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A previously proposed [M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, J. Chem.
Phys. 134, 164102 (2011)] formulation of the two-particle cumulant, based on an orbital-pairing
scheme, is extended here for including more than two natural orbitals. This new approximation
is used to reconstruct the two-particle reduced density matrix (2-RDM) constrained to the D, Q,
and G positivity necessary conditions of the N-representable 2-RDM. In this way, we have de-
rived an extended version of the Piris natural orbital functional 5 (PNOF5e). An antisymmetrized
product of strongly orthogonal geminals with the expansion coefficients explicitly expressed by
the occupation numbers is also used to generate the PNOF5e. The theory is applied to the ho-
molytic dissociation of selected diatomic molecules: H2, LiH, and Li2. The Bader’s theory of atoms
in molecules is used to analyze the electron density and the presence of non-nuclear maxima in
the case of a set of light atomic clusters: Li2, Li+3 , Li2+

4 , and H+
3 . The improvement of PNOF5e

over PNOF5 was observed by visualizing the electron densities. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4844075]

I. INTRODUCTION

The correct description of systems with a multiconfig-
urational nature within the natural orbital functional (NOF)
theory has been recently achieved by the PNOF5.1 The lat-
ter belongs to a series of functionals, known in the litera-
ture as PNOFi (i = 1–5),2–5 which use a reconstruction of the
two-particle reduced-density matrix (2-RDM) in terms of the
one-particle RDM by ensuring necessary N-representability
positivity conditions on the 2-RDM.2 In this vein, NOF the-
ory can also be understood as a parametric 2-RDM method.6

The NOF theory and the PNOF series have been reviewed in
Refs. 7 and 8, respectively.

Several performance tests have shown that PNOF5
yields remarkably accurate descriptions of systems with near-
degenerate one-particle states and dissociation processes.9–12

The one-electron picture provided by PNOF5 is really very
appealing since its orbitals agree closely with the orbitals pro-
vided by the valence bond method and with those obtained by
a standard molecular orbital calculation.13–16

The natural geminals of PNOF5 were recently
analyzed,17 and it was realized by Pernal18 that PNOF5
corresponds to the energy obtained from an antisymmetrized
product of strongly orthogonal geminals (APSG)19–22 if the
expansion is limited to two-dimensional subspaces. The
latter approach is also known under the name generalized
valence bond (GVB) or perfect pairing (PP) model.23–27

The APSG wavefunction was explored extensively in the
1960s, but new approaches based on antisymmetric products
of nonorthogonal geminals have recently appeared in the
literature.28, 29

Consequently, PNOF5 is actually N-representable, i.e.,
the 2-RDM can be derived from a function that is antisym-
metric in N-particles.30 Moreover, it is size-extensive and

size-consistent which are inherent properties to the generating
singlet-type APSG wavefunction.31, 32 Accordingly, PNOF5
is a NOF that can be obtained by top-down and bottom-up
methods.33 The top-down method is represented by the reduc-
tion of an N-particle functional generated from a wavefunc-
tion such as the APSG. In the bottom-up method, a functional
is generated by progressive inclusion of N-representability
conditions.34

Being an orbital-pairing approach, PNOF5 takes into ac-
count not only most of the non-dynamical effects, but also
an important part of the dynamical electron correlation cor-
responding to the intrapair (intrageminal) interactions. To in-
clude the missing interpair (intergeminal) correlation, a mod-
ified version of the multiconfigurational perturbation theory
size-consistent at the second-order (SC2-MCPT)35 was re-
cently applied to the PNOF5 energy. The approach was named
as PNOF5-PT2.36

PNOF5-PT2 takes as a reference a PNOF5-generating
wavefunction of the APSG type with expansion coefficients
explicitly expressed by the occupation numbers. The pertur-
bative corrections in this ansatz involve exclusively double
excitations from different spatial orbitals in order to con-
sider only the interpair correlation. The performance of the
PNOF5-PT2 has been tested in non-covalent interactions, ho-
molytic dissociations, and reactivity.36, 37 The ground-state
energy of 36 closed-shell species belonging to the G2/97
test set of molecules was also studied.37 To improve our ap-
proach, these results indicated that it is necessary to extend
the PNOF5 including more orbitals in each geminal. The aim
of the present research is to formulate a more general ansatz,
named hereafter as the extended PNOF5 (PNOF5e), which
will provide a better description of the intrapair correlation,
and will serve as a better reference for the perturbation theory
in a future work.

0021-9606/2013/139(23)/234109/9/$30.00 © 2013 AIP Publishing LLC139, 234109-1
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This paper is organized as follows. Section II presents
the theoretical aspects of the bottom-up and top-down meth-
ods for obtaining the PNOF5e. First, the reconstruction of the
2-RDM based on the explicit formulation of the two-particle
cumulant λ(�,�) is described in Sec. II A. Then, we de-
rive the PNOF5e by imposing the D, Q, and G necessary
N-representability conditions on the 2-RDM. In Sec. II B,
we introduce a wavefunction of the APSG type that leads to
an expected value of the electronic Hamiltonian equal to the
PNOF5e energy. In Sec. III, the main results of this study are
presented. We discuss here the dissociation curves of selected
diatomic molecules, for which the electron correlation effect
is almost entirely intrapair correlation (Sec. III A). The prop-
erties of bond critical points (BCPs) and non-nuclear maxima
(NNM) of light clusters are then analyzed (Sec. III B). The
sum of the occupation numbers above the Fermi level as a
measure of the electron correlation, obtained by the PNOF5
and PNOF5e, is discussed in Sec. III C. Finally, some conclu-
sions are outlined in Sec. IV.

II. THEORY

The energy of a system of N fermions, which involves
at most two-particle interactions, can be expressed exactly in
terms of the 1- and 2-RDMs, denoted hereafter as � and D,
respectively,

E[�, D] =
∑
ik

�ikHki +
∑
ijkl

Dij,kl〈kl|ij 〉. (1)

In Eq. (1), Hki denotes the one-particle matrix elements of
the core-Hamiltonian, and 〈kl|ij〉 are the matrix elements of
the two-particle interaction. The 2-RDM can be approximated
in terms of the 1-RDM by means of a reconstruction func-
tional D[�], which once used in Eq. (1) yields a 1-RDM
functional, E[�], for the energy. A major advantage of the
E[�] is that both the kinetic energy and the exchange energy
can be explicitly defined in terms of the 1-RDM and hence,
do not require the construction of an approximate functional.
The unknown functional only needs to incorporate correlation
effects.

The 1-RDM can be diagonalized (�ik = niδik) by a uni-
tary transformation of the spin orbitals {φi(x)}. Accordingly,
its eigenfunctions are the natural orbitals (NOs), while the
eigenvalues represent the occupation numbers (ONs) of the
latter,

�(x1,x′
1) =

∑
i

niφi(x1)φ∗
i (x′

1), (2)

where x ≡ (r, s) is the composite space-spin coordinate for a
single particle. In the following, we assume that {φi(x)} refers
to the basis of the NOs. This transforms the density matrix
functional into a NOF,

E[{ni, φi}] =
∑

i

niHii +
∑
ijkl

D[ni, nj , nk, nl]〈kl|ij 〉. (3)

It is worth to note that we neglect any explicit depen-
dence of the 2-RDM on the NOs themselves because the en-
ergy functional has already a strong dependence on the NOs
via the one- and two-electron integrals.

In essence, given the reconstruction functional, one has to
minimize the resulting energy expression with respect to both,
the NOs and their ONs, under the appropriate constrains.
Other advantage of NOF theory is that restricting the ONs
into the range 0 ≤ ni ≤ 1 fulfills the necessary and sufficient
easily implementable condition for the N-representability of
the 1-RDM.30 Nevertheless, it is worth emphasizing that
this does not fully overcome the N-representability problem
of the energy functional, for the latter is related to the N-
representability problem of the 2-RDM,38 via the reconstruc-
tion functional.

There are two ways of obtaining the reconstruction func-
tional: the top-down and bottom-up methods. In the top-down
method, an N-particle wavefunction with expansion coeffi-
cients explicitly expressed by the ONs is proposed to generate
the 2-RDM. Conversely, in the bottom-up method, D is ex-
pressed in terms of the ONs without the many-electron wave
function, introducing N-representability constraints to ensure
that the 2-RDM corresponds to a realistic N-electron system.

A. The bottom-up method

One route to the reconstruction39 is based on the cumu-
lant expansion.40 The 2-RDM is partitioned into an antisym-
metrized product of the 1-RDMs, which is simply the Hartree-
Fock (HF) approximation, and a correction λ to it,

Dij,kl = ninj

2
(δikδjl − δilδjk) + λij,kl, (4)

where λ is the cumulant or pair correlation matrix. This defi-
nition of correlation differs from the traditional one, since the
1-RDM in Eq. (4) corresponds to the one-matrix of the corre-
lated system and not to independent particles.

The spin-orbital set {φi(x)} may be split into two sub-
sets: {ϕα

p(r)α(s)} and {ϕβ
p (r)β(s)}. In order to avoid spin con-

tamination effects, the spin restricted theory is employed, in
which a single set of orbitals is used for α and β spins:
ϕα

p(r) = ϕ
β
p (r) = ϕp(r).

We consider Ŝz eigenstates, so only density-matrix
blocks that conserve the number of each spin type are non-
vanishing. Specifically, the 2-RDM has three independent
nonzero blocks: Dαα , Dαβ , and Dββ . The parallel-spin com-
ponents must be antisymmetric, but Dαβ possess no special
symmetry.7 In this work, we deal only with singlet states,
so the occupancies for particles with α and β spin, and the
parallel spin blocks of the 2-RDM are equal: nα

p = n
β
p = np,

Dββ = Dαα .
We shall use the following structure for the two-particle

cumulant of singlet states:2

λσσ
pq,rt = −
pq

2
(δprδqt − δpt δqr ), σ = α, β,

(5)

λ
αβ
pq,rt = −
pq

2
δprδqt + �pr

2
δpqδrt ,

where � is a real symmetric matrix, and � is a spin-
independent Hermitian matrix.

The conservation of the total spin allowed us41 to derive
the diagonal elements 
pp = n2

p and �pp = np. The sum rules
that must fulfill the blocks of the cumulant yield the following
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constraint:2 ∑
q

′
qp = nphp, (6)

where hp denotes the hole 1 − np in the spatial orbital p. The
prime indicates here that the q = p term is omitted from the
summation. The energy for singlet states reads as

E =
∑

p

np(2Hpp + Jpp) +
∑
pq

′�qpLpq

+
∑
pq

′(nqnp − 
qp)(2Jpq − Kpq), (7)

where Jpq = 〈pq|pq〉 and Kpq = 〈pq|qp〉 are the usual di-
rect and exchange integrals, respectively. Lpq = 〈pp|qq〉 is
the exchange and time-inversion integral.42 It is worth to note
that Lpq = Kpq for real orbitals, so the functional (7) belongs
to the JK-only family of NOFs.

Appropriate forms of matrices 
qp and �qp have led to
different implementations, known in the literature as PNOFi
(i=1-5).1–5 These approximations have satisfactorily pre-
dicted several properties, being the most accurate results9–17

those obtained with the latest formulation PNOF5, namely,


qp = n2
pδqp + npnp̃ δqp̃,

�qp = npδqp − √
npnp̃δqp̃.

(8)

According to Eq. (8), we neglect all off-diagonal terms ex-
cept one, 
p̃p and �p̃p, respectively. Hence, we assumed a
HF-like product for D if q 	= p, p̃. The pair of levels (p, p̃)
are referred to coupled natural orbitals. Furthermore, the oc-
cupation of the p̃ level has to coincide with the hole of its
coupled state p, namely,

np̃ = hp, np̃ + np = 1. (9)

We take p̃ = N − p + 1 as a matter of convenience, so that
all occupancies nq vanish for q > N, which is a major short-
coming of this formulation. It is worth noting that we look
for the pairs of coupled orbitals (p, p̃) which yield the mini-
mum energy, so which are the actual p and p̃ orbitals paired is
not constrained to remain fixed along the orbital optimization
process. In fact, the pairing scheme of the orbitals in PNOF5
varies along the optimization process till the most favorable
orbital interactions are found.

As mentioned above, the aim of the present research is
to extend the PNOF5 ansatz for matrices 
qp and �qp to
go beyond the pairing approximation including orbitals with
q > N. This involves coupling each orbital g, below the Fermi
level (g ≤ N

2 ), with more than one orbital above N
2 , namely,


qp = n2
pδqp + 
g(nq, np)(1 − δqp)δq�g

δp�g
, (10)

where

δq�g
=

{
1, q ∈ �g

0, q /∈ �g.

Here, �g is a subspace containing an orbital g, below
the Fermi level, and several orbitals with q > N

2 . More-
over, we consider that these subspaces are mutually disjoint

(�g1 ∩ �g2 = �), i.e., each orbital belongs only to one sub-
space �g. Note that 
qp 	= 0 also when both orbital indexes
(q, p ∈ �g) ∩ (q, p > N

2 ). It is straightforward to verify from
Eq. (6) that ∑

q∈�g


qp = np. (11)

Recall that the D and Q necessary N-representability condi-
tions of the 2-RDM impose the following bounds on the off-
diagonal elements of �2,


qp ≤ nqnp , 
qp ≤ hqhp, q 	= p. (12)

We assume henceforth the maximum possible value for 
g

according to the first inequality, namely,


g(nq, np) = nqnp. (13)

Taking into account the sum rule (11), we must impose that
the occupations of levels belonging to one subspace �g sum
to unity, namely, ∑

p∈�g

np = 1. (14)

It is not difficult to verify that the right side inequality of
Eq. (12) reduces to nq + np ≤ 1 if q, p ∈ �g, hence

g(nq, np), Eq. (13) satisfies also this constraint due to
Eq. (14).

Let us now focus on the G necessary N-representability
condition of the 2-RDM. To fulfill the G condition, elements
of the �-matrix must satisfy the following inequality:5

�2
qp ≤ nqhqnphp + 
qp(nqhp + hqnp) + 
2

qp. (15)

Taking into account the expressions (13) for the off-diagonal
elements, along with the square root of the right-side of
Eq. (15), one finds that |�qp| ≤ √

nqnp if q, p ∈ �g. We as-
sume hereafter that |�qp| = √

nqnp if q, p ∈ �g. The signs
of the off-diagonal elements of � depend on the kind of the
interaction between fermions in the system under study.

Let us consider a Coulombic system, then the signs of
�qp may be inferred from the exact expression for the NOF
in two-electron systems.43, 44 In the weak correlation case,
all natural occupation amplitudes, with the exception of the
first one, are negative if the first amplitude is chosen to be
positive.45 Taking into account this sign rule, the total energy
for two-electron system can be written as a NOF:

E(2e−) = 2
∞∑

p=1

npHpp + n1J11

+
∞∑

p,q=2

√
nqnpLpq − 2

∞∑
p=2

√
n1npLp1. (16)

It is worth to note that the signs of the configurations for the
stretched H2 molecule vary sometimes with respect to those
adopted in Eq. (16).46–48 However, this NOF leads also to ac-
curate values in cases where the largest occupancy deviates
significantly from one, indicating that the energy expression
in Eq. (16) could be valid for stronger correlation strengths.

The requirement that for any two-electron system our
NOF energy expression (7) yields the expression (16) im-
plies that 
qp = nqnp, �qp = √

nqnp if q, p > 1, and
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�1p = −√
n1np otherwise. We generalize this sign conven-

tion for each subspace, namely,

�qp = npδqp + �g(nq, np)(1 − δqp)δq�g
δp�g

, (17)

where, for (p 	= q)∩(p, q ∈ �g), we have

�g(nq, np) =
{−√

nqnp, p = g or q = g

√
nqnp, p, q > N

2 .
(18)

From Eq. (15), note that provided the 
qp vanishes, |�qp|
≤ qp with q = √

nqhq . Equation (17) shows that we
have further assumed that �qp = 0 if �qp = 0. Therefore, we
assume a HF-like product for the 2-RDM if orbitals belong to
different subspaces �g.

Taking into account Eqs. (7), (10), (13), (17), and (18),
the energy for the ground singlet-state of any Coulombic sys-
tem using real orbitals can be cast as

E =
N
2∑

g=1

Eg +
N
2∑

f 	=g

∑
p∈�f

∑
q∈�g

nqnp(2Jpq − Kpq), (19)

Eg = 2
∑
p∈�g

npHpp + ngJgg

−2
∑
p∈�′

g

√
ngnpKpg +

∑
p,q∈�′

g

√
nqnpKpq, (20)

where �′
g contains only orbitals above the Fermi level since

it denotes the subspace �g without the orbital g. The first two
terms of the energy (19) draws the system as independent
N
2 electron pairs accurately described by the NOF of two-
electron systems (20), whereas the last term contains each
one-electron contribution to the HF mean-field interaction be-
tween electrons belonging to different pairs.

B. The top-down method

For a spin-compensated system of N particles, a generat-
ing wavefunction of the PNOF5e can be defined as

|0〉 =
N
2∏

g=1

ψ̂†
g |vac〉, (21)

where

ψ̂†
g = √

ngâ
†
gâ

†
ḡ −

∑
p∈�′

g

√
npâ†

pâ
†
p̄ (22)

is a composite particle creation operator which creates two
electrons with opposite spins on a geminal �g(x1, x2).22 Here
â
†
p(â†

p̄) is a particle creation operator on the spatial orbital p
with spin α(β). It is worth noting that the expansion coeffi-
cients of the geminal are expressed through the ONs of or-
bitals belonging to the subspace �g, which obey the sum rule
(14). The latter normalizes the geminal. It is not difficult to
verify that geminals {�g} are orthogonal to each other due to
the orthogonality of the NOs and the spin functions, a condi-
tion also known as strong orthogonality since geminals belong
to mutually exclusive subspaces. The latter is also reflected in
the algebra of the composite operators {ψ̂†

g}22.

The next step is to determine the 2-RDM for the state
|0〉, in order to obtain the ground state energy (3). The spin-
parallel components of the 2-RDM are only intergeminal, and
have the same structure as in HF theory, namely,

Dpq,rt = 1
2npnq(δprδqt − δpt δqr )δp�f

δq�g
(1 − δfg), (23)

while the spin-opposite components read

Dpq̄,rt̄ = 1
2npnqδprδqt δp�f

δq�g
(1 − δfg) + 1

2 [npδpr

+�g(np, nr )(1 − δpr )δp�g
δr�g

]δpqδrt . (24)

In Eq. (24), the last term gives the intrageminal contribution
to the 2-RDM. Assuming a real set of NOs, the expectation
value of the electronic Hamiltonian calculated with the APSG
(21–22) reads as the PNOF5e energy (19).

It is worth noting that the separable structure of the
wavefunction (21) guarantees the criterion of size-extensivity.
Moreover, our generating wavefunction (21) has the signs of
the APSG expansion coefficients {cp} fixed. This allowed to
express explicitly the energy as a functional of the ONs, in
contrast to the general case of an APSG which is a functional
of the {cp}. Consequently, the degree of freedom related to
the cp’s phases does not exist in the minimization process of
the functional and the PNOF5e energy is an upper bound to
the energy of the optimized APSG,

EAPSG[{cp}, {ϕp}] ≤ EPNOF5e[{np}, {ϕp}]. (25)

The solution is established optimizing the energy func-
tional (20) with respect to the ONs and to the NOs, separately.
The ONs are expressed as np = cos2γ p in order to enforce
automatically the N-representability bounds (0 ≤ np ≤ 1) of
the 1-RDM. The sequential quadratic programming (SQP)
technique49 is used for performing the optimization of the en-
ergy with respect to the auxiliary variables {γ p} with the ad-
ditional constrains of Eq. (14). A self-consistent procedure50

yields the NOs by the iterative diagonalization of a Hermi-
tian matrix F. The off-diagonal elements of F are determined
explicitly by the hermiticity of the Lagrange multipliers. The
first-order perturbation theory applying to each cycle of the
diagonalization process provides an aufbau principle for de-
termining the diagonal elements F.

III. RESULTS

In this section, the obtained results are presented and dis-
cussed. They are organized as follows. First, the potential
energy curves and dissociation energies for three molecules:
H2, LiH, and Li2 are presented. Then, we use Bader’s the-
ory of atoms in molecules to analyze the electron density and
the presence of NNM in the case of small lithium clusters
(Li2, Li+3 , and Li2+

4 ) and the H+
3 cluster. Here, the cluster for-

mation energies are also discussed. Finally, the sum of the oc-
cupation numbers above the Fermi level as a measure of the
electron correlation is presented.

A. Dissociation curves

The performance of the PNOF5e has been tested by the
dissociation of selected diatomic molecules: H2, LiH, and Li2
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FIG. 1. Dissociation curves for H2, LiH, and Li2. For each of the curves, the
zero energy point has been set at their corresponding energy at 10 Å.

for which the electron correlation effect is almost entirely in-
trapair correlation. The selected molecules comprise different
types of bonding character: the prototypical covalent bond of
H2, the highly electrostatic bond of LiH, and the weak co-
valent bond of the Li2. Accordingly, these cases span a wide
range of values for binding energies and bond lengths. In all
cases, observe that the correct dissociation limit implies an
homolytic dissociation with high degree of near-degeneracy
effects at the dissociation asymptote. The dissociation limit
corresponds to a two-fold degeneracy with the generation of
two doublet atomic states.

The corresponding dissociation curves for these
molecules are depicted in Figure 1. We have used the
augmented correlation-consistent valence triple-ζ basis set
(aug-cc-pVTZ) developed by Dunning.51 For each of the
curves, the zero energy point has been set at their correspond-
ing energy at 10 Å. It is remarkable that PNOF5e is able to
reproduce the correct dissociation curves for all cases with
integer number of electrons on the dissociated atoms.

In Table I, selected electronic properties, including bond
lengths, dissociation energies, harmonic vibrational frequen-
cies, and the anharmonicity constants can be found. The ex-
perimental bond lengths and spectroscopic data reported here
were taken from the National Institute of Standards and Tech-
nology (NIST) Database,52 whereas the experimental dissoci-
ation energies are taken from a combination of Refs. 52 and
53. It is well-known that PNOF5 produces dissociation curves
qualitatively correct for these molecules.1 However, one may
observe from Table I that PNOF5e recovers a larger por-

TABLE II. Errors in total energies, in kcal/mol, as compared against
CCSD(T) at the equilibrium bond length using the aug-cc-pVTZ basis set.
The CCSD(T) reference values, in Hartrees, are in the last column.

PNOF5 PNOF5e CCSD(T)

H2 13.249 0.000 − 1.172756
LiH 19.900 2.302 − 8.048590
Li2 26.672 4.793 − 14.954066

tion of intrapair correlation than PNOF5, so PNOF5e predicts
shorter equilibrium bond lengths and larger dissociation en-
ergies, getting closer to the experimental data. Similarly, the
quality of the resultant potential energy curves is illustrated
by the nicer agreement of harmonic vibrational frequencies
and the anharmonicities with the experimental marks.

The values of anharmonicity obtained for the Lithium
dimer deserve special mention. In this case, at the PNOF5
level of theory, there is a discontinuity in the derivative of
the potential energy with respect to the internuclear distance
around 3.2 Å. This behavior is related with an abrupt change
in the solutions passing from the equilibrium region to the
dissociated molecule. PNOF5 is forced to couple the orbitals
in pairs, hence the highest strongly occupied molecular or-
bital (HSOMO) is coupled solely with the lowest weakly
occupied molecular orbital (LWOMO) of π -type. As a con-
sequence, the other equivalent π orbital in the perpendicu-
lar plane remains unoccupied in this molecule. On the other
hand, PNOF5e occupies the two equivalent perpendicular π

orbitals, therefore, this discontinuity in the derivative disap-
pears leading to proper values of the anharmonicity constants.
Section III B will further elaborate on this aspect.

For completeness, Table II lists the errors in total ener-
gies as compared against the highly accurate coupled-cluster
with singles, doubles, and noniterative triples (CCSD(T)) cal-
culations, at the equilibrium geometry. The CCSD(T) cal-
culations have been carried out using the GAUSSIAN 09
program package.54 Inspection of the data collected in this
table reveals that for the selected set of molecules, PNOF5
stays quite above the CCSD(T) values, whereas PNOF5e ap-
proaches considerably to these values due to the better de-
scription of the intrapair correlation. Observe that for H2, the
electron correlation effect is entirely intrapair and PNOF5e al-
most matches the coupled-cluster result. Conversely, Li2 has
greater number of electron pairs than LiH, so its PNOF5e
energy is higher as compared against CCSD(T). For these
two systems, the error is proportional to the lack of interpair
correlation.

TABLE I. Comparison with the experimental values of the equilibrium bond length (Re, in Å), dissociation energy (De, in kcal/mol), harmonic vibrational
frequency (ωe, in cm−1), first-order (ωexe, in cm−1) and second-order (ωeye, in cm−1) anharmonicity constants. For each molecule, properties were calculated
at PNOF5 and PNOF5e levels of theory with the aug-cc-pVTZ basis set.

PNOF5 PNOF5e Expt.52

Re De ωe ωexe ωeye Re De ωe ωexe ωeye Re De ωe ωexe ωeye

H2 0.756 95.4 4221.7 124.3 0.5 0.743 108.6 4395.0 121.6 0.8 0.743 109.5 4401.2 121.3 0.8
LiH 1.631 44.7 1306.0 24.2 0.2 1.613 57.3 1382.3 21.7 0.2 1.595 58.0 1405.5 23.2 0.2
Li2 2.703 12.6 354.7 − 66.9 − 14.4 2.692 24.6 348.5 3.9 0.1 2.673 24.4 351.4 2.6 0.0
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FIG. 2. Molecular graphs, HSOMOs and LWOMOs of the Li2 molecule at
PNOF5 and PNOF5e levels of theory. BCPs and NNM are displayed in red
and pink, respectively. Calculations were performed with the cc-pVTZ basis
set using MX062X geometries.

TABLE III. Properties of the non-nuclear maximum in a.u. calculated at the
PNOF5 and PNOF5e levels of theory with the cc-pVTZ basis set.

Mol NOF ρ ∇2ρ H G

Li2 PNOF5 0.0128 − 0.0104 − 0.0030 0.0004
PNOF5e 0.0137 − 0.0125 − 0.0036 0.0005

Li+3 PNOF5 0.0150 − 0.0090 − 0.0025 0.0003
PNOF5e 0.0154 − 0.0097 − 0.0028 0.0004

Li2+
4 PNOF5 0.0111 − 0.0048 − 0.0013 0.0001

PNOF5e 0.0111 − 0.0028 − 0.0010 0.0003

FIG. 3. Molecular graphs, HSOMOs and LWOMOs of the Li+3 cluster at
PNOF5 and PNOF5e levels of theory. BCPs and NNM are displayed in red
and pink, respectively. Calculations were performed with the cc-pVTZ basis
set using MX062X geometries.

B. Properties of the electron density: Non-nuclear
maxima in light clusters

1. Lithium clusters

The improvement of PNOF5e over PNOF5 can be best
observed by visualizing the electron densities of some se-
lected molecules. In this section, we analyze a series of small
lithium clusters (Li2, Li+3 , and Li2+

4 ) that show an interesting
feature in their electron density, specifically, the appearance
of NNM or attractors at intermediate nuclear distances.55–58

We start our analysis with the Li2 molecule, for which as
we saw in Sec. III A, PNOF5e showed a significant improve-
ment of its dissociation. Both PNOF5 and PNOF5e give the
right qualitative molecular graph for this molecule (Figure 2):
there is a NNM at the bond center, and two BCPs connecting

TABLE IV. Properties of bond critical points in a.u. calculated at the PNOF5 and PNOF5e levels of theory with the cc-pVTZ basis set.

Mol NOF No. ρ ∇2ρ H G ε Bond strain

Li2 PNOF5 2 0.0121 ± 0.0000 0.0083 ± 0.0000 − 0.0018 ± 0.0000 0.0039 ± 0.0000 0.6543 ± 0.0000 0.0000 ± 0.0000
PNOF5e 2 0.0127 ± 0.0000 0.0096 ± 0.0000 − 0.0021 ± 0.0000 0.0045 ± 0.0000 0.0020 ± 0.0004 0.0000 ± 0.0000

Li+3 PNOF5 3 0.0132 ± 0.0003 0.0090 ± 0.0021 − 0.0019 ± 0.0003 0.0041 ± 0.0002 0.6599 ± 0.2813 0.1038 ± 0.0506
PNOF5e 3 0.0132 ± 0.0000 0.0111 ± 0.0000 − 0.0018 ± 0.0000 0.0046 ± 0.0000 0.4584 ± 0.0002 0.0000 ± 0.0000

Li2+
4 PNOF5 4 0.0092 ± 0.0006 0.0059 ± 0.0015 − 0.0010 ± 0.0003 0.0025 ± 0.0001 0.1290 ± 0.0739 0.4846 ± 0.2798

PNOF5e 4 0.0092 ± 0.0000 0.0062 ± 0.0000 − 0.0011 ± 0.0000 0.0003 ± 0.0000 0.0011 ± 0.0000 0.0000 ± 0.0000
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FIG. 4. Molecular graphs, HSOMOs and LWOMOs of the Li2+
4 cluster at

PNOF5 and PNOF5e levels of theory. BCPs and NNM are displayed in red
and pink, respectively. Calculations were performed with the cc-pVTZ basis
set using MX062X geometries.

this NNM, and the two Li nuclei. Inspection of Tables III and
IV reveals that at both BCPs and the NNM, the values of ρ and
∇2ρ and energy densities G and H, are similar with PNOF5
and PNOF5e levels of theory in the Li2 molecule. How-
ever, there is an important difference between PNOF5 and
PNOF5e in the values of the ellipticity (ε) at the BCPs (see
Table IV): PNOF5 yields a very high value of ε, 0.6543 a.u.,
whereas PNOF5e give an almost negligible ellipticity, 0.0020
a.u., as it corresponds to an electron density with cylindrical
symmetry.

An analysis of the PNOF5 and PNOF5e NOs reveals the
origin of this discrepancy. From Figure 2, we observe that
both PNOF5 and PNOF5e give a similar HSOMO of σ char-
acter. The coupled PNOF5 LWOMO is a π -type orbital. Ob-
viously, there is an additional π orbital in the perpendicular
plane, but PNOF5 is forced to couple the orbitals in pairs,
hence this orbital is unoccupied at PNOF5 level of theory.
This difference in the occupancy of the two π orbitals is
the origin of the high ellipticity of the PNOF5 electron den-
sity. On the other hand, PNOF5e occupies the two equiva-
lent perpendicular π orbitals, therefore, a correct ellipticity
value.

FIG. 5. Molecular graphs of the H+
3 cluster at PNOF5 and PNOF5e levels of

theory with the cc-pVQZ basis set using the MX062X/cc-pVTZ geometries.
BCPs and NNM are displayed in red and pink, respectively.

If we analyze the Li+3 cluster, a similar pattern occurs.
The molecular graphs, HSOMOs and LWOMOs for the Li+3
cluster are depicted in Figure 3. In principle, both PNOF5
and PNOF5e show one NNM and three BCPs, but now there
are significant differences between the two molecular graphs.
PNOF5 yields three bond paths connecting the nuclei to the
NNM; however, the three bond paths are not symmetrical, and
two of the three bond paths have a significant bond strain
(see Table IV), displaying a quite pronounced curvature. In
fact, the analysis of the Mulliken’s atomic charges points to
a non-symmetrical distribution of the electronic charge with
one of the Lithium atoms showing a bigger charge, 0.36
e- than the other two, 0.32 e-. PNOF5e solves this prob-
lem: there is not bond strain for any of the bond paths and
the atomic charges are equally distributed among the three
atoms.

Looking at the corresponding NOs, we again see the sim-
ilarities in the HSOMOs. The differences arise from the distri-
bution of the electronic charge in the LWOMO orbitals, hav-
ing PNOF5e three LWOMOs with the same ONs, 0.04 e-,
responsible for leading to the proper symmetry in the elec-
tronic distribution. However, in PNOF5, only one of these
LWOMOs is occupied with 0.12 e-, leading to a breakdown
of the proper symmetry of the total electron density.

Finally, we have the case of Li2+
4 (Figure 4). In this clus-

ter, we see the same tendency as before: PNOF5 predicts
curved bond paths and a breakdown on the electron density
symmetry, whereas PNOF5e recovers the right behavior and
symmetry of the electron density. Once again, the ONs of the
LWOMOs are critical to yield the correct symmetry of the
system.

2. H+
3 cluster

As a more extreme example of the limitation of PNOF5
to treat some systems of high symmetry, we show the case
of the H+

3 cluster. This cluster is known to show a similar

TABLE V. Properties of bond critical points of the H+
3 cluster, in a.u., calculated at the PNOF5 and PNOF5e levels of theory with the cc-pVTZ basis set.

NOF No. ρ ∇2ρ H G ε Bond strain

PNOF5 2 0.2416 ± 0.0000 − 0.8724 ± 0.0000 − 0.2236 ± 0.0000 0.0055 ± 0.0000 3.3104 ± 0.0000 0.2294 ± 0.0000
PNOF5e 3 0.2296 ± 0.0000 − 0.8185 ± 0.0005 − 0.2127 ± 0.0001 0.0081 ± 0.0000 1.8737 ± 0.0085 0.0000 ± 0.0000
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TABLE VI. Cluster formation energies, in kcal/mol, at PNOF5 and
PNOF5e level of theory with the cc-pVTZ (lithium clusters) and cc-pVQZ
basis sets (H+

3 ).

Cluster PNOF5 PNOF5e

Li2 + Li+ → Li+3 − 41.2 − 42.0
Li+3 + Li+ → Li+2

4 46.6 46.9
H2 + H+ → H+

3 − 103.0 − 99.0

molecular graph as the Li+3 case:57, 59 one NNM at the center
of the cluster and three BCPs (see Figure 5 and Table V).
In this case, PNOF5 yields a qualitatively wrong molecular
graph, with no NNM and only two BCPs in a quite curved
bond path. PNOF5e is able to produce the right molecular
graph and symmetry of the electron density in this case.

3. Cluster formation energies

Despite the limitations noted above for PNOF5, to de-
scribe correctly the electron density in Li2, Li+3 , Li2+

4 , and
H+

3 clusters, there is a negligible effect on the formation ener-
gies. The formation of triatomic clusters Li+3 and H+

3 is highly
exothermic, whereas the formation of Li+4 is endothermic. In
Table VI, we can observe that the actual values of exo/endo-
thermicity are very similar at both PNOF5 and PNOF5e levels
of theory.

C. Electron correlation measure

To examine the degree of correlation, we present in
Table VII the sum SF of the ONs above the F = N

2 level for
each of the six species examined, namely,

SF =
nbf∑

p=F+1

np, (26)

where nbf stands for the number of basis functions. It is
worth noting that SF coincides with the sum of holes up to
the F level.3 The deviation of this sum from zero implies
a more correlated (multi-reference) state. Recall that in the
Hartree–Fock case, all orbitals below the F level have ONs
equal to one, whereas orbitals above this level remain unoccu-
pied. For all six molecules, we can see that PNOF5e provides

TABLE VII. Sum (SF) of the occupation numbers above the F = N
2 level.

For diatomic molecules, the experimental geometry52 and the aug-cc-pVTZ
basis set have been chosen. For the rest of the molecules, Li+3 , Li2+

4 , and
H+

3 , the MX062X geometries (Figures 3–5) and the cc-pVTZ basis set were
selected.

SF(PNOF5) SF(PNOF5e)

H2 0.0239 0.0358
LiH 0.0415 0.0617
Li2 0.1295 0.1948
Li+3 0.0948 0.1552
Li+2

4 0.0948 0.1571
H+

3 0.0179 0.0344

substantially larger values of SF than those obtained with
PNOF5, indicating more correlated molecules as expected.
The SF(PNOF5e) is approximately 1.5 times the SF(PNOF5).
The H+

3 cluster shows the largest increase of almost twice,
in perfect agreement to be the most extreme example of the
limitations of PNOF5 presented here.

IV. CONCLUSIONS

The natural orbital functional PNOF5, based on orbital-
pairing scheme, has been extended in order to include more
orbitals in each geminal. The new functional, termed as
PNOF5e, provides a better description of the intrapair (in-
trageminal) correlation, and can serve as a better reference
to recover the absent interpair (intergeminal) correlation in a
multiconfigurational perturbation theory.

PNOF5e belongs to a series of functionals that use an
explicit reconstruction of the 2-RDM in terms of the diago-
nal 1-RDM. Two methods have been employed for obtaining
the reconstruction functional: the top-down and bottom-up
methods.

In the top-down method, a wavefunction of the antisym-
metrized product of strongly orthogonal geminals (APSG)
type, with the expansion coefficients explicitly expressed by
the occupation numbers, has been introduced. Each geminal
was formed by coupling one orbital below the Fermi level
with more than one orbital above this level.

In the bottom-up method, the cumulant expansion of the
2-RDM was used, without any reference to the many-electron
wave function. The two-particle cumulant was then formu-
lated explicitly in terms of the occupation numbers imposing
the D, Q, and G necessary N-representability conditions of
the 2-RDM.

The spin-parallel components of the obtained 2-RDM
have the same structure as in HF theory. For the spin-opposite
components of the 2-RDM, a term which improves the de-
scription of each pair with respect to PNOF5 was obtained.
The PNOF5e energy draws the N-particle system as a set of
N
2 independent electron pairs which are described accurately
by a natural orbital functional of two-electron systems. An
interaction term in the energy contains the one-electron con-
tributions to the HF mean-field between electrons belonging
to different pairs.

The theory has been applied to the homolytic dissociation
of selected diatomic molecules: H2, LiH, and Li2. It was ob-
served that PNOF5e predicts shorter equilibrium bond lengths
and larger dissociation energies than PNOF5, getting closer
to the experimental data. The quality of the PNOF5e potential
energy curves was illustrated by the agreement of the spectro-
scopic data with the experimental marks.

The improvement of PNOF5e over PNOF5 was also ob-
served by visualizing the electron densities by means of the
Bader’s theory of atoms in molecules in the case of a set of
light atomic clusters: Li2, Li+3 , Li2+

4 , and H+
3 . In general, it was

observed that PNOF5 predicts curved bond paths and a break-
down on the electron density symmetry, whereas PNOF5e
recovers the right behavior and symmetry of the electron
density. The more extreme example of the limitation of
PNOF5 is the H+

3 cluster. In this case, PNOF5 yields a wrong
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molecular graph, with no non-nuclear maximum and only two
bond critical points in curved bond paths, whereas PNOF5e
is able to produce the correct molecular graph. A further
analysis of the highest-strongly and lowest-weakly occupied
molecular orbitals allowed to clarify the discrepancies ob-
served between molecular graphs obtained at both levels of
theory.

In summary, properties that will depend directly on the
symmetry of the electronic distribution are highly affected
by the breakdown of symmetry in PNOF5, whereas PNOF5e,
with a relatively small basis set, is already able to give proper
quantitative results. The effect of this limitation in the evalu-
ation of relative energies was observed negligible.

The inclusion of the missing interpair (intergeminal) cor-
relation via a multiconfigurational perturbation theory taken
as a reference, the PNOF5e, in the same vein of the recently
proposed PNOF5-PT2 method,36 could improve these results
and will be the subject of future work.
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