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Ž .ABSTRACT: The convergence behavior of the Møller]Plesset MP perturbation
series is investigated utilizing MP correlation energies up to order 65 calculated at the

Ž .full CI FCI level. Fast or slow convergence, initial oscillations, or divergence of the MPn
series depend on the electronic system investigated and the basis set used for the FCI
calculation. Initial oscillations in the MPn series are observed for systems with electron
clustering due to the fact that MP theory exaggerates electron-correlation effects at even
orders and corrects this at odd orders. In such cases, it is important that the s, p basis is
first saturated before diffuse functions are added. With a VDZ q diff basis, too much
weight is given to high-order correlation effects described by pentuple and higher
excitations, which leads to the formation of artificial intruder states and to the divergence
of the MPn series. This can be corrected by extending to VQZ or VPZ basis sets before
one adds diffuse functions. Alternatively, one can use m-order Feenberg scaling to
exclude backdoor intruder states from the convergence region of the MPn series. For all
cases considered, divergence of the MPn series caused by unbalanced basis sets including
diffuse functions can be suppressed by Feenberg scaling. Also, initial oscillations of the
MPn series can be dampened and convergence acceleration of the MPn series achieved if
the appropriate order of Feenberg scaling is determined for the problem in question. The
relationship between electronic structure, basis set, and convergence of the MPn series is
discussed. Q 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 306]330, 2000
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CONVERGENCE OF MøLLER ]PLESSET PERTURBATION SERIES

Introduction

Ž .he Møller]Plesset MP method for calculat-T ing correlation energies is based on Rayleigh]

Schrodinger perturbation theory and the MP per-¨
w xturbation operator 1, 2 . MP correlation energies

Ž . Ž .are easily calculated at second MP2 , third MP3 ,
Ž . w xand fourth order MP4 3]8 . The calculation of

w x w xhigher orders such as MP5 9, 10 or MP6 11, 12
is considerably more difficult since this implies
M 8 and M 9 operations, where M is the number of
basis functions. Only a few MP5 and MP6 calcula-

w xtions have been carried out 9]12 , which is proba-
bly the reason why little is known about the con-
vergence behavior of the MPn series. Generally,
one assumes that for n approaching infinity the

Ž .MPn energy approaches the full CI FCI energy of
the electronic system investigated where the FCI
energy is determined by the basis set and the
geometry used in the calculation.

ŽOne normally assumes that MPn energies n s
.2, . . . , 6 provide with increasing order reliable pre-

w xdictions of FCI energies 2 . Furthermore, it is
assumed that relative MPn energies, which are
needed for the description of chemical processes,
closely parallel relative FCI energies because of
extensive error cancellations. Of course, these as-
sumptions do not consider the fact that the MPn
series possesses rather different properties for dif-
ferent electronic systems: Fast or slow convergence
behavior, strong initial oscillations, and even di-
vergence have been observed for electronic sys-
tems, which one normally expects to represent
typical closed-shell character without any multiref-

w xerence effects 13]18 . It has been claimed that
MPn correlation energies for n ) 2 may lack any
physical meaning since divergent behavior of the
MPn series may occur even for closed-shell sys-

w xtems such as Ne, FH, or H O 17, 18 .2

In this work, we analyzed the convergence be-
havior of the MPn series for electronic systems, for

w xwhich MP6 calculations 11 or, alternatively, FCI
calculations are possible. During the iterations of
an FCI calculation, increasing orders of MPn ener-

w xgies are generated 19 so that FCI results are
perfectly suited to describe the MPn series and its
convergence behavior at higher orders. We will
focus on the MPn series with erratic andror diver-
gent behavior and discuss the relationship among

electronic structure, the influence of the basis set,
and the role of intruder states. Schucan and Wei-
denmuller showed that the divergent behavior of¨
the MPn series is caused by a radius of conver-
gence R - 1 directly connected with the existencec

of an intruder state interacting with the ground
state within the convergence range of the MPn

w xseries 20 . The intruder-state problem was dis-
cussed by various authors and recipes to avoid it

w xwere suggested 21]24 . We will show that in-
truder states can be avoided by using Feenberg

w xscaling 25]31 . More than 40 years ago, first-order
Feenberg scaling was suggested by Goldhammer
and Feenberg to improve the results of low-order

w x w xperturbation theory 26 . Dietz and coworkers 29
extended the original theory to be applicable in the
case of multireference calculations. Schmidt et al.
w x30 showed that first-order Feenberg scaling can
be applied with success to low-order MP theory.

w xHe and Cremer 31 developed second-order Feen-
berg scaling and used it in connection with MP6 to
estimate FCI energies. Here, we will describe mth
order Feenberg scaling as an effective tool to im-
prove the convergence behavior of the MPn series
and to cope with the problem of intruder states.
Our investigation will be based on MP6 calcula-
tions and the analysis of FCI energies taken from

w xthe work of Olsen and coworkers 17, 18 .
The present work is structured in the following

way: In the second section, we will develop the
theory of higher-order Feenberg scaling. The math-
ematical tools to describe the convergence behav-
ior of an MPn series are given in the third section,
followed by a short discussion of error analysis
and implementation of Feenberg scaling within an

Ž .MPn program fourth section . The MPn series
with convergent or divergent behavior are dis-
cussed in the fifth section. The results of Feenberg
scaling are presented in the sixth section and ana-
lyzed on the basis of theoretical considerations in
the seventh section.

Theory of Feenberg Scaling

The MPn energy at order n is given by expres-
Ž . w xsion 1 2 :

n
n Žk .Ž . Ž .E MPn s E q D E s E q E , 1aÝHF M P HF M P

ks2
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Ž . nwhere E is the Hartree]Fock HF energy; D E ,HF M P
the MP correlation energy at order n:

n
n Žk .Ž . Ž .D E s E MPn y E s E ; 1bÝM P HF M P

ks2

and EŽk . , the k th-order contribution to the MPM P
Ž .correlation energy. Equation 1 is obtained by

ˆsplitting the Hamiltonian H into the unperturbed
ˆ ˆHamiltonian H and the perturbation operator V :0

ˆ ˆ ˆŽ . Ž .H z s H q zV , 20

where

ˆ Ž0. Ž0. Ž0. Ž .H F s E F . 30

ˆIn MP theory, H is given by the sum of Fock0
operators; FŽ0., by the HF wave function; and EŽ0.,

Ž .by E , that is, the unperturbed problem 3 isHF
taken to be the HF problem. Then, the perturba-

Ž .tion operator is defined by Eq. 4 :

1 1ˆ Ž . Ž .V s y v p , 4ˆÝÝ Ý2 rp qp q p

Ž .where v p is the HF potential. The perturbationˆ
can be switched on by a dimensionless strength

Ž .parameter z leading to the perturbed problem 5 :

ˆŽ . Ž . Ž . Ž . Ž .H z C z s EE z C z , 5

which for z s 1 gives energy and wave function of
the Schrodinger equation:¨

Ž .EE z ª EE Ž .z ª 1. 65Ž .F z ª C

MP theory is based on the assumption that the
Ž . Ž .energy EE z and the wave function C z can be

expressed as Taylor expansions at z s 0:

`
k Žk .Ž . Ž .E z s z E 7Ý M P

ks0
`

k Žk .Ž . Ž .C z s z F , 8Ý
ks0

where different symbols E and EE are used to
clarify that the energy E does not necessarily con-
verge to EE.

The nth-order contribution to the energy and
wave function are given by

Žn. Ž0. ˆ Žny1.< < Ž .² :E s F V F 9
y1Žn. Ž0. ˆF s E y HŽ .0

n
Ž1. Žny1. Žk . Žnyk .ˆŽ . Ž .= V y E F y E F . 10Ý

ks2

For a finite basis set, the MPn energy of an atom
Ž .or molecule at a given geometry should approach

the corresponding FCI energy for n approaching
infinity:

`
Žk .Ž . Ž . Ž .E MP` s E FCI s E q E , 11ÝHF M P

ks2

provided that the MPn series SS of correlation
energies,

`n� 4 Ž .SS s D E , 12a1 M P ns2

converges to the FCI correlation energy, which
implies that the series of MPn correlation energy
contributions,

`Žk .� 4 Ž .SS s E , 12b2 M P ks2

converges against zero.
Ž .In general, there is no guarantee that series 12

converges fast or converges at all. Erratic or even
Ž .divergent behavior of series 12 is possible, where

this, of course, reflects whether the partitioning of
ˆ Ž .H according to Eq. 2 is physically justified. On

the other hand, it is possible to adjust the parti-
ˆtioning of H to the electronic problem considered

so that convergence is improved. In this connec-
tion, various methods have been proposed to ac-
celerate and enforce convergence, of which Feen-

w xberg scaling 25]31 as a simple and effective
method is discussed in this work.

w xAccording to Feenberg 25 and Goldhammer
w xand Feenberg 26 , the convergence behavior of the

Ž .MPn series 12 can be improved by introducing
Ž . Ž < < .into Eq. 2 a scaling parameter l l - 1 :

1 l˜ ˆ ˆ ˜Ž . Ž .H z9, l s H q z9 V y H 13a0 0ž /1 y l 1 y l

˜ ˜Ž . Ž . Ž .s H l q z9V l . 13b0

ˆFor positive l, the H part of the Hamiltonian is0
increased, that is, the weight of the unperturbed
problem, which can be viewed as scaling up HF
electron]electron interactions with the purpose of
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CONVERGENCE OF MøLLER ]PLESSET PERTURBATION SERIES

decreasing the perturbation. This may be neces-
sary if the perturbation and, by this, the correc-
tions for the true electron]electron interaction are
too large to apply perturbation theory successfully.
This could help to avoid erratic or divergent be-

Ž .havior of the MPn series 12 .
For negative l, the perturbation is increased

while the weight of the unperturbed problem is
decreased. In this way, lower orders of perturba-
tion theory could cover a larger amount of electron
correlation corrections. This could help to acceler-
ate the convergence of a slowly converging MPn

Ž .series 12 . In both cases, the strength parameter z
is scaled by l to yield a new strength parameter

< <z9. For any value of l - 1, z9 s 1 has to imply
that z s 1 to guarantee the correct form of the

ˆphysical Hamiltonian H, which, of course, has to
be independent of l:

z9 s 1 ˜ ˆŽ . Ž . Ž .H z9 s 1, l ª H z s 1 . 145z s 1

The partitioning of the Hamiltonian according
Ž .to 13 leads to a transformation of the MPn series

� Žn. 4E where each term is obtained now as a poly-M P
w xnomial in l 25]31 :

ny1
n y 2Žn. Žn. nyky1E s E s lÝl FE ž /k y 1

ks1

k Žkq1.Ž . Ž . Ž .= 1 y l E n G 2 . 15M P

w xFeenberg and Goldhammer 25, 26 suggested that
the value of l is obtained by minimizing the MP3
correlation energy Ý3 EŽn. s D EŽ3. s EŽ2. q EŽ3.,ns2 l l l l

Ž .which leads to Eq. 16 :

EŽ2.
M P Ž .l s 1 y . 163 Ž2. Ž3.E y EM P M P

Ž .Replacing l in Eq. 15 by l , the Feenberg series3
� Žn.4E is obtained. Since the minimization of thel3

MP3 correlation energy implies effective scaling of
the first-order correction to the wave function

y1Ž1. Ž0. ˜Ž . Ž .F z9, l s E y H lŽ .3 0 3

˜ Ž1. Ž0.Ž . Ž .= V l y E F , 17Ž .3

the term first-order Feenberg scaling was coined
for this approach. Second-order Feenberg scaling is
obtained by minimizing the fifth-order MP correla-

w xtion energy 31 :

5 Ž5.­ ­D ElŽk . Ž .E s s 0. 18Ý l­l ­lks2

In this case, one obtains a cubic equation in l,

3 2 Ž .l q Pl q Ql q R s 0, 19

with

Ž Ž3. Ž4. Ž5. .3 E y 2 E q EM P M P M P Ž .P s 20Ž2. Ž3. Ž4. Ž5.E y 3E q 3E y EM P M P M P M P

Ž Ž4. Ž5. .3 E y EM P M P Ž .Q s 21Ž2. Ž3. Ž4. Ž5.E y 3E q 3E y EM P M P M P M P

and
EŽ5.

M P Ž .R s . 22Ž2. Ž3. Ž4. Ž5.E y 3E q 3E y EM P M P M P M P

Ž .Solving Eq. 19 , one obtains for the electronic
systems considered in this work just one real root,
which defines the Feenberg scaling parameter l :5

3 3B B P' ' Ž .l s q C y q y C y y , 23( (5 2 2 3

where C is given by

B2 A3

Ž .C s q ) 0 24
4 27

Ž . Ž .for all cases investigated. In Eqs. 23 and 24 , A
and B are given by

P 2

Ž .A s Q y 25
3

3P P = Q
Ž .B s 2 y q R . 26ž /3 3

One could also try to minimize the fourth-order
correlation energy D EŽ4., which would lead tol

2 Ž .l q Q9l q R9 s 0, 27

where

Ž Ž3. Ž4. .2 E y EM P M P Ž .Q9 s 28Ž2. Ž3. Ž4.E y 2 E q EM P M P M P

EŽ4.
M P Ž .R9 s . 29Ž2. Ž3. Ž4.E y 2 E q EM P M P M P

Ž .It turns out that Eq. 27 does not contain a real
Ž .root because for MPn series 12 it always holds
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that

2Ž3. Ž2. Ž4.Ž .4 E y E EM P M P M P2 Ž .Q9 y 4R9 s - 0 30a2Ž2. Ž3. Ž4.Ž .E y 2 E q EM P M P M P

because
2Ž3. Ž2. Ž4.Ž . Ž .E - E E . 30bM P M P M P

In the case of a true geometric series, the left side
Ž .of Eq. 30a would be equal to zero. However,

because of the nature of the perturbation operator
used in MP theory, absolute values of correlation
contributions at even order are larger; those at odd
orders lower than the values of an exact geometric
series as will be discussed in more detail in the
fifth section.

Ž .Similar relationships such as 30 hold at higher
even orders. Therefore, it is reasonable to scale just
the mth-order correction to the HF wave function,

Žm. Ž .F mth-order Feenberg scaling which by the
Wigner theorem corresponds to the minimization
of the MP correlation energy D EŽns2 mq1.:l

n Žn.­ ­D E 1 y nlŽk . Žn. Ž .E s s E s 0, 31Ý l l­l ­l 1 y lks2

Ž .where Eq. 15 has been used.
Ž .Equation 31 involves a set of nonlinear equa-

tions in l when n s 7, 9, . . . :

25 Ž2. 4 Ž3. 3 Ž4.Ž . Ž .l E q 5l 1 y l E q 10l 1 y l E7 M P 7 7 M P 7 7 M P

3 42 Ž5. Ž6.Ž . Ž .q 10l 1 y l E q 5l 1 y l E7 7 M P 7 7 M P

5 Ž7.Ž . Ž .q 1 y l E s 0 327 M P

27 Ž2. 6 Ž3. 5 Ž4.Ž . Ž .l E q 7l 1 y l E q 21l 1 y l E9 M P 9 9 M P 9 9 M P

3 44 Ž5. 3 Ž6.Ž . Ž .q 35l 1 y l E q 35l 1 y l Eg 9 M P 9 9 M P

5 62 Ž7. Ž8.Ž . Ž .q 21l 1 y l E q 7l 1 y l E9 9 M P 9 9 M P

7 Ž9.Ž . Ž .q 1 y l E s 0, 339 M P

or, in general,

2m
ky12m y 1 2 myk Žkq1.Ž .l 1 y l E s 0,Ý 2 mq1 2 mq1 M Pž /k y 1

ks1

Ž .34

which can be solved numerically.
Ž .From Eq. 31 , one can see that because of the

Ž .minimum condition, Eq. 35 , holds:

Ž2 mq1. Ž .E s 0, 35lsll 2 mq1

� Žn. 4so that the Feenberg series E converges inl2 mq1
Ž .2m q 1 th-order perturbation theory. In other
words, the mth-order perturbed wave function and

Ž .the 2m q 1 th-order energy are the eigenfunction
˜Ž .and eigenvalue of the Hamiltonian H z9, l . This

suggests an improvement of the Feenberg series
and more reliable estimates of FCI correlation en-
ergies. We note that the Feenberg energies are all
size-extensive, which can be seen by inspection of

Ž . Ž .Eqs. 15 and 16 .

Description of the Convergence
Behavior of the MPn Series

The convergence behavior of the MPn series can
be investigated by applying d’Alembert’s ratio test
and considering the series of ratios R between
successive MP correlation contributions EŽn. :M P

nŽkq1.EM Pn� 4 Ž .R s r s , 36k ks2 Žk .½ 5EM P ks2

where n is the largest perturbation order, for which
the ratio is defined. If EŽn. - 0 is fulfilled for all n,M P
the ratio r ª t for n ª `. The series SS and SSn 1 2
w Ž .xsee Eq. 12 will converge if 0 - t - 1 and di-
verge if t ) 1. In the case t s 1, a finite MP corre-
lation energy D E` does not exist and, therefore,M P

Ž .this unlikely case also excludes convergent be-
havior of the MPn series. If successive EŽn. haveM P

< Žn. <alternating signs, then the ratios of E mustM P
generate a convergent series to ensure the conver-
gence of the original series SS .

In practice, the correlation energy contribution
at the highest-order n calculated will always have
a finite value. In this case, convergence will be

< Žnq1. <reached at some order n provided E F « ,M P
where « is the convergence criterion.

As for the convergence behavior of the Feenberg
Ž .series, Eq. 35 suggests one to apply the Cauchy

Ž .root test defined by Eq. 37 :

nk
Žk .¡ ¦EFEnX ~ ¥� 4 Ž .R9 s r s . 37)k ks2 Ž2.¢ §EFE

ks2

Ratios R9 will be less sensitive to the error pro-
Žn. Ž .gression in energies E see next section and, inFE

addition, denominators equal to zero will be
avoided. In the same way as for the d’Alembert’s

VOL. 76, NO. 3310
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ratio test, the set

`Žn.� 4 Ž .SS 9 s D E 38FE ns2

will converge if rX ª t 9 - 1 for n ª `.n
The limit values t and t 9 for d’Alembert and

Cauchy ratios, respectively, were obtained by fit-
ting ratio values for n ) 10 to the trial function
Ž . yb n ycnf n s a y e y e , which defines the constant

a for n ª ` as an upper limit to the correct t
or t 9.

As indicated in Scheme 1, one can distinguish
Ž .five different types A, B, C, D, E of the MPn

series classified according to their convergence be-
havior. For positive ratios r , EŽn. will have nega-n M P
tive signs for all orders n, while for negative r ,n
successive EŽn. values will have different signs.M P

The MPn series A represents a divergent series
because r ) 1 for increasing n, which means thatn

t ) 1. For series B, D En converges to the FCIM P

correlation energy for increasing n because r - 1n

and 0 - t - 1. Hence, B represents a converging
MPn series. Series C is also converging because
< <r - 1 for increasing n. Series D represents an

< <divergent series because r ) 1 for increasing nn

while EŽn. values switch signs regularly. Case EM P

represents an oscillating MPn series caused by a
regular switch in sign of the correlation energy
contribution. Nevertheless, E is converging as long

< <as the ratio r - 1. Initial oscillations of the MPnn
Ž .series including or not including a switch in sign

are frequently observed; however, most of these
oscillations just slow down convergence and do
not lead to divergent behavior.

The rate of the convergence can be determined
< < < <by the value of r . The smaller r becomes, then n

faster does the MPn series converge. This becomes
obvious when expressing the correlation contribu-

SCHEME 1
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TABLE I
Basis-set specification.

Basic set Specification Molecules

y( )[ ] ( )[ ]cc-pVDZ 9s4p1d 3s2p1d / 4s2p 2s1p F , Ne, BH, CH , H O, FH2 2

( ) ( )cc-pVDZ + cc-pVDZ + diff s, p H O2

y( )aug-cc-pVDZ cc-pVDZ + diff s, p, d BH, CH , FH, F , Ne2

( )daug-cc-pVDZ cc-pVDZ + 2 diff s, p, d BH

( )[ ] ( )[ ]cc-pVTZ 10s5p2d1f 4s3p2d1f / 6s2p1d 3s2p1d BH, CH , FH2

y( )[ ]cc-pVTZ 10s5p2d 4s3p2d F , Ne

( )aug-cc-pVTZ cc-pVTZ + diff s, p, d BH

tion at order n in terms of ratios r :j
ny1

Žn. Ž2. < < Ž .E s E ? r . 39ŁM P M P j
js2

Implementation of Higher-order
Feenberg Scaling and Error Analysis

A simple program based on the equations de-
rived in the previous section was added to an

existing program code for calculating MP correla-
Ž . w xtion energies up to sixth order MP6 11 so that

with each MP calculation Feenberg perturbation
energies were automatically generated. In addi-

Žtion, available higher-order MP energies n up to
. w x65 were taken from the literature 17, 18 to study

the convergence behavior of the MPn series and to
test the usefulness of higher-order Feenberg scal-
ing. The basis sets used and the electronic systems
investigated in this way are listed in Tables I
and II.

TABLE II
Description of the convergence behavior of various MPn series.

( )FCI Correlation n max / Description of
( )System Basis set energy energy n conv convergence behavior Class

1( )BH S cc-pVDZ y25.215126 y0.089794 24 / 22 Fast conv., nonoscill. Bg
aug-cc-pVDZ y25.218227 y0.091850 24 / 22 Fast conv., nonoscill. B
daug-cc-pVDZ y25.218430 y0.091954 24 / — Fast conv., nonoscill. B
cc-pVTZ y25.231132 y0.101199 24 / 17 Fast conv., nonoscill. B
aug-cc-pVTZ y25.232008 y0.101807 24 / 17 Fast conv., nonoscill. B

3( )CH B cc-pVDZ y39.023280 y0.142287 33 / — Slow conv., nonoscill. B2 1
aug-cc-pVDZ y39.032446 y0.148192 33 / — Slow conv., nonoscill. B
cc-pVTZ y39.049940 y0.158327 24 / — Slow conv., nonoscill. B

1( )Ne S cc-pVDZ y128.679025 y0.190250 33 / 11 Fast conv., initially oscill. C
aug-cc-pVDZ y128.709476 y0.213126 65 / — Diverging, oscill. D
cc-pVTZ y128.777048 y0.245186 33 / 16 Fast conv., initially oscill. C

1y ( )F S cc-pVDZ y99.558917 y0.192934 33 / 11 Fast conv., nonoscill. B
aug-cc-pVDZ y99.669369 y0.241086 33 / — Diverging, oscill. D
cc-pVTZ y99.675158 y0.250859 21 / 14 Fast conv., initially oscill. C

1( )FH S cc-pVDZ y100.228640 y0.209227 21 / 15 Fast conv., initially oscill. Cg
aug-cc-pVDZ y100.264113 y0.230645 21 / — Diverging, oscill. D
cc-pVTZ y100.312756 y0.255923 15 / } Fast conv., oscill. C

1( )H O A cc-pVDZ y76.241650 y0.214842 21 / 10 Fast conv., nonoscill. B2 1
( )cc-pVDZ + y76.258208 y0.220651 31 / — Diverging, oscill. D

[ ] ( ) ( )Energies in Hartrees from 18 . conv.: converging; oscill.: oscillating. n max : largest MPn order calculated; n conv : MPn order, at
which MP and FCI correlation energy differ by not more than 10 y 6 Hartrees.
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MPn energies taken from the literature are ac-
curate up to 0.5 ? 10y6 Hartrees, which has to be
considered when calculating Feenberg energies.
Apart from this, the convergence of the calculated
Feenberg series can be affected by errors in calcu-

wlated scaling factors l and Feenberg energies see
Ž . Ž .xEqs. 15 and 34 . The maximal error in a calcu-

lated Feenberg correlation energy contribution,
dEŽn., can be formulated according to the maximall

error propagation method as

Žn. Žn. Ž2. Ž3. Žn.Ž .dE m dE l, E , E . . . , El l M P M P M P

Žn. Žn.n­ E ­ El l Žk . Ž .F ? dl q ? dE , 40Ý M PŽk .­l ­ EM Pks2

where dl is the error in the scaling factor and
dEŽn. is the error in the MP energies. The magni-M P
tude of dl depends on the error of the MPn
correlation energy contributions and can be calcu-

Ž . Ž .lated with the help of Eqs. 41 and 42 , where the
Ž .former is a consequence of Eq. 31 :

m Žm. Žm.­ E ­ El lŽk . Ž .? dE q ? dl s 0 41Ý M P mŽk . ­l­ EM Pks2

y1Žm. Žm.m ­ E ­ El lŽk . Ž .dl s y ? dE ? . 42Ým M PŽk . ž /­l­ EM Pks2

By this, the inaccuracy of the mth-order Feenberg
correlation energy at perturbation order n is deter-
mined by

y1Žn. Žm. Žm.m­ E ­ E ­ El l lŽn. Žk .dE F ? ? dE ?Ýl M PŽk . ž /­l ­l­ EM Pks2

Žn.n ­ El Žk . Ž .q ? dE , 43Ý M PŽk .­ EM Pks2

where l s l . If dEŽk . s 0.5 ? 10y6 for all k, thenm M P
Ž . Ž .Eq. 43 will adopt form 44 :

y1Žn. Žm.­ E ­ El lŽn. y6dE F 0.5 ? 10 ?l ž /­l ­lž
Žm. Žn.m n­ E ­ El l Ž .= q . 44Ý ÝŽk . Žk . /­ E ­ EM P M Pks2 ks2

Errors in calculated Feenberg correlation energy
contributions were estimated with the help of Eq.
Ž . Žn.44 . The error in D E values was estimatedFE

Ž .using Eq. 45 :

n
Žn. Žk . Ž .dD E s dE . 45ÝFE FE

ks2

The value of D EŽn. was considered to be reliable ifFE
the maximal error is smaller than 10 mHartrees.

Similarly, calculated ratios r of successive MPnn
energies were considered to be reliable provided
the relative error

Žnq1. Žn.d r dE dEn M P M Ps qŽnq1. Žn.r E En M P M P

1 1
y6 Ž .s 0.5 ? 10 q 46Žnq1. Žn.ž /E EM P M P

is less than 0.5%. If EŽnq1. F 10y6 , ratio r willM P nq1
not be defined and r will be the last ratio in R.n

Finally, the relative error in the Cauchy root of
the correlation energy contribution EŽn. was esti-FE
mated by

X Ž2. Žn.d r 1 dE dEn FE FE Ž .s q . 47X Ž2. Žn.ž / ž /r n E En FE FE

The value of rX was considered to be acceptablen
when the relative error was less than 5%. For the
examples investigated, convergence is achieved

< Žnq1. < y6when E - 0.5 ? 10 Hartrees and by thisM P
Ž . Ž .E MPn s E FCI .

Convergent and Divergent MPn Series

In Table II, the electronic systems investigated,
basis sets used, FCI total energies, and FCI corre-
lation energies are listed together with some in-
formation about the convergence behavior of the

w xcorresponding MPn series 17, 18 . Calculated
Ž1 .d’Alembert ratios of the MPn series of BH S ,g

Ž3 . Ž1 . yŽ1 . Ž1 . Ž1 .CH B , Ne S , F S , FH S , and H O A2 1 g 2 1
Ž .for different basis sets in total 19 examples as a

function of perturbation order n are shown in
Figures 1]6.

As shown in Figure 1, the MPn series of
Ž1 .BH S exhibits a typical case B behavior withg

Ž .0.2 - r - 0.65 for j s 2, . . . 10 or 11 , where, be-j
cause of error progression, higher orders are not
given. Convergence is relatively fast for all basis
sets considered. In the beginning, it is slightly
better for the VDZ than for the VTZ descriptions,
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(1 )FIGURE 1. MPn ratios calculated for BH S with various basis sets.g

but for higher orders, this trend is reversed. Also,
there are some oscillations for the latter between
orders 5 and 8 which may affect convergence. The

Ž3 .investigated MPn series for CH B all converge2 1
Ž . ŽFig. 2, case B , possessing 0.15 - r - 0.85 j sj

.2, . . . 20 or 21 . Obviously, convergence is much
Ž1 .slower than for BH S . The increase of r valuesg j

for j s 2 to j s 10 suggests that higher-order cor-
Ž3 .relation effects play for CH B a larger role than2 1

Ž1 .for BH S , thus causing a slowing down of con-g
vergence. Again, there are some oscillations for the
cc-pVTZ basis set.

For the MPn series of the Ne atom, both case C
Ž .and case D behavior is observed Fig. 3 . The

Ž1 .correlation energy contributions for Ne S calcu-
lated either with the cc-VDZ or the cc-pVTZ basis
set oscillate regularly in sign, but converge at

Ž .order 11 and 16, respectively Table II . Conver-
gence is somewhat faster for the smaller basis
despite the fact that initial oscillations are larger in
this case. As soon as diffuse s, p and d functions
are added to the cc-pVDZ basis, thus leading to an

Ž1 .aug-cc-pVDZ basis, the MPn series of Ne S di-

Ž .verges case D as indicated by r ratios smallerj
than y1. They seem to approach a value t s y1.3
for larger n. Similar observations can be made for

yŽ1 . Žthe three MPn series investigated for F S Fig.
.4 . Employing either the cc-pVDZ or the cc-pVTZ

basis convergence is obtained within 11 and 14
steps, however, after strong initial oscillations. Cal-
culations with the aug-cc-pVDZ basis set led to
d’Alembert ratios between y0.8 and y2 that ap-

Ž .proach for large j the value t s y1.55 case D .
Hence, divergence is more pronounced than for
Ne calculated with the same basis set.

Ž1 .The MPn series for FH S could be investi-g
Ž .gated up to order n s 14 Fig. 5 . All series start

with strong oscillations which are effectively
damped out in the case of the cc-pVTZ calcula-
tions—however, less when employing the cc-pVDZ
basis. In both cases, convergence is achieved ac-
cording to type C in Scheme 1. Again, use of
diffuse functions as in the aug-cc-pVDZ basis leads
to d’Alembert ratios r - y1 and a divergent MPnj

Ž . Ž1 .series case D . The MPn series of H O A was2 1
Ž .investigated just with two basis sets Fig. 6 . De-
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(3 )FIGURE 2. MPn ratios calculated for CH B with various basis sets.2 1

spite the initial oscillations, convergence according
to case B was found for the cc-pVDZ basis while
the addition of diffuse functions leads to diver-
gence.

ELECTRONIC SYSTEMS OF TYPE I AND
TYPE II

The electronic systems investigated can be
grouped in two different classes, namely, class I

w xand class II systems 15 . In the first class, there are
electronic systems, for which electrons are well
distributed in pairs over the whole space of an
atom or molecule. There are no locations of elec-
tron clustering in atomic or molecular space. Typi-

Ž1 q.cal examples for class I systems are BH S or
Ž1 .CH A , because in these molecules the core elec-2 1

tron pair, bonding electron pair, and lone pair are
localized in different parts of the molecule. Be-
cause of the separation of electron pairs, the corre-
lation energy is dominated by pair-correlation ef-
fects. A large part of the pair-correlation energy is

covered at MP2 while more complicated electron-
correlation effects come in slowly at higher orders
of perturbation theory. Typically, the convergence
of the MPn series for a case I system is steady
without larger oscillations, but convergence is rela-
tively slow where it is a general observation that
convergence can be slowed down the more elec-
tron]electron interactions have to be described.

Class II systems are characterized by a cluster-
ing of electron pairs in a constrained region of an

Ž1 .atom or molecule. For example, for Ne S and
yŽ1 .F S , four electron pairs share the available space

in the valence sphere, which is rather limited due
to orbital contraction caused by the nucleus. For

Ž1 . Ž1 .H O A and FH S , there are two or even three2 1 g

electron pairs that cluster in the lone-pair region of
the center atom. Similarly, molecules with multi-
ple bonds belong to class II since more than one
electron pair can be found in the bonding region.
For electronic systems with electron clustering,
three-electron correlations are important since they
provide a simple mechanism to protect the region

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 315



FORSBERG ET AL.

(1 )FIGURE 3. MPn ratios calculated for Ne S with various basis sets.

of an electron pair against occupation by other
electrons. Accordingly, three-electron correlation
effects can become as large or even larger than
pair-correlation effects.

MP theory includes three-electron correlation
effects at fourth order. At lower orders, the separa-
tion of electrons is accomplished by pair-correla-
tion effects, which is not efficient since pair corre-
lation just separates the two electrons within a pair

Žusing the available space as described by the basis
.function irrespective of the fact of how many

electron pairs are clustered in that region. At MP2,
the two electrons of a pair do not ‘‘see’’ the other
electrons and, therefore, pair correlation is largely
exaggerated, thus leading to an MP2 correlation
energy, which seems to cover more correlation
effects as for case I systems. At MP3, coupling

Žeffects between the electron pairs come in the
.electron pairs start to ‘‘see’’ each other and the

exaggeration of pair-correlation effects is partially
corrected. As a consequence, MP3 contributions
< Ž3. <E are smaller and their value can even beM P
positive in the extreme case. A similar situation is

found at MP4 and MP5, where at the even order
Žnew correlation effects orbital relaxation, three-

electron correlation, and disconnected pair correla-
.tions come in, which are urgently needed to im-

prove electron correlation of clustered electrons in
a type II system. Again, these correlation effects
are somewhat exaggerated, but because of the cou-
plings between these correlation effects at the next

Ž . Žhigher odd order MP5 , exaggerations are par-
.tially corrected. Hence, it can happen that the

MP5 contribution becomes positive or at least it is
Ž .smaller absolutely seen than one could expect by

extrapolation of even-order MP correlation contri-
butions.

Because of the exaggeration of correlation ef-
fects at even orders and their correction by appro-
priate couplings at odd orders, initial oscillations
will be typical of the MPn series if electron cluster-
ing requires distinct electron correlation. The more
important correlation becomes because of electron
clustering, the more pronounced are the initial
oscillations of the MPn series, which is clearly

Žreflected by Figures 1]6. Class I no or moderate
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y(1 )FIGURE 4. MPn ratios calculated for F S with various basis sets.

.electron clustering have a slowly converging MPn
series with only small or negligible oscillations
while class II have MPn series with initial oscilla-
tions andror erratic behavior.

BASIS-SET DEPENDENCE

ŽApart from the electronic structure distribution
.of electron pairs of the system investigated, one

has to consider the basis set used for the descrip-
tion, which defines the space available for the
electrons. The basis set must be flexible to cover all
regions of atomic or molecular space occupied by
electrons adequately. In particular, the valence
shell has to be accurately described, which re-
quires correlation-consistent basis sets of QZ and

w xPZ quality 32 . A TZ description of the valence
shell will include more pair correlation effects than
will a DZ description and, therefore, the exaggera-
tion of pair correlation at MP2, its correction at
MP3, and the repetition of this interplay at even
and odd orders is more pronounced. Conse-
quently, initial oscillation can be larger for type II

systems. On the other hand, the larger basis also
includes more coupling effects with increasing or-
der n and therefore it can happen that the oscilla-
tions are faster damped out than for the VDZ basis

Ž .set see Figs. 3]5 .
The basis set must provide the possibility that

the electrons separate from each other and that
Ž .orbitals the size of the electronic system can

extend. As indicated in Scheme 2, expansion of the
system becomes the more important the more elec-
trons are involved in the correlation, that is, five-
electron correlation requires more space than does
pair or three-electron correlation. Actually, this
could be best accomplished by reoptimization of
the orbitals under the impact of dynamic electron
correlation. However, in MP theory, orbital relax-
ations can only be introduced by mixing in single
Ž .S excitations. Hence, the separation of electrons
in an extended space must be provided by the
basis set. An increase in the basis set leads to
additional virtual orbitals, from which additional
excited configurations for the calculation of corre-
lation energy contributions can be constructed. If
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(1 )FIGURE 5. MPn ratios calculated for FH S with various basis sets.g

SCHEME 2
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(1 )FIGURE 6. MPn ratios calculated for H O A with various basis sets.2 1

the basis functions added are highly diffuse, the
new virtual orbitals will also be diffuse and will
badly be suited as correlation orbitals since their
overlap with the occupied orbitals is small. This is
particularly problematic if the inner regions of the
valence shell, in which the electrons are predomi-
nantly located, are not accurately described by the

Ž .inner more contracted functions in the basis set
so that diffuse functions are also used to improve
these regions.

Higher electron correlation effects are included
into MP theory at a specific order n, for example,
five-electron correlation effects at MP7 since at this
order connected pentuple excitations are included.
The importance of five-electron correlation is given
by the number and magnitude of matrix elements
involving pentuple excitations that can be con-
structed from the more diffuse virtual orbitals,
that is, those orbitals that are spanned by diffuse
basis functions. On the other hand, if a basis set
provides diffuse functions for effectively describ-
ing five-electron correlation without providing at
the same time somewhat less diffuse functions for

four- or three-electron correlation, then an unphys-
ical exaggeration of higher-order correlation effects
as compared to lower-order correlation effects
leads to an unbalanced MPn description, which
will become divergent. At even orders, higher cor-
relation effects are switched on, which will be
more exaggerated because of the basis set the
higher the order is. At odd orders, couplings be-
tween the new high-order effects will reduce the
later the more they have been exaggerated at even

< <orders. Consequently, d’Alembert ratios r willj
become larger than 1 and will continue to increase
typical of a divergent MPn series.

This is demonstrated in Figure 7, which sum-
Ž .marizes the results of MPn n s 2, . . . , 6 calcula-

tions on Ne carried out with different basis sets
always augmented by diffuse s, p functions. For a
minimal basis set, which is definitely not s, p-
saturated, the MP2 correlation energy contribution
covers just 72% of the total correlation energy
calculated at MP6, while with better basis sets, this
value increases to 90% and more. At the same
time, the MP4, MP5, and MP6 contributions ob-
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FIGURE 7. Relative correlation contributions at MP2, MP3, MP4, MP5, and MP6 as fractions of the MP6 correlation
energy calculated for Ne with various basis sets containing or not containing diffuse functions.

tained with the minimal basis set are three times
Ž .as large 13, 6, and 6% than the corresponding

contributions calculated with larger basis sets.
Hence, diffuse basis functions added to a non-
saturated s, p basis set lead to an unrealistic exag-
geration of higher-order correlation effects, to
strong initial oscillations, and, most probably, to a
nonconvergent MPn series.

The aug-cc-pVDZ basis is a typical example of a
Žbasis, which is not saturated in the sp space to
.effectively describe low-order correlation effects ,

but includes diffuse functions important for high-
order correlation effects. One could argue that this
is not problematic because all the high-order corre-
lation effects are tiny as is the probability that n
electrons interact at the same time with the result
of carrying out a correlated movement in space.
However, the number of these high-order correla-

Žtion effects increases exponentially compare with
.Table III and, therefore, even tiny contributions, if

slightly exaggerated, can lead to a breakdown of

the MP description. Our experience shows that for
Žan MP6 calculation including up to disconnected

.pentuple and hextuple excitations one needs a
cc-pVTZ or cc-pVQZ basis to describe three- and
four-electron correlation correctly. There is no indi-

Ž .cation in form of exaggerated initial oscillations
that the addition of diffuse functions leads to a
divergent basis set.

The MPn series for Ne calculated with the aug-
cc-pVDZ basis starts to diverge at n s 15 although
divergent behavior becomes already obvious at

Ž < < .lower orders increasing r for j G 6, Fig. 4 . Olsenj
w xand coworkers 17, 18 investigated the divergent

behavior of the MPn series and found that an
avoided crossing of the ground state and an ex-
cited state dominated by pentuple an higher exci-

Ž .tations see below is responsible for the divergent
behavior of the MPn series. As is shown in Table
III, more than 80% of the terms adding to the
correlation contribution EŽ15. involve pentuple orM P
higher excitations, namely, 24,140,727 as compared
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TABLE III
( )( )Number of energy terms E ABC ??? A, B, C ??? = S, D,T, . . . appearing in the final energy expression of the

MPn correlation energy.

Terms with Terms with
( ) ( )Total no. Q, P, . . . N Q, P, . . . P, H, . . . N P, H, . . .

MP Terms excitations expressed excitations expressed
( ) ( ) ( )order n N Total N Q, P, . . . in % N P, H, . . . in %

4 4 1 25 0 0
5 14 5 36 0 0
6 55 28 51 5 9
7 221 140 63 43 19
8 915 672 73 281 31
9 3865 3136 81 1607 42

10 16,605 14,418 87 8563 52
11 72,325 65,764 91 43,683 60
12 318,670 298,987 94 216,660 68
13 1,417,846 1,358,797 96 1,054,532 74
14 6,361,389 6,184,242 97 5,067,427 80
15 28,749,241 28,217,800 98 24,140,727 84

to a total of 28,749,241 terms. Hence, a tiny exag-
geration of the pentuple excitations relative to D,
T , or Q excitations caused by augmentation of a
non-sp-saturated basis by diffuse functions leads
to divergence of the MPn series.

Several conclusions can be drawn from these
observations:

( )1 The choice of the basis set is more important
for a type II system than for a type I system.
In the latter case, pair correlation dominates
and higher-order correlation effects play a
smaller role. Hence, requirements for the
basis are not so distinct. One can use non-
sp-saturated basis sets with diffuse functions
although this may lead to some small oscil-

Ž .lations see Fig. 3 . For type II systems with
pronounced electron clustering, three- and
four-electron correlation effects become
more important and, therefore, the choice of
the basis set is essential for adequately de-
scribing and for not exaggerating higher-
order effects. Clearly, cc-pVTZ, cc-pVQZ,

w xand cc-pVPZ basis sets 32 are needed, de-
pending on the degree of electron clustering.

( )2 If MPn theory is applied, which today is
w xpossible up to MP6 11 , one has to use

increasingly improved basis sets for increas-
ing n. This reflects the contents of a simple
rule, namely, that the more advanced elec-
tron correlation calculation requires the more

extended basis set. A trivial consequence of
this rule is that minimal basis sets are not
suited for MP2 or any other pair correlation
calculation. For an MP2 calculation, an aug-
cc-pVDZ basis set may be used without
problems. However, calculated properties
can become unreasonable if the same basis

Žset is used at MP6 or even higher orders as
.generated in an FCI calculation .

( )3 In an FCI calculation, higher and higher
orders of MP theory are generated with in-
creasing number of iterations. Subsumma-
tion of MPn energies leads to an approxi-
mate FCI energy at a given iteration step. A
divergent MPn series slows down the con-
vergence of the FCI calculation, which does
not mean that the FCI calculation does not
converge. However, deficiencies of the basis
turn up in an unusually long iteration to
achieve convergence for a given conver-
gence criterion. Similarly, many conver-
gence problems of a CCSD or CCSDT calcu-
lation, which also adds up higher and higher

ŽMP terms depending on the excitations in-
w x.cluded in the CC calculation 33 , can be

caused by an unbalanced basis set. We note
that VDZ basis sets with diffuse functions

Ž .such as the 6-31qqG d, p basis frequently
causes convergence problems in CCSD cal-
culations.
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Results of Feenberg Scaling

In Table IV, the l values at different Feenberg
Žorders first order: l ; second order: l ; third or-3 5

.der: l ; fourth order: l ; etc. are listed for the7 9

systems investigated. In addition, the fraction of
the FCI correlation energy covered either by MP or
Feenberg energies at that order n, at which l isn

determined, is given since it provides a reasonable

TABLE IV
Convergence behavior of the Feenberg series.a

Intruder MP FE
bSystem Basis set n l z range state Class % FCI % FCI Improvedn

1( ) { }BH S cc-pVDZ 3 y0.414 y2.42, 1 No B 87.18 95.38 Yesg
{ }5 y0.504 y3.04, 1 B 97.13 99.56 Yes
{ }11 y0.196 y1.49, 1 Conv 99.96 100.00 Yes

{ }aug-cc-pVDZ 3 y0.402 y2.34, 1 No B 87.38 95.21 Yes
{ }5 y0.469 y2.76, 1 B 97.20 99.48 Yes
{ }9 y0.347 y2.06, 1 Conv 99.81 100.00 Yes

{ }daug-cc-pVDZ 3 y0.400 y2.34, 1 No B 87.39 95.19 Yes
{ }5 y0.467 y2.75, 1 B 97.20 99.48 Yes
{ }9 y0.342 y2.04, 1 Conv 99.81 100.00 Yes

{ }cc-pVTZ 3 y0.291 y1.82, 1 No B 89.00 93.75 Yes
{ }5 y0.338 y2.02, 1 B 97.41 99.07 Yes
{ }13 y0.226 y1.58, 1 Conv 99.99 100.00 Yes

{ }aug-cc-pVTZ 3 y0.281 y1.78, 1 No B 89.10 93.61 Yes
{ }5 y0.330 y1.99, 1 B 97.41 99.04 Yes
{ }11 y0.465 y2.74, 1 B 99.94 100.00 Yes

3( ) { }CH B cc-pVDZ 3 y0.234 y1.61, 1 No B 92.27 95.70 Yes2 1
{ }5 y0.300 y1.86, 1 B 97.86 98.68 Yes

c{ }13 y0.779 y8.05, 1 — 99.78 102.10 No

{ }aug-cc-pVDZ 3 y0.224 y1.58, 1 No B 92.33 95.52 Yes
{ }5 y0.243 y1.64, 1 B 98.03 98.69 Yes
{ } ( )15 y0.349 y2.07, 1 — 99.87 99.92 Y

{ }cc-pVTZ 3 y0.187 y1.46, 1 No B 92.68 95.03 Yes
{ }5 y0.172 y1.41, 1 B 98.12 98.55 Yes
{ }7 y0.202 y1.51, 1 B 99.11 99.34 Yes
{ } ( )15 y0.178 y1.43, 1 — 99.87 99.92 Y

1( ) { }Ne S cc-pVDZ 3 y0.013 y1.02, 1 No C 98.76 98.77 Yes
{ }5 0.032 y0.94, 1 B 99.88 99.89 Yes
{ }7 0.035 y0.93, 1 B 99.99 99.99 Yes
{ }9 0.024 y0.95, 1 Conv 100.00 100.00 Yes

{ }aug-cc-pVDZ 3 y0.008 y1.02, 1 Yes D 97.79 97.80 No
{ }5 0.093 y0.83, 1 y0.83 C 99.52 99.69 Yes
{ }7 0.132 y0.77, 1 C 99.81 99.95 Yes
{ }9 0.161 y0.72, 1 C 99.89 99.99 Yes
{ }11 y0.183 y0.69, 1 Conv 99.92 100.00 Yes

{ }cc-pVTZ 3 0.004 y0.99, 1 No C 97.83 97.83 Yes
{ }5 0.059 y0.89, 1 C 99.79 99.84 Yes
{ }7 0.087 y0.84, 1 C 99.96 99.98 Yes
{ }9 0.099 y0.82, 1 Conv 99.99 100.00 Yes

( )Continued
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TABLE IV
( )Continued

Intruder MP FE
bSystem Basis set n l z range state Class % FCI % FCI Improvedn

1y ( ) { }F S cc-pVDZ 3 y0.008 y1.02, 1 No B 98.54 98.54 Yes
{ }5 y0.069 y1.15, 1 B 99.93 99.97 Yes
{ }7 y0.143 y1.33, 1 Conv 99.99 100.00 Yes

{ }aug-cc-pVDZ 3 0.038 y0.96, 1 Yes D 94.73 94.88 No
{ }5 0.182 y0.69, 1 y0.69 C 96.72 98.60 Yes
{ }7 0.247 y0.60, 1 C 95.49 99.60 Yes
{ }9 0.282 y0.56, 1 C 92.25 99.80 Yes
{ }15 0.330 y0.50, 1 Conv 31.62 100.00 Yes

{ }cc-pVTZ 3 0.018 y0.96, 1 No C 96.85 96.88 Yes
{ }5 0.065 y0.88, 1 B 99.66 99.75 Yes
{ }7 0.068 y0.87, 1 B 99.95 99.97 Yes
{ }9 0.063 y0.88, 1 Conv 99.99 100.00 Yes

1( ) { }FH S cc-pVDZ 3 y0.015 y1.03, 1 No C 97.76 97.78 Nog
{ }5 y0.005 y1.01, 1 C 99.79 99.79 Yes
{ }7 0.034 y0.93, 1 C 99.79 99.89 Yes
{ }9 0.047 y0.91, 1 Conv 99.99 100.00 Yes

{ }aug-cc-pVDZ 3 y0.003 y1.01, 1 Yes D 96.67 96.67 No
{ }5 0.084 y0.85, 1 y0.85 C 99.27 99.45 Yes
{ }7 0.138 y0.76, 1 C 99.62 99.89 Yes
{ }9 0.168 y0.71, 1 C 99.72 99.98 Yes
{ }13 0.206 y0.66, 1 Conv 99.77 100.00 Yes

{ }cc-pVTZ 3 0.006 y0.99, 1 No C 96.69 96.70 Yes
{ }5 0.061 y0.86, 1 C 99.60 99.69 Yes
{ }7 0.086 y0.84, 1 C 99.91 99.96 Yes
{ }9 0.106 y0.81, 1 B 99.97 99.99 Yes
{ }11 0.121 y0.78, 1 Conv 99.98 100.00 Yes

1( ) { }H O A cc-pVDZ 3 y0.036 y1.07, 1 No C 97.10 97.22 No2 1
{ }5 y0.036 y1.07, 1 C 99.78 99.80 No
{ }7 y0.034 y1.07, 1 C 99.97 99.97 No
{ }9 y0.006 y1.01, 1 Conv 100.00 100.00 Yes

( ) { }cc-pVDZ + 3 y0.024 y1.05, 1 Yes D 96.47 96.52 No
{ }5 0.023 y0.96, 1 y0.96 C 99.54 99.55 Yes
{ }7 0.079 y0.85, 1 C 99.85 99.90 Yes
{ }9 0.112 y0.80, 1 C 99.92 99.98 Yes
{ }13 0.150 y0.74, 1 Conv 99.96 100.00 Yes

aSome low orders and that order of Feenberg scaling are given, at which minimization of DE n with regard to l leads to the FCIMP
correlation energy. For the intruder state, an approximate location is determined by the z value for z 9 = y1 obtained for that
Feenberg scaling order, which leads for the first time to convergence although the corresponding MPn series is diverging. MP %
FCI and FE % FCI give the fraction of the FCI correlation energy covered by the MP or Feenberg correlation energy at the order
defined by n. For the classification of Feenberg series, see text. Conv: converged.
b ( )Improvement of the convergence behavior will be given Yes if the Feenberg energy for the last order n considered is closer to

( ) ( )the FCI energy than is the corresponding MPn energy and, at the same time, the Feenberg energy is converging see text . Y :
improvement not clear because of error progression.
cOscillations because of error progression.
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estimate for the improvement of the convergence
behavior of the MPn series. The speed of conver-
gence can be estimated by giving that order m for
which Feenberg scaling leads to a 100% coverage
of the FCI correlation energy within the accuracy
possible in this work, that is, 0.5 = 10y6 . In gen-

Ž .eral, Feenberg scaling up to order seven l was15
performed; however, only in the case of a diver-
gent MPn series is high-order scaling interesting.
In other cases, error progression makes results of
higher-order Feenberg scaling dubious.

The data of Table IV suggest that first-order
Feenberg scaling is not sufficient to significantly
improve the convergence behavior of the MPn
series. Second-order Feenberg scaling leads to sat-
isfactory improvements. In general, adjustment of
electron-correlation contributions can be made bet-
ter, the higher the order of Feenberg scaling is, that
is, the higher the order of the MP correlation
energy that is used in the Feenberg minimization.
For a steadily converging a MPn series of a type I
system, scaling factors should be negative and
approach a zero value for increasing scaling order.
Absolute values of l at a given order m decreasem
when improving the basis set, which reflects the
fact that for type I systems the larger basis covers
more electron correlation and, therefore, the up-
scaling of the perturbation operator is needed less.
It also seems that with increasing complexity of

Žthe electronic structure i.e., more electrons, lower
symmetry, higher anisotropy of electron distribu-

. < <tion the l values become smaller, corresponding
in the case of type I systems to a more moderate
enlargement of the perturbation.

In general, there is a close relationship between
the convergence behavior of the MPn series as

Ž .reflected by the d’Alembert ratios r Figs. 2]7j
Ž .and the calculated scaling factors l Table IV .n

Ž .Positive ratios r oscillating or nonoscillating leadj
to negative scaling factors, which means that the
perturbation is enlarged to cover more correlation
effects at lower orders. For the converging MPn
series of type I systems, l values become moren
negative with increasing scaling order. At some
order, this trend is reverted, that is, absolute scal-
ing factors become smaller again and may finally
approach a zero value, which means that the origi-
nal MPn series was close to the FCI energy at this
order. We found this trend for the MPn series of

Ž .BH turning point at order 5 or 7 , while for the
MPn series of CH , the calculated l values de-2

Žcrease steadily up to order 15 cc-pVDZ basis,
.Table IV typical of a slowly converging series.

Oscillations in the r ratios are also reflected by thej
scaling factors but in a damped form.

ŽNegative ratios of d’Alembert ratios caused by
oscillations between negative and positive MP cor-

.relation energy contributions lead to a positive
value of l. In this way, the perturbation is de-
creased and the contribution of the unperturbed
system scaled up. In all cases of initial oscillations
in the MPn series, these are reduced by Feenberg

Žscaling and convergence is accelerated indicated
.in Table IV as improved convergence . For a diver-

gent series, the scaling factor is positive and
steadily increases through all orders of Feenberg

Ž .scaling investigated for an example, see Table V .
Ž .In these cases, first-order Feenberg scaling l can3

increase oscillations and does not lead to conver-
gence. However, second-order Feenberg scaling
Ž .l leads a convergent series in all cases consid-5
ered and, in this way, will cure the divergent
behavior of the MPn series if a VDZ basis with
diffuse functions is used. Larger-order Feenberg
scaling leads to more rapid convergence. This is
illustrated in Figures 8]11, in which Cauchy ratios
of Feenberg correlation contributions are com-
pared with the corresponding MPn ratios. Esti-
mates of limit values t 9 are also given, which
clearly show that improved convergence is ob-
tained for increasing order of l.

We note that second-order Feenberg scaling is
already sufficient to enforce convergence of the
Feenberg series even if the associated MPn series
is divergent. It also dampens initial oscillations of
the MPn series and, by this, improves conver-
gence. For second-order Feenberg scaling, MP5
energies are required, which are accessible for a
large number of small molecules. Higher-order

TABLE V
Radius of convergence for the MPn series of Ne
calculated with the aug-cc-pVDZ basis after
Feenberg scaling.

1 y lFeenberg z g y , 1
1 + lorder m n of l Value of ln n

[ ]1 3 y0.008 y1.016, 1
[ ]2 5 0.093 y0.830, 1
[ ]3 7 0.132 y0.767, 1
[ ]4 9 0.161 y0.723, 1
[ ]5 11 0.182 y0.692, 1
[ ]6 13 0.198 y0.669, 1
[ ]7 15 0.200 y0.667, 1
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(1 )FIGURE 8. Cauchy ratios of Feenberg correlation energy contributions calculated for Ne S with the aug-cc-pVDZ
basis set for a given order of Feenberg scaling. Estimated limit values t 9 indicate whether the series is divergent
( ) ( ) ( )t 9 ) 1 or convergent t 9 - 1 see text .

Feenberg scaling cannot play a role in MP calcula-
tions since, presently, MP6 is the highest order of
MP theory that can be carried out with available

w xprograms 11 . On the other hand, higher orders of
Feenberg scaling are useful in connection with FCI
calculations to investigate the convergence behav-
ior of the MPn series. Calculated scaling factors
directly reflect convergencerdivergence properties
and can be used to analyze the latter.

Convergence Radius of the MPn Series
and the Exclusion of Intruder States

In MP theory, the effective electron interaction
ˆ Ž .described with operator V of Eq. 4 is defined in

Ž .the model space PP space to reproduce the lowest
energy of the electronic system under considera-

ˆtion. Since the action of V is switched on with the
w Ž .xstrength parameter z see Eq. 2 , the correct en-

ergy EE of the perturbed system is also obtained as
a function of z. A necessary condition for the
applicability of MPn theory is that the energy

Žspectra for the model space PP unperturbed prob-
.lem and for the orthogonal complement space

Ž .QQ-space do not overlap, but are well separated
for y1 - z - 1. However, if two of the eigenval-

ˆŽ .ues EE of H z , described as functions of z, that is,l
Ž .EE z , one from PP and one from QQ space, cross atl

a point inside the unit circle drawn in the complex
plane at z s 0, then the MPn series will diverge
w x20, 21 . Because of the hermiticity of the operators

Ž .of Eq. 2 , each crossing point x s z q iy ofb b b
Ž .functions EE z will lead to an equivalent crossingl

point xU s z y iy placed symmetrically with re-b b b
gard to the real axis. For z , an avoided crossing isb

Ž .observed as a result of an eigenstate EE z froml
Ž .QQ-space intruding into PP-space intruder state .

The MPn series is converging for a convergence
radius R ) 0. However, in case of an intruderc
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y(1 )FIGURE 9. Cauchy ratios of Feenberg correlation energy contributions calculated for F S with the aug-cc-pVDZ
basis set for a given order of Feenberg scaling. Estimated limit values t 9 indicate whether the series is divergent
( ) ( ) ( )t 9 ) 1 or convergent t 9 - 1 see text .

state, R is given by the distance from z s 0 to thec
avoided crossing point z and, therefore, R isb c
smaller than 1. Consequently, the MPn series di-

w xverges 20, 21 . On the other hand, it is possible to
� U4push crossing points z , z out of the unit circleb b

ˆby modifying H as, for example, by appropriate0
˜Ž .scaling. The Hamiltonian H z9, l described in Eq.

Ž .13 , can be rewritten in the form

1 y z9l˜ ˆ ˆŽ . Ž .H z9, l s H q z9V 48a01 y l

Ž .1 y z9l z9 1 y lˆ ˆ Ž .s H q V 48b0ž /1 y l 1 y z9l

Ž .1 y z9l z9 1 y lˆ Ž .s H z s . 48cž /1 y l 1 y z9l

Ž .According to Eq. 48 , the relationship between the
Ž .Feenberg energy E z9 associated with the Hamil-l

˜Ž . Ž .tonian H z9, l and the energy E z associated
ˆŽ . Ž . Ž .with H z of Eq. 5 is given by Eq. 49 :

Ž .1 y z9l z9 1 y l
Ž . Ž .E z9 s E z s . 49l ž /1 y l 1 y z9l

Ž .Obviously, the Feenberg energy E in Eq. 49 isl

independent of l when z9 s 1, which means that
� Žn.4 � Žn. 4the Feenberg series E and the MP series El M P

will converge to the same limit. However, the
˜Ž .Hamiltonian H z9, l depends on l for z9 differ-

Ž .ent from 1 as revealed by Eq. 48 . For the series
� Žn.4E to converge, the zeroth-order Hamiltonianl

˜ ˆŽ . w Ž . xH l s 1r 1 y l H and the total Hamiltonian0 0
˜Ž .H z9 s 1, l must possess well-separated energy

spectra, which means that the convergence be-
� Žn.4havior of E is determined by the scalarl

parameter l.
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(1 )FIGURE 10. Cauchy ratios of Feenberg correlation energy contributions calculated for FH S with the aug-cc-pVDZg
basis set for a given order of Feenberg scaling. Estimated limit values t 9 indicate whether the series is divergent
( ) ( ) ( )t 9 ) 1 or convergent t 9 - 1 see text .

To show the dependence of the convergence
radius of the Feenberg series on l, z9 is set equal

Ž . Ž .to 1, 0, and y1 in Eq. 49 , which leads to Eqs. 50 ,
Ž . Ž .51 , and 52 :

Ž . Ž . Ž .E z9 s 1 s E z s 1 50l

1
Ž . Ž . Ž .E z9 s 0 s E z s 0 51l 1 y l

1 q l 1 y l
Ž . Ž .E z9 s y1 s E z s y . 52l ž /1 y l 1 q l

Ž .Now, the convergence radius R z9 of the Feen-c
Ž .berg series depends on the behavior of E z in the

Ž . Ž .range y 1 y l r 1 q l F z F 1. Hence, the scal-
w xing of H makes the convergence range z g y1, 10
lw x w Žof the MPn series flexible, that is, y1, 1 « y 1

. Ž . x w Ž . Žy l r 1 q l , 1 . If 0 - l - 1, then y 1 y l r 1

. x w xq l , 1 ; y1, 1 , so that an intruder state with

z - 0, that is, a back-door intruder state is pushedb

out the convergence range of the Feenberg series.
Ž .The convergence radius R z9 becomes larger thanc

1 and the Feenberg series converges.
The position z of an intruder state can approxi-b

mately determined by the l value of that order of
Feenberg scaling for which the transformed MPn
series becomes convergent for the first time. For
the cases considered, this is always l and, accord-5

ingly, it is used in Table IV to estimate the value of
z . In the case of the MPn series of the Ne atomb

calculated with the aug-cc-pVDZ basis, Olsen and
w xcoworkers 17, 18 calculated z to be 0.82, in goodb

Ž .agreement with our estimate of 0.83 see Table IV .
As shown in Table V, higher-order Feenberg scal-
ing reduces the z9 convergence range from
w x w xy0.83, 1 to y0.67, 1 , thereby accelerating con-
vergence of the MPn series. This is contrary to

w xwhat was found by Olsen and coworkers 17, 18
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(1 )FIGURE 11. Cauchy ratios of Feenberg correlation energy contributions calculated for H O A with the aug-cc-pVDZ2 1
basis set for a given order of Feenberg scaling. Estimated limit values t 9 indicate whether the series is divergent
( ) ( ) ( )t 9 ) 1 or convergent t 9 - 1 see text .

who used an arbitrary scaling factor. These au-
thors described the intruder state to be dominated
by pentuple and higher excitations. This is typical
of an unbalanced basis set, for which diffuse func-
tions have been added to a basis unsaturated in

Ž .the s, p space see the sixth section .
Back-door intruder states will occur at z sb

y0.69 for Fy, y0.85 for FH, and y0.96 for H O if2
the VDZ is augmented by diffuse functions. Hence,
the MPn series of Fy represents the most and that
of H O the least problematic case. This is parallel2
to the observation that electron clustering de-
creases from Fy to H O for the type II systems2
investigated. For the electronic systems consid-
ered, a front-dor intruder state with z ) 0 was notb
found. We note that simple Feenberg scaling can-
not help to push out front-door intruder states from
the convergence range. In this case, other tech-
niques have to be applied.

Conclusions

For type I systems with well-separated electron
pairs, the MPn series is slowly converging. Feen-
berg scaling leads to l values smaller than zero,
which means that the perturbation is increased
and lower orders of perturbation theory cover more

Ž .correlation effects scaling up of pair correlations .
In all type I cases considered, Feenberg scaling
accelerates convergence significantly. For larger
basis sets, the importance of Feenberg scaling is
reduced.

Type II systems are characterized by electron
clustering in a confined region of space. Three- and
four-electron correlation effects are needed to dis-
tribute electrons in the best way possible. Since a
description of these effects with pair correlation
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leads to an exaggeration of pair correlation ener-
gies, which is corrected at higher orders, strong
initial oscillations are typical of the MPn series. By

Žreducing the perturbation positive l, reduction of
.pair correlation , Feenberg scaling dampens oscil-

lations and improves the convergence behavior of
the perturbation series.

For type II systems, divergent behavior of the
MPn series is induced by the choice of an unbal-
anced basis set, which is not saturated in s, p-space,
but contains already diffuse functions that artifi-
cially increase the importance of higher correlation
effects. For the Ne atom, divergence is observed at
n s 15 when calculations are done with an aug-
cc-pVDZ. At this order, more than 80% of all MP
terms contain P and higher excitation effects,
which is in line with the observation that the
intruder state causing the divergence is P, H, etc.,
dominated. We have demonstrated the problems
caused by diffuse functions by carrying out a se-
ries of MP6 calculations. They suggest that a phys-
ically useful description can only be obtained if

Ž .QZ or PZ basis sets including diffuse functions
are used.

All divergent cases investigated can be trans-
formed in such a way by Feenberg scaling that
relative fast convergence is enforced. In this case
as well as in general, second-order Feenberg scal-
ing is the method of choice since it can be carried
out with available MP5 energies and it improves
the convergence behavior of the MPn series signif-
icantly.

Care has to be taken with regard to low-order
Feenberg energies, which are smaller than the or-
der at which the energy minimization step has
been performed. Scaling may introduce strong os-
cillations. Therefore, one should use only Feenberg
energies with n G 2m q 1 if m is the order of
Feenberg scaling.

In conclusion, it is not justified to interpret a
divergent or erratic behavior of the MPn series as
an indication that MP theory is physically not
sound. We find that the convergencerdivergence
behavior can be used as an indicator for deficien-
cies of the basis set used that are not so obvious.
Also, this work shows that there is reason to calcu-
late MP5 energies because in this way reasonable
estimates of FCI energies can be obtained.
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