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Molecular Orbitals for H2
RHF

The molecule

HA HBR

Groundstate in a minimal basis: (1sA,1sB)

MOs given by symmetry:

σg = Ng(1sA +1sB) σu = Nu(1sA−1sB)

with normalization constants Ng and Nu.

Closed-shell HF configuration σ2
g , “restricted HF” (RHF)

wave function

Φ1 = |σgασgβ | (a+σgαa+σgβ |vac〉)
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Molecular Orbitals for H2
RHF

At equilibrium

Φ1 is a good approximation to exact wave function

R→ ∞
Correct/exact wave function:
Φcov =

1√
2
(|1sAα1sBβ |+ |1sBα1sAβ |)

σg→ 1√
2
(1sA +1sB) and thus

Φ1 → 1
2
(|1sAα1sBβ |+ |1sBα1sAβ |

+ |1sAα1sAβ |+ |1sBα1sBβ |) ,

an unphysical 50:50 mixture of “covalent” and “ionic” terms.
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Molecular Orbitals for H2
RHF

Why can two separated H-atoms not be described with RHF?

σg has the same weights on both atoms → 50 % chance that
an electron is at a given atom

Both electrons are in σg → 25 % chance of finding both
electrons at a given atom, 50 % chance of fining the electrons
at different atoms

So the problem depends on the Restricted Hartree-Fock wave
function per se

Improved behavior may be obtained using UHF
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Molecular Orbitals for H2
UHF

The (first) wave function of Coulson and Fischer

Write a new determinant Φλ in terms of new spin-orbitals
ψ1 = N(1sA +λ1sB) and ψ2 = N(λ1sA +1sB) as

Φλ = |ψ1ψ2| .

Optimize energy with respect to λ at each value of R.

Near Re λ ≈ 1, whereas as R→ ∞, λ → 0.

Φλ for optimum λ is an example of an unrestricted
Hartree-Fock (UHF) wave function.

The case λ = 1 gives a stationary energy for any R, but this is
not necessarily a minimum.
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Molecular Orbitals for H2
UHF

The (first) wave function of Coulson and Fischer, advantages

Wave function and energy behave as expected at dissociation:
dissociates to two H atoms

Wave function becomes RHF wave function around
equilibrium → good approximation here

The (first) wave function of Coulson and Fischer, disadvantages

Φλ does not display inversion symmetry → symmetry-broken
approximation

Φλ is an eigenfunction of Ŝz but not of Ŝ
2 → spin-broken

approximation

Gives problems in region where bond is broken
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Molecular Orbitals for H2
UHF

Rewrite of ΦUHF = Φλ

ΦUHF =

c2
1 |σgσg|− c2

2 |σuσu|︸ ︷︷ ︸
gerade sym, singlet

−c1c2(|σgσu|− |σuσg|)︸ ︷︷ ︸
ungerade sym, triplet

c1 = N(1+λ )/2Ng and c2 = N(1−λ )/2Nu

Unless λ =±1 there is both spin-and symmetry-breaking

Is correct at dissociation because all states in ΦUHF are
degenerate in this limit.
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Molecular Orbitals for H2
Arguments for a two-configuration wave function

The exact wave function at R = ∞ is

Φdiss =
1√
2
(|σgσg|− |σuσu|).

Why not generalize this for any R to

Φ0(R) = cg(R) |σgσg|+ cu(R) |σuσu|)

and optimize energy with respect to cg(R) and cu(R)?

Two-configuration wave function: spin eigenfunction,
symmetry-adapted.

More parameters to optimize than in UHF!
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The symmetry problem: to break or not to break

Symmetry?

By symmetry we mean any operation that leaves the
Hamiltonian invariant, e.g., spin (if Ĥ is spin-free), spatial
symmetry, permutations of identical particles. . .

Hamiltonian Ĥ invariant to symmetry-operator Ô
→ Ĥ = ÔĤÔ−1→ ÔĤ = ĤÔ

A symmetry operator therefore commutes with the
Hamiltonian
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The symmetry problem: to break or not to break
Exact wave functions

Symmetry for exact wave functions

Operators that commute have a set of common eigenfunctions

The solutions to Schrödinger equation may therefore be
choosen as eigenfunctions for the symmetry-operators

Degenerate eigenvalues gives problems

The fact that two operators A,B commute does not ensure
that any eigenfunction of A is also a eigenfunction of B

Example: |σgασuβ | is an eigenfunction of Ŝz (eigenvalue 0)

[ŜZ, Ĥ] = 0, but |σgασuβ | is not eigenfunction of Ĥ

Instead: We can make linear combinations of the
eigenfunctions of ŜZ with eigenvalue 0 to obtain eigenfunction
of Ĥ

Automatic symmetrized if the solution is non-degenerate
Linear combinations of degenerate solutions may be needed
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The symmetry problem: to break or not to break
Approximate wave functions

Linear expansions (CI)

If the space is closed under the action of symmetry-operator,
then there is a common set of eigen functions for the
symmetry-operator and the projected Hamiltonian

Problems again with degenerate eigenvalues

Non linear expansions (SCF, MCSCF, CC)

Only way to ensure correct symmetry is to ensure that only
the wave-function only is varied over space of the correct
symmetry

Examples: Ensure orbitals have well defined symmetry, that
the total spin is restricted to the requested spin

Hartree-Fock is a nonlinear optimization problem (the orbitals
appear in the Fock operator).
For a linear problem the optimum wave function — the
minimizer — will display the symmetries of the system: spin
eigenfunction, spatial symmetry, etc.
This cannot be shown to be true for the nonlinear case. We
can constrain the wave function to have the desired
symmetries, but this is a restriction in the optimization, and
may raise the energy.
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The symmetry problem: to break or not to break
Symmetry and HF

Do worry-restrict

It may be argued that the symmetry-properties are important,
so keep them

And once a symmetry property is lost, it may be hard to
regain it

Requires to explicit work with function that are
symmetry-adapted- typically requiring several Slater
determinants

Makes thus complications in the form of the wave function
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The symmetry problem: to break or not to break
Symmetry and HF

Do not worry- unrestricted

Argument: We are making so many approximations, so why
worry

(Life is too short for symmetry adaptation)

As we improve the level of say correlation, we will approach
the correct symmetry

Gives very simple starting point- typical single determinant
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The symmetry problem: to break or not to break
Symmetry and HF

Third choice: Do UFH and clean up

Hence the terms restricted and unrestricted.

We could remove the “contaminating” terms in UHF,
recovering the symmetries. The contaminants can only raise
the energy of the lowest state, so this removal, by projection,
say, gives an energy that cannot be worse. Projected UHF.

This PUHF wave function is however no longer optimum:
re-optimize and further improve energy. Extended HF.
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The symmetry problem: to break or not to break
UHF in practice

A molecular UHF wave function dissociates to atomic UHF
wave functions.

None of these UHF wave functions are in general spin or
symmetry eigenfunctions.

No (single configuration) Hartree-Fock method can be used
straightforwardly on other than the lowest state of a given
spin or symmetry, so optimizing excited states, like singlet
diradicals, is a problem
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The symmetry problem: to break or not to break
UHF in practice

Response methods can sometimes be used but these have
their own issues.

For some systems (N2 near re) the lowest energy solution to
the UHF equations is actually the RHF wave function: at
some critical distance there is a bifurcation in the potential
curve where the broken-symmetry UHF solution falls below
the RHF solution!
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The symmetry problem: to break or not to break
UHF in practice

UHF is cheap and straightforward. Deficiencies are easy to
monitor (look at

〈
S2
〉
).

Double the number of parameters of RHF (not a big problem
but it greatly increases the work later in correlated
calculations built on UHF).

Loss of spin and spatial symmetries (corrected as correlation is
introduced).

Cannot do low spin biradicals etc

Cannot do general excited states

Possible bifurcations and non-analytic behaviour of potential
curves and surfaces.

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

Contents

Wednesday, Sept. 21

Molecular orbitals for H2 at equilibrium and dissociation using
RHF and UHF

The symmetry problem

Introduction to the MCSCF method

The CASSCF method and its extensions

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011



H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

MCSCF
Introduction

The Multi configurational Self Consistent Field Method

Introduce a small number of orbitals (active orbitals), say 10
-20, where the occupation are allowed to vary.

The active orbitals are those which (for some geometry ) has
occupation numbers significantly larger than 0 and smaller
than two

Select the configurations that will be included.

Form of wave function:
∣∣0̃
〉
= ∑I CI

∣∣Ĩ
〉

where |I〉 are Slater
determinants (ONV’s) or configuration state functions

Optimize the orbitals and the CI coefficients CI
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MCSCF
Introduction

What can we expect from MCSCF?

Obviously describing electron correlation effects.

But not the short-range problems that arise as r12→ 0: the
so-called dynamical correlation.

(Because convergence of dynamical correlation in an
orbital-based expansion is very slow.)

Will describe the nondynamical (or “static”) correlation that
comes from configurational near-degeneracies or from
deficiencies in the Hartree-Fock orbitals.
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MCSCF
Introduction

The configuration spaces

In the early years of MCSCF (up to about 1980) this was a
big problem.

Ad hoc choices of configurations (very useful when you
already know the answer. . . )

More systematic approaches, e.g., all configurations required
for proper dissociation. Easy for diatomics, but dissociation to
what in a polyatomic?

In spectroscopy, the configuration(s) configurations could
include those for a simple orbital model of excitation (say,
n→ π∗), but can easily miss important configurations this
way.
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MCSCF
Introduction

A choice of the configuration spaces: CASSCF

First simplifying assumption: we will choose a subspace of the
MOs, the active space, from which all configurations will be
built.

Then include all configurations generated by allocating
electrons to these orbitals: a full CI in the active space.

We still have to choose the active orbitals, but then
configuration generation is automatic.

A nice naive approach would be the valence AOs for all
atoms, but this quickly gets very large. . .

MCSCF optimization using this sort of complete active
space (CAS) — a CASSCF calculation — is ’easy’
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The CASSCF method

Is simple to define

Number of orbitals (per symmetry) and number of electrons
in the active space

(There will in general also be a number of double occupied
orbitals: inactive orbitals)

The active orbital space

Should include all orbitals where the occupation number
changes significantly during a process (like a reaction,
excitation, ionization), or where the occupation number differs
significantly from two or zero.
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The CASSCF method
The Orbital Spaces for CAS Wave Functions

Inactive, active, and secondary orbitals

Inactive Orbitals

Active Orbitals

Unoccupied Orbitals
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The CASSCF method
The size of the configuration expansion

Number of Slater determinants (aka ONV’s) for 2k electrons in 2k
orbitals

2k # SD’s =

(
2k
k

)2

2 4
4 36
6 400
8 4.900

10 63.504
12 853.776
14 11.778.896
16 165.636.896
18 2.363.904.260
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The CASSCF method
The size of the configuration expansion

Scaling considerations

# SD’s:

(
2k
k

)2

For large k Stirlings approximation gives: # SD’s = 16k

kπ
Adding two electrons and orbitals increase # SD’s with a
factor of 16

Corresponds to 6 years of computer developments

Adding one Cr atom (6 electrons in 6 orbitals to active space)
requires thus 18 years of computer development

The conceptual simplicity of the CASSCF method comes at a price
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The CASSCF method
Choosing active spaces

Simple diatomics

Sometimes the problem seems and is simple: H2 ground-state
potential curve will need (σg,σu)

2, or the two 1s orbitals, as
the active space.

Bigger diatomics seem similarly easy: N2 ground state will
need (σg,πu,πg,σu)

6 or the 2p orbitals.

C2 will need the 2s orbitals as well, because of the 2s/2p
near-degeneracy in C atom.

F2: neither (σg,σu)
2 (the bonding/antibonding pair) nor

(σg,πu,πg,σu)
10 gives other than a qualitative result

(bonding. . . ). The 3p orbitals are needed (because of F−)!

Even diatomics are not straightforward.
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The CASSCF method
Choosing active spaces

A bit on polyatomic molecules

In most polyatomics the full valence shell that works for e.g.,
N2 (or C2, depending on the definition of “valence”) will be
too large.

Identify the orbitals involved in the process.

Spectroscopy of C6H6: use the six π MOs.

Breasking a CH or CC bond in a hydrocarbon: use σ ,σ∗

May have to refine this choice (we will see how). Clearly very
far from a black-box approach!
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The CASSCF method
Choosing active spaces

Even larger active spaces

More than about 15–16 active MOs (and 15 or 16 active
electrons) are time-consuming

The RAS construction: Three active orbital spaces

RAS1 orbitals: Max number of holes

RAS2 orbitals: nocc varies

RAS3 orbitals: Max number of electrons

Contains many type of CI expansions, see later
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The RASSCF method
RAS Orbital Spaces

Inactive Orbitals

RAS 1 Orbitals

RAS 2 Orbitals

RAS 3 Orbitals

Unoocupied Orbitals

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

The RASSCF method
Some Typical RAS Wave Functions

Closed Shell SCF (RAS1, RAS2, RAS3 empty).

SDTQ...CI with a closed shell reference function (RAS2
empty).

CASSCF (RAS1 and RAS3 empty).

Multireference SDCI with a CASSCF reference (max two holes
in RAS1 and max two electrons in RAS3).

“Polarization” CI (max one hole in RAS1, one electron in
RAS3).
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The GASSCF method
Some further developments of active spaces

The Generalized Active Space

Allows an arbitrary number of active orbital spaces

Allows arbitrary types of occupation restrictions

An american cousin is called ORMAS( occupation restricted
multiple active spaces)

It is all right now, in fact it is a GAS
Jagger/Richards
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Optimization of MCSCF Wave Functions

The wave function

Ψ = ∑
m

Φmcm

or ∣∣0′
〉
= ∑

m

∣∣m′
〉

cm

The optimization problem

Determine the MOs and the MC coefficients using the variational
principle

E =
〈0′|Ĥ|0′〉
〈0′|0′〉
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Optimization of MCSCF Wave Functions
The energy

Non-Relativistic Hamiltonian (Second Quantization)

Hamiltonian

Ĥ = ∑
ij

hijÊij +
1
2 ∑

ijkl
gijkl(ÊijÊkl−δjkÊil)

hij =
∫

φ ∗i (x)ĥ(x)φj(x)dx

gijkl =
∫

φ ∗i (x1)φj(x1)G(x1,x2)φ ∗k (x2)φl(x2)dx1dx2

are the one- and two-electron integrals.

”Excitation operator” Êij = â†
iα âjα + â†

iβ âiβ
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Optimization of MCSCF Wave Functions
The energy

Contribution from one-electron operator

One-electron operator: ĥ = ∑ij hijÊij

Matrix elements: 〈m| ĥ |n〉= ∑i,j hij 〈m| Êij |n〉= ∑i,j hijDmn
ij ,

Dmn
ij are the one-electron coupling coefficients.

The energy contribution is:

〈0| ĥ |0〉= ∑
ij

hijDij,

Dij = 〈0| Êij |0〉= ∑mn c∗mcnDmn
ij are elements of the first order

reduced density matrix or 1-matrix.
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Optimization of MCSCF Wave Functions
The energy

Contribution from the two-electron operator

Two-electron operator ĝ = 1
2 ∑ijkl gijkl(ÊijÊkl−δjkÊil)

〈m| ĝ |n〉= ∑ijkl gijklPmn
ijkl

Pmn
ijkl are the two-electron coupling coefficients.

The energy contribution is: 〈0| ĝ |0〉= ∑ijkl gijklPijkl

Pijkl = ∑m,n c∗mcnPmn
ijkl are elements of the second order reduced

density matrix or 2-matrix.
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Optimization of MCSCF Wave Functions
The energy

Summary

Total MCSCF energy

E = 〈0| Ĥ |0〉= ∑
ij

hijDij +∑
ijkl

gijklPijkl +hnuc.

The molecular orbital coefficients appear in the one- and
two-electron integrals hij and gijkl.

The CI coefficients appear in D and P.

Energy depends on MOs ϕ and CI coefficients c

E = E{ϕ,c}
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Optimization of MCSCF Wave Functions
Unitary Transformation of MOs

Exponential parameterization

MOs are orthonormal (no loss of generality) and we wish to
preserve this.

Consider a unitary transformation of the orbitals ϕ ′ = ϕU,
where U†U = 1.

Any unitary matrix can be written in the form. U = expT
with T† =−T, that is, as the exponential of an
anti-Hermitian matrix.

Real MOs, orthogonal transformation and antisymmetric or
skew-symmetric matrix TT =−T.

Creation operators are transformed as
a+ĩ = exp(T̂)a+i exp(−T̂), T̂ = ∑ij TijÊij

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

Optimization of MCSCF Wave Functions
Unitary Transformation of CI vector

An exponential ansatz for normalized expansions

The wave function is |0〉= ∑m |m〉Cm with ∑m |Cm|2 = 1.

The complementary space |K〉 is orthogonal to |0〉 : 〈0|k〉= 0

Define Ŝ = ∑K 6=0 SK0(|K〉〈0|− |0〉〈K|)
SK0 are variational parameters and Ŝ

†
=−Ŝ.

unitary transformation of |0〉: |0′〉= eŜ |0〉
|0′〉 remains normalized.
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Optimization of MCSCF Wave Functions
The wave function ansatz and energy function

|0′〉= eT̂ eŜ |0〉

Comments

Transformation of both orbital and configuration space

Wave function is normalized

The parameters T and S can vary freely.

The energy function

E(T,S) = 〈0|e−Ŝe−T̂ ĤeT̂ eŜ |0〉
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Optimization of MCSCF Wave Functions
The wave function ansatz and energy function

The optimal energy

Vary T and S such that the energy becomes stationary

∂E
∂Tij

= 0
∂E

∂SK0
= 0

Nonlinear set of equations

Must be solved iteratively

Large arsenal of methods from numerical analysis, including
1 The Newton Raphson method
2 Approximate /Quasi Newton methods
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Optimization of MCSCF Wave Functions
The Newton-Raphson Optimization Method

The Newton-Raphson method in general

We wish to find a stationary point a function E(p), where p is
a set of parameters that can be freely varied.

Start with a guess, which for simplicity here we set to zero
p0 = 0.

Expand E through second order around this point

E(p)≈ E(2) = E(0)+∑
i

(
∂E
∂pi

)

0
pi +

1
2 ∑

ij
pi

(
∂ 2E

∂pi∂pj

)

0
pj

= E(0)+g†p+
1
2

p†Hp

g is the gradient vector and H is the Hessian matrix
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Optimization of MCSCF Wave Functions
The Newton-Raphson Optimization Method

The Newton-Raphson method in general

An approximation to the stationary point is found by finding
the stationary point of E(2).
∂E(2)

∂pi
= 0→ g+Hp = 0 (p =−H−1g)

For this p, a new g,H is constructed,..

Continue untill convergence: gN ≈ 0)

Comments

Approximated E with E(2)→ only valid for small p→
problems far from convergence

Converges quadratically when p is small

The linear equations must often be solved using iterative
methods
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

The wave function and energy

|0′〉= eT̂ eŜ |0〉
E = 〈0′| Ĥ |0′〉= 〈0|e−Ŝe−T̂ ĤeT̂ eŜ |0〉

Expand through second order in T̂, Ŝ using the BCH expansion

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉

+ 〈0| 1
2
[[Ĥ, T̂], T̂]+

1
2
[[Ĥ, Ŝ], Ŝ]+ [[Ĥ, T̂], Ŝ] |0〉
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

From last slide

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉+
〈0| 1

2 [[Ĥ, T̂], T̂]+ 1
2 [[Ĥ, Ŝ], Ŝ]+ [[Ĥ, T̂], Ŝ] |0〉

The orbital gradient

T̂ = ∑ij Tij(Êij− Êji) = ∑ij TijÊ
−
ij

∂E
∂Tij

= go
ij = 〈0| [Ĥ, Ê−ij ] |0〉

The stationarity requirement go
ij = 0 is the Extended Brillouin

Theorem.

g0
ij vanishes trivilly for some rotations: for example inactive-

inactive. These rotations are redundant and are not included.
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

From last slide

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉+
〈0| 1

2 [[Ĥ, T̂], T̂]+ 1
2 [[Ĥ, Ŝ], Ŝ]+ [[Ĥ, T̂], Ŝ] |0〉

The CI gradient

Ŝ = ∑K 6=0 SK0(|K〉〈0|− |0〉〈K|), 〈K|0〉= 0
∂E
∂SK

= gc
K = 2〈K| Ĥ |0〉

|K〉 is orthogonal complement to |0〉 so:
gc = 0→ (1−|0〉〈0|)Ĥ |0〉= 0

HC = EC

The optimal CI-coefficients constitute an solution to the
standard CI eigenvalue problem
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

From last slide

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉+
〈0| 1

2 [[Ĥ, T̂], T̂]+ 1
2 [[Ĥ, Ŝ], Ŝ]+ [[Ĥ, T̂], Ŝ] |0〉

The Hessian

H =

(
Hcc Hco

Hoc Hoo

)

The cc block

Hcc
KL = 2(〈K| Ĥ |L〉−δKL 〈0| Ĥ |0〉) = 2(HKL−E0δKL)

Is the Hamiltonian matrix (in the |K〉 basis) shifted with the
energy

Is very sparse
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

The Orbital Part of the Hessian Matrix

From 1
2 〈0| [[Ĥ, T̂], T̂] |0〉 we obtain

Hoo
ij,kl = 〈0| Ê

−
ij Ê−klĤ |0〉+ 〈0| ĤÊ−ij Ê−kl |0〉−2〈0| Ê−ij ĤÊ−kl |0〉

Is dense (no zero elements)

The Coupling Part of the Hessian Matrix

From 1
2 〈0| [[Ĥ, T̂], Ŝ] |0〉 we obtain

Hco
K,ij = Hoc

ij,K = 2〈K| [Ĥ, Ê−ij ] |0〉 .

Is sparse
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Optimization of MCSCF Wave Functions
The Newton-Raphson Equations for MCSCF

Form
(

Hcc Hco

Hoc Hoo

)(
S
T

)
=−

(
gc

go

)

Number of elements in H for medium scale calculation

Assume: 200 orbitals, 20 occupied orbitals, 106 SD’s

Number of orbital rotations: 20×200 = 4000

Hoo: 4000×4000 = 16×106 - not problematic

Hoc: 4000×106 = 4×109 - difficult to store, (but is
sparse)

Hoc: 106×106 =×1012 - difficult to store, (but is sparse)

Cannot be solved using standard methods like LU decomposition
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Optimization of MCSCF Wave Functions
Solving the Newton-Raphson Equations for MCSCF

Form
(

Hcc Hco

Hoc Hoo

)(
S
T

)
=−

(
gc

go

)

To large to solve using standard decomposition methods

Make approximations and/or use iterative methods

Iterative full second-order Set op a scheme to calculate Hessian
times vector directly.

Decouple CI and Orbital part Neglect orbital-configuration
coupling. Construct Hoo explicitly and solve
configuration part by standard CI

Further approximations Approximate Hoo,done in the super-CI
approach
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Optimization of MCSCF Wave Functions
Solving the Newton-Raphson Equations for MCSCF

Various codes

Virtually no package offers only a naive NR: can switch off
CI/orbital coupling, use damping techniques, etc.
Diagonalization of augmented Hessian (norm-extended
optimization).

Trust-region approaches that offer guaranteed convergence:

Dalton CASSCF/RASSCF (second-order) NEO/NR, coupling.
Molpro general MCSCF (second-order+ in MOs), coupling.

Quasi-Newton approaches:

Molcas CASSCF/RASSCF (No coupling, first-order+ in MOs)

Note: Number of iterations does not indicate complexity
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Optimization of CASSCF wave functions

MCSCF calculations on excited states

The CASSI/RASSI method

A few examples
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MCSCF Calculations on Excited States
Separate calculations on the individual states

Problems

Calculations on states that are not the lowest of their spin and
spatial symmetry are more difficult. . .

1 Convergence to a saddle point (normally the Hessian has n−1
negative eigenvalues in state n).

2 Root flipping may occur- the excited state become the lowest
root in the CI

3 Converged MCSCF wave functions for two roots of the same
symmetry are in general not orthogonal.

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011



H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

MCSCF Calculations on Excited States
Separate calculations on the individual states

Root flipping

LiH: Ground state c11σ22σ2 + c21σ23σ2 (X1Σ+),
excited state 1σ22σ13σ1 (A1Σ+).

A

A

X

X

MOs

optimized

MOs

optimized

for X state for A state

Orbitals for excited state differs
very much from ground state
orbitals → excited state becomes
lowest state

Can be handled by methods using
the complete Hessian

However, the upper energy
property is lost for the excited state
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MCSCF Calculations on Excited States
Separate calculations on the individual states

Issues to be considered

1 Sometimes possible, but not always (root flipping and
convergence problems).

2 Hessian eigenvalues should be checked if possible.

3 Local minima for the optimization can arise.

4 States of the same symmetry are generally not orthogonal.

5 How to compute transition properties?
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MCSCF Calculations on Excited States
State-averaged MCSCF

Purpose

Obtain orbitals that describe several states

Procedure

Introduce a (weighted) average of the energies of M states:
Eaver = ∑M

I=1 ωIEI

all states will have the same orbitals- but different CI coefs.

The average energy in terms of density matrices:
Eaver = ∑ij hijD̃ij +∑ijkl gijklP̃ijkl

D̃ij = ∑M
I=1 ωIDI

ij, P̃ijkl = ∑M
I=1 ωIPI

ijkl.

By calculating more roots in the CI, the same program can be
used for average orbital MCSCF calculations
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MCSCF Calculations on Excited States
State-averaged MCSCF

Advantages

1 Orthogonality: 〈I|J〉= 0.

2 Normally much better convergence.

3 Easy to compute transition properties.

4 One calculation for all states.

Disadvantages

1 MOs in different states may be very different!

2 May therefore require large active spaces
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MCSCF Calculations on Excited States
State-averaged MCSCF

An Example: N,V, states of C2H4

Simplest choice πu,πg with two active electrons.

N state: C1(πu)
2 +C2(πg)

2

V state: (πuπg)(S=0)

For the ground (N) state: 〈πg|z2 |πg〉= 1.69

For the excited (V) state: 〈πg|z2 |πg〉= 9.13

The same πg MO will not do both jobs! At least two are
needed (and the V state is actually more difficult than this).
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MCSCF Calculations on Excited States
Excited states in practice

Dalton: only separate calculation on each state. Second-order
procedure allows convergence to excited states

Molcas: separate calculations, or averaging over states of
same spin and spatial symmetry.

Molpro: separate calculations, or averaging over any mixture
of states (spin, symmetry and charge can all be different).

Averaging is often used to ensure nonabelian symmetry- (can
be done in a much simpler and more efficient manner)

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011



H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

Contents

Thursday, Sept. 22
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MCSCF calculations on excited states

The CASSI/RASSI method

A few examples
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method

Matrix elements between different XASSCF(X=C,R) states

Assume we have obtained XASSCF wave function, |X〉 and
|Y〉, for two electronic states

To understand transitions between the states, we must
calculate the the transition moment: 〈X| µ̂ |Y〉
what µ̂ for example is the dipole operator: µ̂ = ∑pq~µpqÊpq.

Transition matrix element is 〈X| µ̂ |Y〉= ∑XY
pq DXY

pq~µpq

DXY
pq = 〈X| Êpq |Y〉= ∑mn CX

mCY
n Dmn

pq is a transition density
matrix.
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method

The Nonorthogonality Problem

Calculation of the coupling coefficients Dmn
pq is easy when the

two states are described in the same MO basis.

In that case Dmn
pq are the normal one-electron coupling

coefficients.

The same holds when the MO’s are not the same but they are
biorthonormal:

〈
pX
∣∣qY
〉
= δpq

It is not always possible to transform two MO sets to
biorthonormal form without changing the space of the wave
function.

It is possible for CASSCF or RASSCF wave functions.

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method
The CI-transformation technique of Prof. Malmqvist

The idea

A CI-vector is given for a given set of orbitals

The orbitals are now changed to a new basis

Change the CI-coefficients so the state with transformed
orbitals is identical to the original state

Complexity of the problem

For a pair of states, the operation count for the
transformation corresponds to CI with a one-electron operator

That is: Peanuts..
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method

The algorithm allows

The computation of transition densities DXY and PXY .

Also: overlap integrals: 〈A|B〉 and Hamiltonian matrix
elements 〈X| Ĥ |Y〉.
Allows the solution of the XAS state interaction secular

problem

(
HXX−E1 HXY −ESXY

HYX−ESYX HYY −E1

)(
cX

cY

)
= 0

The resulting states are orthogonal, and non-interacting
through the Hamiltonian.

Hundreds of XASSCF states can be handled.
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Examples of CASSCF calculations
The N2 ground state

Ground state potential curve
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Examples of CASSCF calculations
The Cr2 ground state

MCSCF vs accurate potential curve
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Examples of CASSCF calculations
N2 excitation energies (eV)

MCSCF MCSCF(av) accurate
3Σ+

u ← 1Σ+
g 7.91 7.76 7.57

1Σ+
u ← 1Σ+

g 11.36 11.15 10.32

3Σ+
u and 1Σ+

g dissociate to 4S+ 4S; 1Σ+
u dissociates to 2D+ 2D.

Differential dynamical correlation error.
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Examples of CASSCF calculations
M(CO)n binding energies

Dissociation
M(CO)n→ M+nCO.

For Ni(CO)4, Fe(CO)5 and Cr(CO)6 CASSCF predicts very
little binding (about 100 kJ/mol) compared to accurate
results of 550–650.

Bond lengths too long.

In fact, much of the CASSCF binding comes from basis set
superposition error even in very large basis sets!
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Introduction to Dynamical correlation
Wishing list for correlation methods

Size extensivity, definition

Consider two molecules A, B, infinite apart

Perform calculation with method X on the two molecules
separately → EA,EB

Perform also calculation with method X on supermolecule
containing both A,B → EAB

If EA +EB = EAB then method X is size-extensive

Size-extensive methods

RHF, UHF, FCI, CC, Perturbation theory (not CASPT2..)

Active spaces may be choosen, so CAS is size-extensive

CI, Including MRCI, standard CASPT are not size-extensive
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Introduction to Dynamical correlation
Wishing list for correlation methods

Definition of size-consistency

Consider calculation on a molecule AB with method X

Increase the distance between A and B, and calculate energy

Compare the energy and wave function of system A in the
limit of infinite distances with that of a calculation on system
A by itself.

If the two energies are identical, method X is size-consistent

Size-consistent methods

UHF, UHF based correlation methods (-CI)

Active spaces may be choosen, so CAS is size-consistent

RHF, RHF based correlation methods are not size-consistent
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Introduction to Dynamical correlation

And it is

The short-range correlation that arise as r12→ 0.

Characteristica

Convergence in an orbital-based expansion is very slow.

Using optimized orbitals does not help for the last %

Use orbitals from the MCSCF calculation

Methods to determine dynamic correlation

Variational SRCI and MRCI

Perturbation Møller-Plesset and various Multireference schemes

Projection SR or MR Coupled cluster

Methods containing two-electron functions (F12,
geminals, ..) may be combined with the above
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Introduction to Dynamical correlation
Combined with static correlation

We want a method to treat dynamical correlation built on top
of MCSCF methods.

(Or use UHF-based methods and hope. . . )

Need “multireference” methods for CC, CI, PT.

Should preferable be both size-extensive and size-consistent

Or perhaps some sort of DFT on top of MCSCF (not
discussed here).
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The Multireference CI Method
Introduction

The wave function space

Select a number of reference configurations Φ(I) based on an
MCSCF calculation.

Generate all singly, Φ(I)x
i and doubly, Φ(I)xy

ij excited
configurations. i, j are occupied orbitals and x,y occupied or
external orbitals.

Excitation operators Êxi, ÊxiÊyj operating on each Φ(I).

Except in the single-reference case this set of operators may
generate redundancies and nonorthogonalities among the
excited configurations.

E.g., H2 two-reference, ÊxσgÊyσg and ÊxσuÊyσu give the same
doubly-excited configuration.
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The Multireference CI Method
Introduction

The wave function

A linear combination of the configurations

ΨMRCI = ∑
I

[
C(I)Φ(I)+∑

ix
Cx

i (I)Φ(I)x
i +∑

ijxy
Cxy

ij (I)Φ(I)xy
ij

]

The parameters C
Are determined using the variational principle

Leads to the eigen value problem (H−ES)C = 0
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The Multireference CI Method
The Direct CI Method

Idea

It is not possible to store the Hamiltonian matrix H

Obtain instead selected roots using iterative methods

Efficient direct CI methods require

Efficient numerical algorithms

Efficient routines for the calculation of HC from integrals

σ = HC

Ĥ = ∑pq hpqÊpq +
1
2 ∑pqrs(pq|rs)(ÊpqÊrs−δqrÊps)

σµ = ∑ν
[
∑pq hpqAµν

pq + 1
2 ∑pqrs(pq|rs)Aµν

pqrs
]

Cν

Aµν
pq and Aµν

pqrs are the direct CI coupling coefficients.
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The Multireference CI Method
Internal contraction

Problem with MRCI

Number of configurations runs easily into millions and billions

Internal contraction

Apply excitation operators to the MCSCF wave function Ψ0,
instead of to the configurations in the reference space

The ’configurations’ obtained in this way are much more
complicated objects.

There are far fewer coefficients to optimize: no I dependence
→ cxy

ij , more-or-less independent of the number of CSFs in Ψ0.

This approach is termed internally contracted MRCI.
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The Multireference CI Method
Internal contraction

The pro and cons

Internal contraction reduces variational freedom and will raise
the energy.

This is rarely an issue, especially in implementations that
“relax” the coefficients in Ψ0 during the iterations.

Occasional problems with particularly singles coefficients, and
these are sometimes then uncontracted.

Molpro: internally contracted MRCI
Molcas: no contraction in MRCI.
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The Multireference CI method

Advantages

Probably the most accurate method available for small
molecules.

Balanced calculations for several electronic states.

Disadvantages

MRCI is not size-extensive.

The size of the uncontracted CI expansion grows quickly with
the number of reference configurations.

Even with internal contraction large multiconfiguration
reference functions become intractable.

Becomes less and less practical for large molecules.

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

Contents

Friday, Sept. 23

Introduction to dynamic correlation

The multi reference CI method

A bit on Multireference CC

Other nearly degenerate multi reference methods

Perturbation theory, general, MP2 and multireference methods

CASPT2

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011



H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

Multireference CC?

This is not easy. The expansion of exp(−T)H exp(T) in
commutators does not terminate after five terms, as in
closed-shell CC (or UHF CC).

In fact, the termination is messily excitation-level dependent,
making the equations highly nonlinear and the work
substantial.

A lot of advances in recent years

Or with single-reference high-excitation level approaches,
eliminating some terms. E.g., to dissociate N2 needs up to
six-fold excitation in the valence space — start with
CCSDTQ5678 (!) but eliminate terms that are more than
(say) doubles with respect to the valence-space configurations.

Remains a very active, but challenging area.
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Other (nearly) size-extensive multireference methods
Multireference ACPF and relatives

Idea

Use MRCI form of wave function: Ψ = Ψ0 +Ψa +Ψe

Ψa is in reference space, Ψe contain the external excitations

Modify Energy-expression

The energy expression

E = 〈Ψ0+Ψa+Ψe|H−E0|Ψ0+Ψa+Ψe〉
1+ga〈Ψa|Ψa〉+ge〈Ψe|Ψe〉

Various choices of g→ various methods

MRCI: ga = 1, ge = 1.

MRACPF: ga = 1, ge = 2/N.

MRCEPA(0): ga = 0, ge = 0.

MRLCCM: no Ψa, ge = 0.

QDVPT: ga = 1, ge = 0.
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Other (nearly) size-extensive multireference methods
Multireference Davidson corrections

Idea

Perform a MRCI calculation as usual

Add a correction to the obtained correlation energy to obtain
a better (lower) energy

Two forms

Two different corrections:
∆Ecorr = (EMRCI−EREF){1−∑R(cMRCI

R )2}
∆Ecorr = (EMRCI−EREF){1−∑R(cMRCI

R cREF
R )}

Both trivial to compute.

Problems

Weak theoretical foundation- but works often anyhow!!

Same problems as single-reference correction

Does not work when say 50-100 electrons are correlated
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Multi reference perturbation theory
Rayleigh-Schrödinger Perturbation Theory

Divide Hamiltonian

Ĥ = Ĥ0 +λ Ĥ1.

Expand the wave function and energy in λ

Ψ = Ψ0 +λΨ1 +λ 2Ψ2 + . . .

E = E0 +λE1 +λ 2E2 + . . . .

Insert in Schrödinger equation to obtain

(Ĥ0−E0) |Ψ0〉= 0

(Ĥ0−E0) |Ψ1〉= (E1− Ĥ1) |Ψ0〉
(Ĥ0−E0) |Ψ2〉= (E1− Ĥ1) |Ψ1〉+E2 |Ψ0〉
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Multi reference perturbation theory
Rayleigh-Schrödinger Perturbation Theory

From last slide
(Ĥ0−E0) |Ψ1〉= (E1− Ĥ1) |Ψ0〉
(Ĥ0−E0) |Ψ2〉= (E1− Ĥ1) |Ψ1〉+E2 |Ψ0〉

Normalization

Impose intermediate normalization 〈Ψ0|Ψn〉= 0(n > 0)

To obtain the second-order energy

E2 = 〈Ψ0| Ĥ1 |Ψ1〉
(Ĥ0−E01̂) |Ψ1〉=−Ĥ1 |Ψ0〉
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Multi reference perturbation theory
Rayleigh-Schrödinger Perturbation Theory, second order

From last slide

E2 = 〈Ψ0| Ĥ1 |Ψ1〉
(Ĥ0−E01̂) |Ψ1〉=−Ĥ1 |Ψ0〉

First-order correction

Expand Ψ1 in a basis: Ψ1 = ∑µ CνΦν

Ψ0 = Φ0,
〈
Φµ
∣∣Φν〉= δµν .

Insert in first-order equation, project with Φµ

∑
ν

(
E0δµν −

〈
Φµ
∣∣ Ĥ0 |Φν〉

)
Cν =

〈
Φµ
∣∣ Ĥ1 |Φ0〉 .
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Multi reference perturbation theory
Rayleigh-Schrödinger Perturbation Theory, second order

Diagonal representation

If the Φµ are eigenfunctions of Ĥ0 with eigenvalues Eµ we
obtain trivially:

Cµ =−
〈
Φµ
∣∣ Ĥ1 |Ψ0〉

Eµ −E0

with the second-order energy:

E2 =−∑
µ

|
〈
Φµ
∣∣ Ĥ1 |Ψ0〉 |2

Eµ −E0
.
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Multi reference perturbation theory
Various forms

Many forms, differs by choices of

1 Reference state

2 Form of H0

3 Form of wave function corrections

4 (Use of intermediate Hamiltonian, buffer states ...)

Reference state

CASSCF/RASSCF...

Incomplete spaces
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Multi reference perturbation theory
Various forms

Form of Ĥ0

Use of Fock-type one-electron operator in general (CASPT)

Use of Fock-type one-electron operator in inactive and
secondary spaces, full two-electron Hamilton operator in
actice space (NEVPT)

Form of wave function corrections

Complete internal contraction - MOLCAS CASPT, NEVPT

Partial internal contraction - MOLPRO CASPT

No internal contraction: many approaches
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CASPT2
Form of reference state, correction, and Ĥ0

Reference state

CAS state - with or without optimized orbitals

Form of correction

Divide the N-electron space into
The reference function: Ψ0 = |CASSCF〉= |0〉
The complementary CAS space: |K〉
SD substitutions from the reference: |pqrs〉= ÊpqÊrs |Ψ0〉
The remaining configuration space: |X〉.

Only the SD space in CASPT2: interacts with |0〉
The zero-order Hamiltonian

Ĥ0 = P̂0F̂P̂0 + P̂KF̂P̂K + P̂SDF̂P̂SD + P̂XF̂P̂X

F̂ is a Fock-type one-electron operator, several choices
Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011
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CASPT2
The Fock Operator

Defined as

f̂ = ∑pq fpqEpq

fpq = ∑σ 〈Φ0| [apσ , [H,a†
qσ ]+] |Φ0〉=

hpq +∑rs Drs
[
(pq|rs)− 1

2(pr|qs)
]
.

Becomes standard MP Ĥ0 if reference is a closed shell system

Properties of f

Inactive orbitals fpp =−IPp

External orbitals fpp = EAp

nocc
p = 1: fpp =−1

2(IPp +EAp)

Unpaired electrons are favoured, so binding energies are too
low.Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011
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CASPT2
Structure of the Fock matrix

The Fock matrix can be made diagonal within each orbital
subspace

Active

Inactive

External

Elements in nondiagonal block are in general nonvanishing

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

CASPT2
Fock Matrix Elements and the First-Order Equation

Fock Matrix Elements

Contain up to fourth-order density matrices:
〈pqrs| F̂ |p′q′r′s′〉= ∑mn fmn 〈Ψ0| ÊsrÊqpÊmnÊp′q′Êr′s′ |Ψ0〉
May be rearranged to give involve a three-body density

The first-order equation

(H0−E0S)C =−V

There is a total of eight different types of double excitations

Equations may be split into a 8 blocks, one for each of 8
excitation types

The coupling of the blocks may then be introduced in a
second iterative step.
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CASPT2
Computational steps in a CASPT2 calculation

1 Perform a CASSCF calculation, single-state or state-average.

2 Transform the Fock matrix to pseudo-diagonal form.

3 Transform two-electron integrals with at least two indices
corresponding to occupied orbitals (second order
transformation).

4 Compute S and some additional matrices and diagonalize
them.

5 Compute the second-order energy in the ”diagonal”
approximation.

6 Solve the large system of linear equations introducing the
coupling arising from the non-diagonal blocks of the Fock
matrix F.
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CASPT2

Intruder States in CASPT2

CASPT2 will only be an adequate method when the
perturbation is small.

All large CI coefficients should thus be included in the CAS
space.

When large coefficients appear in the first-order wave function
(weight of the reference function is small), the active space
should in general be increased.

When the interaction of a specific state with the reference
function is small, the effect of that state may be removed
using a level shift technique.

This is the intruder state problem in CASPT2.
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CASPT2
The Reference Weight

Write the first-order wave function as: |Ψ′〉= |Ψ0〉+ |Ψ1〉
Define S1by 〈Ψ′|Ψ′〉= 1+S1.

Introduce ω = 1/(1+S1)

The normalized function is |Ψ〉=√ω |Ψ0〉+
√

1−ω |Ψ1〉
Since CASPT2 is nearly size-extensive, ω will decrease when
the number of electrons increases.

Typical values of ω

Order of magnitude: ω = (1+α)−N/2 , α ≈ 0.015

N = 10→ ω = 0.93, N = 100→ ω = 0.48.

Values much smaller than these estimates indicate an intruder
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CASPT2
Level-shifted CASPT2

Introduce a level shift ε in the first-order equation

(Ĥ0−E0 + ε)Ψ̃1 = (E1− Ĥ1)Ψ0

(tilde denoting a level-shifted quantity)

For a diagonal Ĥ0: Ẽ2 = E2 + ε ∑µ |C̃µ |2
(

1+ ε
εµ−E0

)
.

Assume that εµ −E0� ε and neglecting quadratic terms:
E2 ≈ Ẽ2− ε

〈
Ψ̃1
∣∣Ψ̃1

〉
.

This technique removes the effect of the intruder state without
large changes od the contributions from the other states.
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CASPT2
Multi-State (MS) CASPT2

Idea

Diagonalize approx. Hamiltonian in space of CASPT2 states

First perturb, then diagonalize scheme

Natural extension of XASSI (X=C,R)

The method

Assume a number of CASSCF states, Ei,Ψi, i = 1,N,

The CASPT first-order wave functions are denoted χi, i = 1,N.

Use Ψi +χi as basis functions in a approx. var. calc.

Effective Hamiltonian has elements:
(Heff )ij = δijEi + 〈Ψi| Ĥ |χj〉
Always recommended when several states of the same
symmetry are considered.

Multiconfigurational and multireference methods ESQC-11 Torre Normanna September 2011

H2 UHF MCSCF CAS Optim Excited RASSI MCSCF examples MR methods CASPT2

CASPT2

Advantages of CASPT2

A CAS wave function is the reference, so very general cases
may be treated.

The formalism is independent of the size of the CAS CI space.
Thus large expansions for Ψ0 may be used.

The size of the contracted SD space is never large and is
independent of the CAS CI space.

The formalism is nearly size-extensive. Therefore a large
number of electrons may be correlated (more than 100 in
practical applications).

The method has the same orbital invariance as the CASSCF
method.
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CASPT2

Applications of CASPT2

Energy surfaces for ground and excited states.

Electronic spectroscopy, including all types of excited states
(singly, doubly, etc. excited, valence and Rydberg states,
charge transfer, etc.).

The whole periodic system from H to Pu (scalar relativity in
CASSCF, spin-orbit with RASSI).

Radicals and biradicals, positive and negative ions.

Large molecules where MRCI is not applicable (calculations on
systems with up to 50 atoms have been performed).
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CASPT2

Problems with CASPT2

The active space may become prohibitively large (today’s limit
14-16 active orbitals).

The intruder state problem.

The zeroth-order Hamiltonian has a (small) systematic error
(has recently been fixed with a shifted Hamiltonian, the IPEA
shift).

Transition properties are obtained at the CASSCF level, not
CASPT2.

It is not a “black box” method. (But is this really a
problem/disadvantage. . . ?)
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CASPT2
Applications

N2 ground-state spectroscopic constants

re ωe De

(Å) (cm−1) (eV)

CASSCF 1.102 2329 8.91
CASPT2 1.100 2312 9.43
ACPF 1.099 2330 9.79
CCSD(T) 1.099 2332 9.82

Expt 1.098 2359 9.90
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CASPT2
Applications

Cr2 potential curve
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