowest triplet state at 1.47 eV in reasonable accordance with the 
experimental data. As can be seen in Table 5, the results at the CASSCF level are poor. The 

minus sign in the CASSCF result (-0.86 eV) implies that the radical anion is not bound. 
Therefore, the CASPT2 approach is capable of recovering (qualitatively and quantitatively) 
the right relative position between the respective states of the anion and the neutral systems. It 

is really amazing, especially if one realizes that CASPT2 is just a second-order perturbation 

approach. In this type of difficult cases, involving large differential dynamic correlation 
contributions, the CASPT2 method certainly plays an outstanding role. Similar comments are 

valid for the computed electron affinity. The vertical EA is negative at both CASSCF and 
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CASPT2 levels of theory. Therefore, we can confidently conclude that the radical anion is not 
actually bound at the ground-state equilibrium geometry of COT (11A1 (D2d)). In addition, the 
CASPT2 adiabatic EA, 0.56 eV, is in agreement with recent experimental determinations 

(0.57 eV) [109]. The agreement is entirely due to the inclusion of dynamic correlation 

because at the n-CASSCF level the ground-state radical anion is above the ground state of the 
neutral system by nearly one and half eV (-1.43 eV in Table 5). 

Table 5 

Computed photoelectron spectrum for the planar cyclooctatetraene radical anion 
and electron affinity of COT employing the ANO-type C[4s3pld]/H[2slp] + 
2s2p2d (Rydberg functions) basis set. Energy differences in eV [ 105]. 

State n-CASSCF n-CASPT2 Experimental 

Ground state of cyclooctatetraene radical anion: 12Blu (D4h symmetry) 
1 lAlg -0.86 1.11 1.10 a 
13A2g 0.16 1.47 1.62 a 

vertical EA -2.79 -0.49 
adiabatic EA -1.43 0.56 0.57 b 

aTaken from the recorded photoelectron spectrum [103]. 
bSee Ref. [109] and cited therein. 

5.4. Up-to-date Theoretical Spectroscopy. 
We shall leave for the next section the purely photochemical problems, that is, those in 

which different photoproducts are generated or those in which non-adiabatic state transitions 
occur, and focus here on spectroscopy, understood as the assignment of absorption and 
emission band positions and intensities, radiative lifetimes, and environmental effects. 
Theoretical ab initio spectroscopy can provide nowadays extremely accurate data that help to 
interpret and rationalize the experimental recordings and to predict new findings. Not all 
systems can be equally computed at the same level of accuracy. Excitation energies and 
oscillator strengths for organic systems up to the size of, for instance, the free base porphin 

molecule (C20N4H14), have been studied using accurate methods and basis sets: CASPT2 
[110], in which a novel interpretation of the spectrum was put forward, SAC-CI [111], and 

EOM-CCSD [112], although the single-configuration methods showed less accuracy. In order 
to compute the low-energy spectra of larger systems such as fused zinc porphyrin dimers 

(Zn2C40N8H22) at the SAC-CI level [56], severe approximations, such as lack of polarization 
functions in the basis sets or partial removal of virtual orbitals, were performed, undoubtedly 

decreasing the accuracy of the results. As a rough estimation, error boundaries smaller than 

0.3 eV are required in order to obtain reliable interpretations of many spectra. DFT 

approaches for excited states, TD-DFT theories basically, were expected to be able to deal, 
although at low level of accuracy, with large systems were ab initio methods become too 
expensive. Unfortunately, recent findings have proved that the TD-DFT methods fail 
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dramatically in too many situations: charge transfer states [113], multiconfigurational states 
[113], doubly or highly-excited states [61, 113], valence states of large 7c extended systems 
such as acenes, from naphthalene to octaacene [114, 115], polyacetylene fragments or 
oligoporphyrins [ 116], polyenes, from butadiene to decapentaene [ 117], and the list increases 
every day. In some cases the errors are larger than 5 eV [114]. Regarding inorganic electronic 
spectroscopy, only multireference perturbation theory, CASPT2 basically, has been able to 
obtain general and accurate results in systems so different as ionic transition metal (TM) 
molecules, covalent actinide complexes or organometallic metal-ligand compounds. Typical 
examples are chromium hexafluoride and hexachloride anions, iron porphyrins, tetra-, penta- 
and hexacarbonyl or cyano TM complexes, TM dihalides, cyclometalated compounds, blue 
copper protein chromophores, and lanthanide and actinide oxides [16, 118-121]. The virtual 
extension of the multiconfigurational approaches to systems with several transition metal 
atoms is complicated because the selection of the reference becomes challenging [ 16, 118]. 

In the other side of the scale, ab initio methods can yield extremely accurate information 
for small systems, provided that high-level approaches and large basis sets are used. In these 
cases, the required accuracy is not far from the usually recognized as chemical accuracy, 1-2 
kcal/mol. Not only electronic data are needed, also detailed vibrational or rotational 
spectroscopic information, and, typically, also vibronic or spin couplings have to be included. 
In very small systems, the MRCI method can be considered extremely accurate and general, 
provided that the problem of the size-extensivity is corrected or estimated [5, 7]. If the system 
fulfils certain requirements such as a closed-shell ground state well represented by a single 
reference and excited states of clear singly excited character, single-configuration coupled- 
cluster approaches including triple excitations, EOM-CCSD(T) or CC3 for instance, may 
offer high accuracy. Those methods are size extensive and can in practice be extended further 
than the MRCI approaches. In any case, the only generally applicable methods are the 
multireference perturbation approaches, which means, CASPT2 and related. CASPT2 is a non 
size-extensive methodology but, in practice, it can be shown that, in the calculation of 
spectroscopic properties, the corresponding effect is negligible [16]. The expected accuracy, 
being simply a second-order perturbation theory, cannot be as large as more elaborated 
approaches, except for the fact that it does not present unexpected failures in difficult cases, 
assuming a computation free of intruder states. As an example of the required accuracy 
needed to solve spectroscopic problems, a CCSD(T) study of the ground state of the van der 
Waals Ar-CO complex required the use of a basis set composed by aug-cc-pVQZ plus 
midbond functions in order to get an accuracy close to 0.3-0.4 cm -1 and assign conflictive 
rovibrational bands [122]. In general, methods for electronic excited states cannot reach the 
same precision. 

Last decade has known tremendous breakthroughs in the field of quantum chemistry of the 
excited state. The number, size, and accuracy of the computed problems have grown up to the 
point of being comparable in certain cases with the experimental measurements, in particular 
for gas-phase spectroscopy. Solvent simulations in spectroscopy, basically by the Reaction 
Field (RF) or Quantum Mechanics/Molecular Mechanics (QM/MM) approaches, cannot be 
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considered quantitative so far, although they are helpful to elucidate spectroscopic 
assignments [2, 123, 124]. If we summarize a number of achievements made by modem 
quantum-chemical theories in the field of spectroscopy, it is worth remembering that, 
nowadays, all type of states can be computed accurately, whether valence, Rydberg or 
multipole-bound anionic states, optically one-photon allowed or forbidden (dark) states, and 
covalent, ionic, and zwitterionic states [18]. Band origins (Te or To transitions) [15-18, 42, 
125] and vibrational profiles for electronic absorption and emission bands, involving ground 
and excited states geometry optimizations and knowledge of the states force fields are also 
computed with high accuracy for medium size systems such as benzene [90], pyrrole [126], 
and p-benzosemiquinone radical anion [127] leading to straightforward comparisons with 
experiment. Even the effects of the anharmonicities in the vibrational bands positions and 
intensities can be computed at different levels for, at least, small systems. As an example, the 
low-lying absorption and emission spectra of the formyl radical obtained at the CASPT2 
level, which required the calculations of quartic potentials built by computing hundreds of 
points in the hypersurfaces [128]. Methods to incorporate vibronic couplings at different 
levels and obtain refined effects on the intensity of the vibrational bands, become also 
available, although at high cost [128-130]. Examples of the inclusion of accurate calculation 
of vibronic couplings considering the interaction of several electronic states include the 
CASSCF/MRCI description of the S2(rtrc*) absorption band of pyrazine [130], the Green's 
function treatment of the photoelectron spectrum of benzene [130], and CASPT2 and EOM- 
CCSD studies of pyridazine and pyrimidine [131,132]. Other consequences of the breakdown 
of the Born-Oppenheimer approximation such as the Jahn-Teller and Renner-Teller couplings 
have been widely studied in small systems, where high accuracy is needed [4]. Finally, spin- 
orbit couplings and relativistic effects computed at ab initio levels are becoming generally 
available for the excited states of systems including heavy atoms [4]. An example is the recent 
implementations of the combination of two-component relativistic formulations using a 
Douglas-Kroll Hamiltonian to incorporate the scalar effects and the use of 
multiconfigurational CASSCF/CASPT2 or shifted RASSCF methods with relativistic basis 
sets to solve the spin-orbit Hamiltonian. This approach proved to get errors in the relativistic 
effects negligible if compared with the accuracy of the methods to account for the correlation 
energy [ 133 ]. 

The whole previous discussion leads to one simple conclusion: within certain limitations 
related to the size of the systems, quantum-chemical methods applied to theoretical 
spectroscopy have reached the point where a real and constructive interplay can be 
established with experiment [134-137]. Both approaches, experimental and theoretical, will 
become more accurate in different cases. For instance, nowadays, none experimental 
determination can probably match the theoretical calculation of the ground-state structure for 
an isolated molecule, that is, modeling the system in the vapor phase. In other cases, such as 
hyperfine couplings at different levels or situations where the environment produce fine 
effects, the theoretical methods do not have enough accuracy as compared with recorded data. 
Apart from energies, excited states properties and transition probabilities are now routinely 
computed for many systems. In some cases, such as multipole moments in excited states, the 
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accuracy reached by the theoretical methods is also unmatched by the experimental 
measurements. Many representative examples can be given of this new era in the quantum 
chemistry of the excited state in which the ab initio methods, especially the 
multiconfigurational CASPT2 approach [15-18], have been the main protagonists. 
Considering the confirmed weaknesses of the TD-DFT theory to deal with excited states and 
the accuracy needed to solve spectroscopic problems, the ab initio methods will probably be 
the basic tool in the near future. Better implementations of the methods and development of 
efficient geometry optimizers will be required to proceed and they are, indeed, becoming 
available [84]. 

6. EXCITED STATES AND PHOTOCHEMISTRY 

This section is devoted to the computation of excited states specifically involved in 
photochemical reactions, that is, reactions initiated by light. The borderline between 
spectroscopy and photochemistry is extremely dim and vague. We can jump from one area to 
the other without even notice it. For instance, if one is interested in the calculation of the 
vertical excitation energies of cytosine [138], the results produced are certainly in the area of 
theoretical spectroscopy. Now, let us assume one wants to give a step forward by computing 
the equilibrium structures of the main valence singlet excited states [139], namely ~(~7~*), 
l(no~*), and l(nN~*), one immediately enters in the field of non-adiabatic photochemistry. 
The CASSCF geometry optimization of the l(nN~*) state (where nN refers to the lone pair 
located on the nitrogen atom) leads directly to a conical intersection with the ground state. On 
the other hand, the CASSCF equilibrium structure for the l(~rc*) state is essentially coincident 
with a conical intersection involving the excited states 1 (~ , )  and l(no~*). There is no 
problem to reach the minimum for the l(norc*) state, which becomes the lowest excited state 
at the CASSCF level [139]. However, when dynamic electron correlation is taken into 
account the photochemical picture is somewhat different, becoming the 1 (~ , )  state the most 
stable [140]. Incidentally, the computation of these spectroscopic properties of cytosine by 
employing the CIS method, with the purpose in mind of getting a rapid qualitative vision of 
the situation, becomes a nightmare, facing all sort of "convergence" problems (not 
surprisingly), leading to meaningless results where the l(no~*) state is completely missed. 

Let us start from the very beginning. Considering the excited and ground state potential 
energy surfaces and the different reaction paths that a system might evolve through, the 
molecular processes can normally be identified as photophysics, adiabatic photochemistry, 
and non-adiabatic photochemistry [141]. Absorption and emission can be regarded as 
photophysical processes. From the theoretical viewpoint they involve calculations at similar 
molecular structures. In an adiabatic reaction path, once that the vertical absorption takes 
place, the system proceeds along the hypersurface of the excited state to reach a local (or 
absolute) minimum leading eventually to an emitting feature. For instance, the dual 
fluorescence observed for dimethylaminobenzonitriles [142] and 1-phenylpyrrole [143] in 
polar solvents can be explained in terms of a photoadiabatic reaction that takes place in the 
lowest excited state. In those cases, the polar environment decreases the reaction barriers and 
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favors the process. In a non-adiabatic photochemical reaction path, part of the reaction occurs 
on the excited state hypersurface and after a non-radiative jump at the surface crossing (or 
funnel) continues on the ground state hypersurface. When the two hypersurfaces have the 
same multiplicity (e.g. singlet/singlet) the radiationless jump is denoted as internal conversion 
(IC), and intersystem crossing (ISC) is reserved for cases of different multiplicity (e.g. 
singlet/triplet). Internal conversion may occur through an avoided crossing (AC) or a conical 
intersection (CI). Among several researchers, Robb, Olivucci, Bernardi, and co-workers have 
specifically shown during the last decade the important role that conical intersections play in 
organic photochemistry [ 141 ]. A large number of photochemical reactivity problems has been 
studied in the last years involving CIs, including photoisomerizations, photocycloadditions, 
photorearrangements, and photodecompositions. Depending on the nature of the CI [144], the 
corresponding radiationless transition can yield specific photoproducts or relax the energy 
towards the ground-state initial situation. 

Geometry determination of a conical intersection, as well as localization of minima and 
transition states, is usually performed at the CASSCF level. In a subsequent step, the energy 
differences are corrected by including dynamic correlation. If it is done at the CASPT2 level, 
the protocol is denoted as CASPT2//CASSCF, which stands for geometry optimization at the 
CASSCF level and CASPT2 calculation at the optimized CASSCF structure. Two main 
situations do actually occur. In cases where the PES computed at the CASSCF and 
CASPT2//CASSCF level behave approximately parallel (CASE A), the CASSCF optimized 
geometries will be in general correct, despite they have been computed at a lower level of 
theory. It means that dynamic correlation contributions are quite regular and similar in ample 
regions of the PES. The photochemistry of the protonated Schiff bases constitutes a nice 
CASE-A example, where the CASPT2//CASSCF computational strategy can be confidently 
applied. As can be seen in Fig. 3 of Ref. [145], the CASSCF minimum energy path runs 
parallel to that obtained at the CASPT2//CASSCF level. When dynamic correlation is 
markedly different for the states considered and varies significantly along the PES of interest, 
geometry optimization has to be carried out at the highest correlated level (CASE B). 
Otherwise, the uneven contributions of dynamic correlation may lead to unphysical crossings 
and interactions between the two electronic states. A clear representative study of CASE B 
corresponds to the characterization of the nature of the S0/S1 crossing responsible for the 
radiationless decay in singlet excited cytosine. The excited DNA bases have a lifetime so 
small that they relax to their ground state before a photochemical reaction may take place. In 
fact, the excited-state lifetimes of the nucleic acid molecules fall in the sub-picosecond time 
scale, suggesting the presence of an ultrafast internal conversion channel [146, 147]. It is an 
intrinsic molecular property because very short lifetimes have also been determined in the gas 
phase for the isolated purine and pyrimidine bases [148]. The CASPT2 results [140] suggest 
that the conical intersection between the ground state and the 7cn* state, denoted by 
(gs/n~*)c~, is responsible for the ultrafast decay of singlet excited cytosine, which is in 
contrast to the picture offered by the CASSCF method [139]. Moreover, the note* state is 
involved in a $2/$1 crossing and it does not contribute directly to the ultrafast repopulation of 
the ground state [ 140]. As stated above, optimization of the singlet nN~* state leads directly to 
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a conical intersection with the ground state but it is not found to be the preferential path of the 
observed decay. Whether this is a general relaxation mechanism for all the excited 
nucleobases or not is the subject of current research. 

A situation like cytosine where the CASSCF and CASPT2 reaction paths do not run 
parallel (CASE B) manifests an urgent necessity of efficient algorithms for computing conical 
intersection with inclusion of dynamic correlation. The two main open routes available at 
present, through the MRCI [149] and the MS-CASPT2 methods [150], are limited to systems 
of small molecular size. However, in order to tackle general CASE-B problems, where the 
CASPT2//CASSCF (or MRCI//CASSCF) protocols are not valid, no methodology is available 
in practice. It is clear that most of the biomolecules of interest cannot be confidently treated 
today at the MRCI level because of the severe truncations that have to be performed. On the 
other hand, caution has to be exercised when applying the MS-CASPT2 method to locate 
conical intersections [151], which is next addressed by using as example the penta-2,4- 
dieniminium cation. 

De Vico et al. [152] have recently reported the optimized structures for the S1/S0 conical 
intersection computed at the MS-CASPT2 and CASSCF levels, hereafter denoted as Geom. I 

and Geom. II, respectively. Table 6 shows the CASSCF, CASPT2, and MS-CASPT2 energy 

differences (AE) between $1 and So that we have computed at those geometries. The 6-31G* 
basis set was used throughout. Incidentally, because photochemical studies are mainly related 
to the lowest valence states, basis sets smaller than those used in spectroscopic studies, are 
frequently employed, which should be alright as far as no competitive Rydberg states are 
placed around the studied region. When the energy difference is less than 2 kcal/mol, the 
minimum reached is considered technically as a conical intersection; otherwise (AE > 2 
kcal/mol) we are facing an avoiding crossing. The MS-CASPT2(6MOs/6e) result, 3.89 
kcal/mol, is similar to the CASPT2 finding employing Geom. I, and the off-diagonal matrix 
elements of the asymmetric effective H a m i l t o n i a n  (H eft) are small (less than 2 kcal/mol). 
Everything seems to be quite consistent. Apparently an avoiding crossing has been found at 
the MS-CASPT2(6MOs/6e) level. Using Geom. II, the CASSCF(6MOs/6e) and 
CASPT2(6MOs/6e) results for AE are within 1 kcal/mol. It indicates that the optimal 
geometry determined for the conical intersection at both levels of theory is probably very 
similar. However, the states become separated by 7.57 kcal/mol when they are allowed to 
interact. As can be seen in Table 6, the off-diagonal elements of the H eff are very different, 

6.12 and 1.38 kcal/mol. Because the states are nearly degenerate at the CASPT2 level, the 
result for the off-diagonal symmetric H eft just comes out from averaging: (6.12+1.38)/2. As a 

consequence, the CASPT2 states are pushed down and up by that amount, 3.75 kcal/mol. 
Such interaction is definitely unphysical! Enlarging the active space with two extra orbitals 
(SMOs/6e results), which allows for radial correlation of the electrons involved in the 90 ~ 
twisted double bond, the H12 and H21 asymmetric elements become small enough, which 
reflects that the corresponding zeroth-order Hamiltonians are capable of yielding a balanced 
description for both states. Accordingly, the CASPT2 and MS-CASPT2 splitting between the 

$1 and So states becomes small. In summary, the computed geometry at the 
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CASSCF(6MOS/6e) level represents also a conical intersection at the MS- 

CASPT2(8MOs/6e) level, which confirms that protonated Schiff bases behave as CASE A. 

Unfortunately, in larger molecular systems the active space cannot be extended to the extreme 

that the off-diagonal elements become less than 2 kcal/mol and the MS-CASPT2 method may 

be forced to yield avoiding crossings. It is certainly a circumstance to be prevented in future 

applications of  the MS-CASPT2 method. 

Table 6 

Energy difference between S~ and So, AE, computed at the optimized structures 

of the penta-2,4-dieniminium cation S~/S0 conical intersection a at the MS- 

CASPT2 (Geom. I) and the CASSCF (Geom. II) levels. The 6-31G* basis set 

was used throughout. The off-diagonal elements of the MS-CASPT2 effective 
Hamiltonian (H eft) are also included. 

Method 
Geom. I Geom. II Geom. II 

(6MOs/6e) (6MOs/6e) (8MOs/6e) 

AE(S1-S0) (kcal/mol) 

CASSCF 3.40 0.07 4.78 

CASPT2 3.83 0.99 0.60 

MS-CASPT2 3.89 7.57 0.64 

Off-diagonal elements of H elf (kcal/mol) 

H12(asymmetric) 0.62 6.12 0.18 

H21(asymmetric) 0.09 1.38 0.04 

HIz=H21 (symmetric) 0.35 3.75 0.11 

aOptimized geometrical parameters taken from De Vico et al. [ 152]. 

7. FINAL R E M A R K S  

It is clear that we are living in a new era where experimental and theoretical research can 

talk to each other on an equal footing. In this privileged situation we should be able to join 

efforts addressed to elucidate the big challenges our society faces at present in the realms of 

atmospheric chemistry, material science, photobiology, and nanotechnology. Experimental 

and theoretical research work shares at least one characteristic: the results produced have to 

be interpreted. The most cumbersome task is to compare experimental and theoretical derived 

data properly. In many cases recorded values do not directly yield the studied property, which 

has to be obtained by indirect procedures within a given scheme. On the other hand, 

theoretical results are usually obtained for simplified models. The resolution of the scientific 

problem certainly requires a constructive interplay between both viewpoints. 

We must be able to design a research strategy in computational chemistry (RESICC) 

leading to results with predictive character, independent of any experimental information. Fig. 

6 shows a proposed RESICC algorithm. Basic steps include: 
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1. Define objectives. This is surely one of the most important parts of a research. The 
aim of the study has to be clearly defined, as precisely as possible: What is the 
purpose of the computation? 

2. Literature reviewing: What is the scientific background on the topic? Analysis of 
previous information has to be critically reviewed with open mind, because it can be 
extremely helpful to design the computation. 

3. Actual computation. According to the previous steps the actual computation takes 
place at a given level of theory. 

4. Once the results have been carefully analyzed two key questions rise. Are the obtained 
conclusions stable with respect to further theoretical improvements? Do they fulfill 
the initial objectives? 

5. A proper action has to be taken if the calculation does not guarantee the required 
levels of quality. Theory has to be pushed further until stable conclusions are 
achieved. 

It is worth noting that ab initio methods, because of their well-defined hierarchical 
structure that allows convergence of the results upon the increasing level or theory, are 
currently the only type of quantum-chemical tools able to fulfill the requirements implicit in 
the RESICC scheme. The decision is up to you! 

Q START ) 

l 
Define 

Objectives 

l 
Literature / 
Reviewing/ 

Actual 
Computation 

END ) 

Improved Level 
of Theory 

No I 

Fig. 6. Research strategy in computational chemistry. 
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